1	
2	
3 4	Ureterorenoscopic (URS) lithotripsy and balloon dilation cause acute kidney injury
5	and distal renal tubule damage
6	
7	Ho-Shiang Huang ¹ , Chan-Jung Liu ^{1,*}
8	
9	1. Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Chang Kung University, Tainan, Taiwan
10 11	National Cheng Kung University, Tainan, Taiwan.
11 12	* Corresponding author
13	Corresponding aution
14	Email: dragon2043@hotmail.com
15	
4.0	
16	
17	
17	
18	
19	
20	
21	
22	
-	
23	
24	
67	
25	
26	

27 Abstract

28	Ureterorenoscopy (URS) is believed to be a safe and effective procedure to treat ureteral stone
29	or ureteral stricture. Rapidly increased intrarenal pressure during URS may have a negative impact
30	on the kidney, but the effect on renal functions is not well known. The aim of this study is to
31	evaluate whether URS balloon dilation or lithotripsy would cause acute kidney injury (AKI), which
32	was evaluated by urine neutrophil gelatinase associated lipocalin (NGAL) and renal tubular
33	damage, which was evaluated by urine α glutathione S-transferase (GST) and π GST. This
34	prospective study consisted of 207 patients with mean age 53.8 years old between September 2012
35	and June 2013. Four groups were included: the ureteral stricture group (group 1), the ureteral stone
36	group (group 2), and two control groups. URS induced increased uNGAL on both Days 1 and 14 in
37	both groups, and only elevated u- π GST levels were noted on Day 14 after URSL. On Day 14, the
38	difference between low-grade and high-grade hydronephrosis was significant in group 1 ($p < 0.001$)
39	rather than group 2 ($p = 0.150$). By multivariate logistic regression analysis, age, baseline eGFR,
40	and stone size > 1.0 cm were associated with complete recovery of hydronephrosis after URS on
41	Day 14. Ureteral stone patients with preserved renal function suffered more AKI (uNGAL) than
42	those with impaired renal function. However, URS-related AKI had no significant difference
43	between stone ≤ 1 cm and > 1 cm subgroups. Besides, urine α GST and π GST were both
44	significantly higher in stone > 1 cm subgroup when compared to \leq 1 cm subgroup. In conclusion,
45	URS laser lithotripsy and balloon dilatation all resulted in AKI and renal tubular damage on Day 14
46	though post-URS double-J (DBJ) stenting was performed in every patient.

47 Introduction

48	Impairment of urinary flow due to the urinary tract obstruction, referred to obstructive
49	uropathy, is a manifestation of a variety of kidney and ureteral disease [1]. The progression of renal
50	function after relief of obstructive uropathy has been widely studied. When experimental animals
51	undergo 24 hours (hr) of unilateral ureteral obstruction, a decline in renal hemodynamic and tubular
52	function is found [1, 2]. Glomerular filtration rate (GFR) is directly affected by intrapelvic pressure
53	and will decrease and actually become zero as pressure progressively increases, whereas renal blood
54	flow does not respond directly to intrapelvic pressure [3]. Furthermore, calcium oxalate (CaOx)
55	stone disease per se can induce renal tubular damage and renal interstitial fibrosis, which was found
56	both in stone patients and experimental animals [4-6]. Therefore, more profound kidney damage is
57	more likely to be found in patients with obstructive uropathy caused by a CaOx ureteral stone.
58	Ureterorenoscopic lithotripsy (URSL) is a safe, effective and less invasive method for the
59	treatment of ureteral stones [7]. With advances in technology, ureterorenoscopy (URS) have
60	evolved to a significantly smaller outer diameter. Good irrigation is vital for ureteral dilatation and
61	instrument passage, and irrigation is required to provide a clear vision [8]. However, application of
62	high-pressure irrigation during URS can cause accumulation of renal intrapelvic fluid and increases
63	in intrapelvic pressure significantly [8]. High-pressure irrigation during URS can cause irreversible
64	damage to the urothelium and renal parenchyma [9, 10]. In addition, ureteral stricture is another
65	major cause of obstructive uropathy [11]. The same as ureteral stone, ureteral stricture is also
66	associated with kidney injury and fibrosis [12]. Various managements of ureteral stricture can be 3

67	used based on urologists' preference and experience. Balloon dilation of the ureter is a
68	well-accepted surgical technique to resolve ureteral stricture [13]. However, many urologists prefer
69	internal stents, that are double-J stents (DBJ) in most circumstances, to treat ureteral stricture rather
70	than balloon dilation because of the potential risk of ureteral injury. Taken together, although both
71	ureteral stone or ureteral stricture are associated with kidney injury, it is still controversial whether
72	the treatments of them, which are URSL and balloon dilation, attenuate or aggravate the kidney
73	injury. Whether URSL or balloon dilation of the ureteral stricture cause more profound acute
74	kidney injury (AKI) and renal tubular damage has not yet been fully investigated.
75	Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as the most promising biomarker
76	of AKI [14]. NGAL is a 21-kDa protein expressed in neutrophils and human epithelia and has a
77	physiological role in iron transport, while regulating cell growth and differentiation [15]. Under
78	various types of AKI, NGAL is secreted into urine from the ascending limb of the loop of Henle
79	and the distal nephrons. Growing evidence has suggested that urine NGAL is an early and accurate
80	biomarker to predict AKI [14, 16]. As in our previous studies, kidney stone disease is associated
81	with renal tubule damage as well as lipid peroxidation [17, 18]. α -glutathione S-transferase (α GST)
82	is a cytosolic enzyme that has been proven to be a useful marker of chemically-induced tubular
83	damage, particularly in the S3 segment of the proximal tubule [19]. π GST is also a cytosolic
84	enzyme and is mainly localized in the distal tubules and collecting ducts, and its presence in the
85	proximal tubules is sparse [18].

86

4

In this prospective study, we investigated whether URSL or URS balloon dilation would cause

87	AKI (evaluated by urine NGAL level) and renal tubular damage (evaluated by urine α GST and
88	π GST levels). We also evaluated the variables that contribute to complete recovery of
89	hydronephrosis after URS surgery and the impact of hydronephrosis.
90	Materials and methods
91	The protocol of this prospective study was approved by the Institutional Ethics Review Board of
92	National Taiwan University Hospital (Registry Number: 201205117RIC), and all subjects provided
93	written informed consent.
94	Study design and populations
95	We prospectively enrolled patients from a single tertiary medical center between September
96	2012 and June 2013. All patients were admitted for URS holmium: yttrium-aluminum-garnet (Ho:
97	YAG) laser lithotripsy or balloon dilation because of diagnosed with acute unilateral
98	hydronephrosis caused by ureteral stones or ureteral stricture, which was confirmed by renal
99	ultrasonography, intravenous urography, or non-contrast computed tomography (CT). The
100	exclusion criteria included patients with (1) previous urolithiasis history; (2) acute pyelonephritis or
101	associated urinary tract infection; (3) pre-URSL nephrostomy tube insertion or currently indwelled;
102	(4) hydronephrosis caused by infravesical obstruction, uterine myoma, malignancy, or other
103	retroperitoneal etiology; (5) stone not containing any amount of CaOx based on the stone analysis;
104	(6) other inflammatory or malignant diseases.
105	Hydronephrosis classification
106	The grade of hydronephrosis was classified according to Goertz JK and Lotterman S [22]:

grade 1 was defined as enlargement of the calices with preservation of the renal papillae; grade 2
was defined as rounding of the calices with obliteration of the renal papillae; grade 3 was defined as
caliceal ballooning with cortical thinning. All renal sonographic examinations and determination of
the grade of hydronephrosis were performed by one urologist. The timing of post URS sonography
was two weeks after surgery and after DBJ removal.

112 **Patient grouping**

In current study, all subjects were categorized into four groups: two study groups (ureter stone 113 group and ureter stricture group) and two control groups (positive and negative). The diagnosis of 114 obstructive uropathy was established via intravenous urography (IVU) or non-contrast CT scan 2-3 115 116 weeks after their first outpatient department interviews. One week after the IVU or CT scan, 117 patients returned to our outpatient department to confirm that the obstructive uropathy was associated with ureteral stones or ureteral stricture. All patients were enrolled into the ureteral 118 119 stricture group (group 1) or ureteral stone group (group 2) based on the image results. Serum and 24-hour urine samples were collected at three time periods: Pre-URS (baseline) 120 sample was collected after overnight fasting, 1-day post-URS (Day 1) samples, and 2-week 121 post-URSL (Day 14) samples were collected from all patients while they followed a normal diet. 122 There was at least a 7-10 day interval between IVU examination and subsequent collection of blood 123 124 and urine samples. The maximal stone length was assessed based on the images of IVU or abdominal CT. 125

126 In current study, we used two groups of controls: negative control (NC) and positive control 6

127	(PC). The NC, serving as the controls at the baseline status, were those who had unilateral ureteral
128	stricture history with long-term unilateral DBJ catheter indwelling. A total of 14 patients were
129	replaced with a 7 Fr. DBJ catheter under anesthesia, and there was no recurrence of ureteral
130	stricture confirmed by URS and retrograde pyeloureterography at the same time. We used patients
131	with unilateral renal staghorn stone and receiving percutaneous nephrolithotomy (PCNL) as the PC,
132	and they served as the controls mainly at the post-URS period to investigate the impact of URS on
133	the changes of these biomarkers. Before PCNL, the PC received URS with a 7 Fr. ureteral DBJ
134	indwelling. The NC represented the patients without current evidence of obstructive uropathy.
135	Otherwise, the PC represented those who got most severe renal injury because of inevitable renal
136	volume damage during PCNL.
137	The procedure of ureterorenoscopy
138	In stone patients (group 2), the ureteral stone was disintegrated by the application of Ho:YAG
139	laser (Odyssey, Convergent Laser Technologies, Alameda, CA,USA) through URS. After the
140	ureteral stone had been disintegrated, ureteral patency was examined by URS to ensure that there
141	was no ureteral injury caused by laser lithotripsy.
142	In ureteral stricture patients (group 1), high pressure balloon catheter (UroMAx Ultra, Boston

- 143 Scientific, Natick, MA, USA) was applied to relieve the stricture. Balloon dilation was applied at
- 144 least two times with balloon inflation pressure up to 18-20 atmosphere (ATM) for 5 minutes each
- time under fluoroscopy to ensure all segments of ureteral stricture were relieved.

146 **Biochemical analysis and renal function determination**

147	Serum creatinine (Cr) level was examined twice, which were the baseline and 2-week post
148	URS, in every enrolled patient and the eGFR was calculated using the formula as 186×(Serum
149	Cr) ^{-1.154} ×(age) ^{-0.203} ×(0.742 if female)×(1.210 if African-American) [2, 3].
150	Commercial kits were used to determine the urine level of NGAL (NGAL ELISA Kit,
151	BioPorto Diagnostics A/S, Copenhagen, Denmark) and the urine levels of stone-induced renal
152	tubular damage markers; namely, the urinary α GST(Alpha GST EIA, Argutus Medical, Dublin,
153	Ireland), which is a marker of proximal tubular damage, and the π GST (Pi GST EIA, Argutus
154	medical, Dublin, Ireland), which is a marker for distal tubular damage. Urinary α GST and π GST
155	were examined at baseline and 2-week post-URS (Day 14) and all assays were performed in
156	duplicate. Urine NGAL (uNGAL) level was examined at three time periods: baseline, post-URS
157	Day 1 and post-URS Day 14.

158 Statistical analysis

Continuous variables are presented as the mean values \pm standard deviation, whereas categorical variables are presented as frequencies. Two sample comparisons between kidney stone patients and controls were performed using the unpaired Student's *t*-test, Mann-Whitney *U*-test or Fisher's exact probability test, as appropriate. Comparisons across the three groups were done using the *chi* square test for categorical variables and by analysis of variance (ANOVA) or Kruskal–Wallis test for continuous variables depending on the distribution of the variable. Logistic regression was used for the univariate and multivariate analyses to identify factors having an effect on hydronephrosis 8

166 recovery (hydronephrosis degree = 0). Pearson's correlation coefficient (γ) was used to assess the 167 correlation between clinical variables. In all tests, *p* value <0.05 was considered statistically 168 significant.

169 **Results**

170 A total of 220 patients were enrolled in curre	ent study and mainly male patients (67.3%) with a
--	---

mean age of 53.80 (Table 1). There was no significant different in age, eGFR, BMI and 24-hour

172 urine output between these four groups. In group 1, the most common site of ureteral stricture was

- 173 upper ureter (59.6%); whereas the most common location of ureteral stone was also upper ureter
- 174 (56.0%). The mean maximal stone length was 0.9 cm.
- 175 Table 1. Clinical Characteristics of the study population.

	Negative	Ureteral	Ureteral stone	Positive control
	control	stricture	(Group 2)	
		(Group 1)		
Number	13	52	141	14
Hydronephrosis (No.)				
Grade 0	14	13	5	0
Grade 1	0	17	61	11
Grade 2	0	13	58	3
Grade 3	0	9	17	0
Age, years	51.7 ± 2.6	53.0 ± 2.0	54.5 ± 1.1	59.1 ± 2.7
Male	8 (61.5)	28 (53.8)	101 (71.6)	11 (78.6)
eGFR	92.0 ± 6.6	87.0 ± 4.0	86.9 ± 3.5	85.1 ± 8.7
(mL/min/1.73 m ²)				
BMI	25.9 ± 1.2	24.6 ± 0.5	24.3 ± 2.1	24.5 ± 1.0
Stone size (cm)	0	0	0.9 ± 0.5	5.4 ± 0.7
Location (stone or				

stricture)				
Upper ureter	-	31 (59.6)	79 (56.0)	-
Middle ureter	-	3 (5.8)	42 (29.8)	-
Lower ureter	-	18 (34.6)	20 (14.2)	-

176 Data expressed as mean \pm standard deviation or number (percent).

177 BMI: body mass index; eGFR: estimated glomerular filtration rate.

178 The impact of different degree of hydronephrosis on kidney injury

179 biomarkers

180	Table 2 shows the	comparisons of	f different ki	idney injury	biomarkers i	n different degree of
		1		5 5 5		U

181 hydronephrosis in group 1 and group 2. To compare with the NC group, significantly elevated

182 uNGAL level was noted in stone patients (group 2) with moderate-to-severe hydronephrosis and

- 183 severe hydronephrosis in ureter stricture patients (group 1). Significant elevation of renal tubular
- 184 damage markers were also found in stone patients with moderate-to-severe hydronephrosis, but we
- didn't find any difference in stricture patients. Interestingly, when compared with stricture patients,
- 186 the levels of u- α GST and u- π GST were significantly higher in moderate-to-severe hydronephrosis
- 187 of stone patients; whereas there was no significant difference in uNGAL between groups.
- **Table 2.** The impact of hydronephrosis on kidney injury, evaluated by acute kidney injury (AKI)
- 189 maker (NGAL) and renal tubular damage markers (α GST, π GST) in group 1 (ureteral stricture) and
- 190 group 2 (ureteral stone) at baseline condition when compared to the negative controls.

Part 1. Compared with negative controls (NC)					
NGAL	P value		P value		
stone H0 vs. NC	0.456				
stone H1 vs. NC	0.153	stricture H1 vs. NC	0.113		
stone H2 vs. NC	0.035	stricture H2 vs. NC	0.390		

stone H3 vs. NC	0.006 stricture H3 vs. NC 0.007		0.007
αGST			
stone H0 vs. NC	0.241		
stone H1 vs. NC	0.058	stricture H1 vs. NC	0.385
stone H2 vs. NC	0.002	stricture H2 vs. NC	0.848
stone H3 vs. NC	0.000	stricture H3 vs. NC	0.352
πGST			
stone H0 vs. NC	0.332		
stone H1 vs. NC	0.059	stricture H1 vs. NC	0.080
stone H2 vs. NC	0.007	stricture H2 vs. NC	0.604
stone H3 vs. NC	0.000	stricture H3 vs. NC	0.440

Part 2. Compared between ureteral stone (group 2) and ureteral

stricture (group 1)	
NGAL	P value
Stone H1 vs. Stricture H1	0.153
Stone H2 vs. Stricture H2	0.219
Stone H3 vs. Stricture H3	0.452
aGST	
Stone H1 vs. Stricture H1	0.064
Stone H2 vs. Stricture H2	0.000
Stone H3 vs. Stricture H3	0.000
πGST	
Stone H1 vs. Stricture H1	0.051
Stone H2 vs. Stricture H2	0.003
Stone H3 vs. Stricture H3	0.000

191 Bold value represents statistically significant p < 0.05.

NC, negative control; H0, grade 0 hydronephrosis; H1, grade 1 hydronephrosis; H2, grade 2

193 hydronephrosis; H3, grade 3 hydronephrosis.

194 Changes in urine NGAL, α GST, and π GST levels at different time

195 periods

196 In the ureter stricture group, uNGAL increased significantly on Day 1 and 14 when compared

to the baseline, but there was no significant difference between Days 1 and 14 (Fig 1A). However,

198 we didn't find any significant increase in u- α GST and u- π GST on Day 14 comparing to the

199 baseline.

200	Fig 1. (A, B) Changes in urine NGAL, α GST, and π GST levels at baseline, Day 1, and Day 14 after
201	URS in both groups; (C) Correlation between baseline hydronephrosis grade and baseline eGFR in
202	all cohorts.
203	In the ureter stone group, we also found the similar result as the stricture group, that was
204	significant elevated uNGAL on Day 1 and 14 when compared to baseline (Fig 1B). Most
205	importantly, no matter in the group 1 and group 2, there was no significant decrease in the uNGAL
206	from Day 1 to 14, which indicated the injury of kidney related to URS surgery persisted for at least
207	two weeks. On the other hand, u- π GST level increased significantly on day 14 in the stricture
208	group, but the elevation was not noted in u - α GST.
209	Larger stone may cause more severe obstruction of kidney and more severe kidney injury.
210	Hence, we investigated the impact of stone size on the changes of urinary biomarkers (S1 Fig). The
211	change of uNGAL at different time periods was nearly the same in both ureteral stone ≤ 1 cm and >
212	1 cm subgroups. However, only in the ureteral stone ≤ 1 cm subgroup, the level of u- π GST was
213	significantly elevated on Day 14 comparing with the baseline, and no difference between the
214	baseline and Day 14 was found in u- α GST. We further compared three urinary biomarkers between
215	the ureteral stone ≤ 1 cm and > 1 cm subgroups. The baseline levels of uNGAL and u- α GST
216	revealed significant difference between stone size $\leq 1 \text{ cm}$ and $> 1 \text{ cm}$ subgroups, and the level was
217	significantly higher in the larger stone size group (S1 Fig). However, there was no significant
218	difference in the baseline level of u- π GST but only a non-significant trend (<i>p</i> =0.085) (S1 Fig 1). 12

219 B	By Pearson	correlation	analysis,	we found	that b	aseline e	eGFR	and	baseline	hydrone	phrosis
--------------	------------	-------------	-----------	----------	--------	-----------	------	-----	----------	---------	---------

grade had an inverse correlation significantly ($\gamma = -0.213$, p = 0.001) (Fig 1C).

221 Predictors of complete recovery of hydronephrosis after URS

- 222 We conducted univariate and multivariate logistic regression analysis to find the predictors of
- 223 complete recovery of hydronephrosis after URS (Table 3). We found that only three factors,
- including age (OR = 0.96, p = 0.002), baseline eGFR (OR = 1.04, p < 0.001), and stone size > 1.0
- 225 cm (OR = 2.56, p = 0.024), had a statistically significant effect on complete recovery of
- 226 hydronephrosis after URS and after DBJ removal.

Table 3. Univariate and multivariate logistic regression analysis for the predictors of complete

228	recovery of hydronephrosis	(hydronephrosis grad	de = 0 on Day 14 after DBJ remova	al) after URS.

	Univariat	e	Multivaria	ite
	OR (95% CI)	<i>p</i> value	OR (95% CI)	<i>p</i> value
Age, years	0.97 (0.95, 0.99)	0.005*	0.96 (0.94, 0.99)	0.002*
Female (vs Male)	0.76 (0.42, 1.36)	0.354		
Group (vs ureteral				
stricture)				
Ureteral stone	2.49 (0.30, 4.77)	0.246		
Staghorn stone	2.92 (0.81, 10.5)	0.102		
Stone position				
Upper	0.62 (0.18, 2.11)	0.448		
Middle	0.70 (0.16, 2.98)	0.630		
Lower	0.71 (0.20, 2.53)	0.596		
eGFR (Baseline)	1.02 (1.01, 1.03)	0.004*	1.04 (1.02, 1.06)	< 0.001*
BMI (kg/m ²)				
$18.5-24 (vs \le 18.5)$	2.17 (0.40, 11.8)	0.371		
24-30 (vs ≤ 18.5)	1.43 (0.28, 7.38)	0.670		
$>30 (vs \le 18.5)$	2.57 (0.42, 15.9)	0.310		
Stone size				
0.4-1.0 (vs <0.4)	2.22 (1.06, 4.66)	0.035*	1.90 (0.81, 4.44)	0.138

>1.0 (vs <0.4)	2.15 (1.07, 4.30)	0.031*	2.56 (1.13, 5.77)	0.024*
Presence of UTI	0.91 (0.51, 1.63)	0.742		
NGAL(Baseline)	1.00 (1.00, 1.00)	0.357		
π GST (Baseline)	1.06 (0.77, 1.45)	0.744		
αGST (Baseline)	0.83 (0.42, 1.66)	0.599		
Cr (Baseline)	1.02 (0.99, 1.04)	0.203		

229	Moreover, we investigated the effects of different degrees of hydronephrosis on kidney injury
230	and renal function (Table 4). Each group was stratified into H0+H1 and H2+H3 subgroups. There
231	was no significant difference in eGFR between the two subgroups on baseline and Day 14 in each
232	group. It is worthy to mention that no significant difference in uNGAL between all H2+H3 patients
233	and PC on Day 1, which indicated URS surgery may cause comparable kidney injury as PCNL.
234	Interestingly, till Day 14, the uNGAL from H2+H3 ureteral stricture patient was as high as PC.
235	Table 4. Impact of hydronephrosis degree on eGFR, AKI marker, and urinary kidney damage
236	markers in each group

236	markers	in each	n group.
-----	---------	---------	----------

	Ureter	ral stricture	Urete	Positive control	
	H0+H1	H2+H3	H0+H1	H2+H3	
eGFR (mL/min/1.73 m ²)					
Baseline	90.7±4.7	79.4±6.7	82.5±3.1	76.7±3 ₁ 1*	89.4±6.6
P value	0.19	2	0.3	23	
Day 14 P value	92 ₁ 7±4.3 0.17	79.6±8.1	87 <u>7±3.4</u> 0.2	81.2±3.3	83.3±6.2
NGAL	0.17	0	0.2		
(ng/mL) Baseline <i>P</i> value	13.6±2.8 *	54.0±16.6	19.3±4.4 *	36.1±8.8	65.6±16.4
Day 1 P value	33.2±10.9 *	72.4±20.3	49.1±9.6*†	71.4±9.6 [†]	95.7±24.6
Day 14 P value	18.5±3.5 *	105.0±25.6 [†]	$48.4 \pm 10.7^{*\dagger}$	60.5±11.4*†	137.6±36.3 [†]
αGST					
(µg/L)					

Baseline <i>P</i> value	2.1±0.2 0.68	2.0±0.1 4	2.0±0.1	1.9±0.1 0.326	2.2±0.3
Day 14 P value	3.6±0.8 0.13	2.3±0.3	2.0±0.1*	2.1±0.2*	2.5±0.1
πGST					
$(\mu g/L)$					
Baseline <i>P</i> value	3.0±0.2 0.490	3.0±0.3	2.7±0.2	3.0±0.2 0.691	2.9±0.6
Day 14 <i>P</i> value	3.7±0.3 	3.1±0.2	3.4±0.2 [†]	3.5±0.3 0.476	3.2±0.7

H0, hydronephrosis grade 0; H1, hydronephrosis grade 1; H2, hydronephrosis grade 2; H3,

238 hydronephrosis grade 3; NAGL, neutrophil gelatinase-associated lipocalin; GST, glutathione

239 S-transferase.

240 P value: the statistical result after analyzed by analysis of variance (ANOVA) in each group.

- 241 * p < 0.05 when compared with positive control at the same time period.
- 242 Bold value represent statistically significant p < 0.05.

243 $\ddagger p < 0.05$ when compared with baseline data in the same subgroup.

The impact of baseline eGFR on kidney injury

245 We evaluated the changes in different urine biomarkers (Δ) in baseline eGFR \geq 60 and eGFR <

- 60 subgroups in both groups (S1 table). The changes were defined as the level of Day 14 minus the
- 247 level of baseline. Only \triangle NGAL of ureter stone group was significantly higher in eGFR ≥ 60
- subgroup than eGFR < 60 subgroup. $\Delta \alpha$ GST and $\Delta \pi$ GST had no significant difference between
- these two subgroups in both study groups.

250 **Discussion**

251	The present study revealed that no matter in patients with ureteral stones or ureteral stricture,
252	URS surgery would induce AKI and the impact persisted for at least 14 days. The impact of
253	URS-induced kidney injury, which was indicated by elevated uNGAL in the present study, was
254	more prominent in moderate-to-severe hydronephrosis. In ureteral stone patients with normal renal
255	function (eGFR \ge 60), uNGAL increased apparently 14 days after URS compared with those with
256	poor renal function (eGFR $<$ 60). However, compared with different size of ureter stones, the
257	degree of URS-induced kidney injury was not significantly different.
258	URSL and URS balloon dilatation definitely cause AKI
259	URS is defined as endoscopic visualization of ureter and renal pelvis for diagnostic and/or
260	therapeutic purposes. Indications for URS include both diagnostic and therapeutic interventions for
261	stone disease, strictures, and ureter tumors in different patient groups [20]. URS is thought to be a
262	safe and effective surgery for treatment of ureteral stones, but the optimal duration and indication
263	for post-URS stenting is controversial. Some authors suggested that post-URS DBJ stent be only
264	used in patients who are at an increased risk of complications, such as previous iatrogenic trauma,
265	impacted ureter calculi, ureter perforation, and under some medical conditions such as solitary
266	kidney, pregnancy, and a history of retroperitoneal fibrosis. Most urologists may favor its use for 1-
267	2 weeks after URS [20, 21]. Our results suggested that even after DBJ indwelling for 2 weeks,
268	URS-induced AKI still persisted no matter in ureteral stone patients or in ureteral stricture patients.
269	Besides, most noteworthy in the present study is that we used negative and positive controls to
270	assist our interpretations of the results. The negative controls represented no obstructive uropathy, 16

271	and we compared two study groups with negative controls to validate whether these urinary
272	biomarkers do increase under these clinical conditions. Our results actually proved that both ureter
273	stone and stricture patients with higher degree of hydronephrosis had higher levels of all urinary
274	biomarkers. Furthermore, we used PCNL patients as the positive controls because PCNL is known
275	to create a renal tract to assess intra-pelvic renal stones and it certainly cause considerable kidney
276	injury. There are two interesting finding regarding positive controls. First, although we didn't see
277	any decrease in the baseline eGFR from positive controls, the baseline level of uNGAL already
278	significantly increased in positive controls compared with mild obstructive uropathy patients in both
279	groups. It indicated that the existence of renal stones would lead to progressive renal injury. Second,
280	in the ureter stricture group with moderate-to-severe hydronephrosis, uNGAL nearly doubled 14
281	days after URS, which was similar as the positive controls. The level of uNGAL on day 14 in the
282	ureter stricture group with moderate-to-severe hydronephrosis was over 100 ng/mL, even higher
283	than the level on day 1 in positive controls. This finding was not noted In other patients, whereas
284	uNGAL decreased 14 days after a peak in post-URS day 1 in other patients. The possible
285	explanation of this result may be that patients with moderate-to-severe hydronephrosis usually have
286	more stricture and tortuous ureters. The higher severity of ureter stricture definitely increases the
287	difficulty and operation time of URS. However, there was no obvious influence on renal tubule
288	damage after URS except that u- π GST significantly increased in ureteral stone patients with mild
289	hydronephrosis.

290 URS procedure causes AKI and tubular damage

291	Irrigation during URS increases renal pelvic pressure (RPP), possibly leading to intrarenal,
292	pyelo-venous, and pyelo-lymphatic backflow as well as kidney injury [9]. Elevated RPP is noted to
293	be harmful to the kidney in a mini-pig experimental model, and Schwalb et al found that
294	high-pressure irrigation during URS caused irreversible, harmful effects in the kidney, and even
295	moving the URS in the ureter without any irrigation could increase RPP by 20-25 mmHg [22].
296	Long-term consequence of high RPP (>200 cm H ₂ O) caused by high-pressure irrigation is related to
297	columnar metaplasia, subepithelial nests and pericalyceal vasculitis in calyces as compared with
298	those subjected to low irrigant pressure 4-6 weeks after experiment [22]. Our results are compatible
299	with previous studies, which the URS procedure would induce kidney injury, and the elevation in
300	uNGAL can be found as early as 1 hour after URS surgery [23]. URS-related tubular damage is
301	limited to distal tubule and collecting duct in the ureteral stone patients, and our results are
302	consisted with the finding that excessively high collecting system pressure induced renal cellular
303	injury, as reflected by an increase in urinary N-acetyl-β-D-glucosaminidase levels (non-specific
304	renal tubular marker) [24].

305 Ureter Balloon dilation may cause more AKI than Ho:YAG laser 306 lithotripsy

307 High-grade hydronephrosis (H2+H3) caused more AKI on Day 1 as noted in both study

308 groups, and even more AKI was present on Day 14 in the H2+H3 subgroup of ureter stricture group

309 (Table 4). This result implied that URS balloon dilation may cause more AKI than URSL in the18

310	high-grade hydronephrosis patients on Day 14. Acute high RPP (>200 cmH ₂ O) not only causes
311	diffuse denudation and flattening of the caliceal urothelium, submucosal edema and congestion
312	[22], but also causes renal tubule dilation and renal glomerulus compression [25]. This may be the
313	reason why the elevated uNGAL levels in the ureteral stricture group were as high as those in the
314	PCNL group (PC), known to have a sudden and rapid increase in RPP and direct renal parenchymal
315	injury during the procedure. On the contrary, the mechanism of Ho:YAG laser lithotripsy is through
316	photothermal effects with minimal upward migration of ureteral stone during procedure. Though
317	intermittent normal saline irrigation by hand-held syringe during Ho:YAG laser lithotripsy, there
318	will be no renal injury when the RPP was maintained under $120 \text{ cmH}_2\text{O}$ (around 88 mmHg) [22]. In
319	a recent porcine experimental study, under gravity irrigation and manual pumping, the maximal
320	RPP during URS reached 30 and 105 cm H_2O , respectively, which were all lower than 120 cn H_2O
321	[8]. Therefore, in our current study, the uNGAL level on Day 14 in ureteral stone group was
322	significantly lower than both the ureteral stricture group and PCNL group. Besides, only the H2+H3
323	subgroup of ureter stricture group had persistent elevated uNGAL levels on Day 1 to Day 14, which
324	was also seen in PCNL group patients. This interesting finding suggests the effect of URS produce
325	for severe ureteral stricture complicated with high-grade hydronephrosis may cause prolonged
326	kidney injury.

327 The severity of hydronephrosis affects post-URS AKI, but not tubule

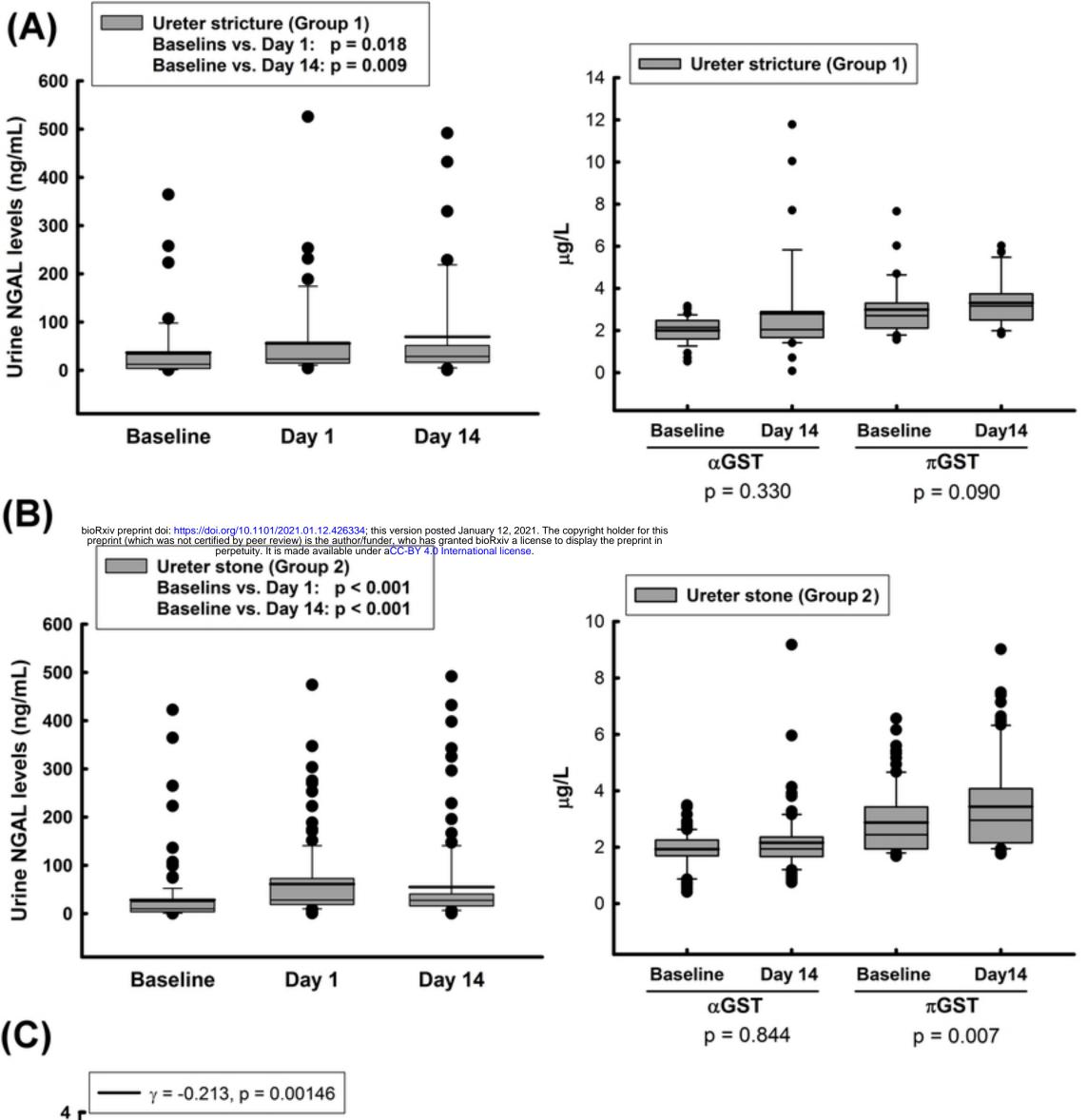
328 damage

329 The kidney is the organ with highest blood flow in the human body, which receives 19

330	approximately one fourth of the cardiac output. Obstructive nephropathy refers to anatomical or
331	functional obstruction of the kidney and leads to progressive kidney injury. Using CT perfusion
332	image, Cai et al. found that significantly decrease in blood flow in both renal cortex and medulla
333	from the obstructive kidney of moderate and severe unilateral ureteral obstruction (UUO); whereas
334	there was no significantly difference in mean blood flow, blood volume, and clearance in the
335	obstructive kidney of mild UUO [26]. This finding suggested that mild dilation of pelvis and calyx
336	is not enough to deteriorate the renal function. This is why H0 and H1 hydronephrosis in both
337	groups 1 and 2 had no significant uNGAL elevation after URS from baseline to Day 14, and the
338	patients with H2 and H3 hydronephrosis had the same severity of uNGAL elevation on Day 1 when
339	compared to the PCNL group. However, mean u- α GST and u- π GST levels were not influenced by
340	URS surgery in both study groups, which implied these three urinary cytokines represented the
341	different types of kidney injury.

342 Conclusions

Although eGFR didn't significantly change after URS surgery, uNGAL persisted elevation for two weeks in both ureteral stricture and ureteral stone groups, which suggested that URS procedures could cause kidney injury. With respect to renal tubular damage marker, only $u-\pi$ GST was elevated on Day 14 in the ureteral stone group. Ureteral stone patients with preserved renal function suffered more uNGAL changes (i.e. Δ NGAL) after URS. Taken together, both URSL and URS balloon dilation could lead to kidney injury and renal distal tubule damage till two weeks even though DBJ indwelling continued in both groups.


350 **References**

- 1. Ma MC, Huang HS, Chen CF. Impaired renal sensory responses after unilateral ureteral
- 352 obstruction in the rat. J Am Soc Nephrol. 2002;13(4):1008-16.
- 2. Harris RH, Yarger WE. Renal function after release of unilateral ureteral obstruction in rats.
- 354 Am J Physiol. 1974;227(4):806-15.
- 355 3. Ulrich JC, York JP, Koff SA. The renal vascular response to acutely elevated intrapelvic
- 356 pressure: resistive index measurements in experimental urinary obstruction. J Urol.
- 357 1995;154(3):1202-4.
- 358 4. Tsujihata M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury.
 359 Int J Urol. 2008;15(2):115-20.
- 360 5. Duan X, Kong Z, Mai X, Lan Y, Liu Y, Yang Z, et al. Autophagy inhibition attenuates
- 361 hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the
- 362 rat kidney. Redox Biol. 2018;16:414-25.
- 363 6. Huang HS, Liao PC, Liu CJ. Calcium Kidney Stones are Associated with Increased Risk of
- 364 Carotid Atherosclerosis: The Link between Urinary Stone Risks, Carotid Intima-Media Thickness,365 and Oxidative Stress Markers. J Clin Med. 2020;9(3).
- 366 7. Hofmann R. [Ureteroscopy (URS) for ureteric calculi]. Urologe A. 2006;45(5):W637-46; quiz
 367 W47.
- 368 8. Noureldin YA, Kallidonis P, Ntasiotis P, Adamou C, Zazas E, Liatsikos EN. The Effect of
- 369 Irrigation Power and Ureteral Access Sheath Diameter on the Maximal Intra-Pelvic Pressure During
- 370 Ureteroscopy: In Vivo Experimental Study in a Live Anesthetized Pig. J Endourol.
- 371 2019;33(9):725-9.
- 372 9. Tokas T, Herrmann TRW, Skolarikos A, Nagele U, Training, Research in Urological S, et al.
- **373** Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of
- increased values to renal physiology. World J Urol. 2019;37(1):125-31.
- 10. Tokas T, Skolarikos A, Herrmann TRW, Nagele U, Training, Research in Urological S, et al.
- Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World
 J Urol. 2019;37(1):133-42.
- 378 11. Gnessin E, Yossepowitch O, Holland R, Livne PM, Lifshitz DA, Holmium laser
- endoureterotomy for benign ureteral stricture: a single center experience. J Urol.
- 380 2009;182(6):2775-9.
- 381 12. Washino S, Hosohata K, Miyagawa T. Roles Played by Biomarkers of Kidney Injury in
- Patients with Upper Urinary Tract Obstruction. Int J Mol Sci. 2020;21(15).
- 13. Kuntz NJ, Neisius A, Tsivian M, Ghaffar M, Patel N, Ferrandino MN, et al. Balloon Dilation
- of the Ureter: A Contemporary Review of Outcomes and Complications. J Urol. 2015;194(2):413-7.
- 385 14. Siew ED, Ware LB, Gebretsadik T, Shintani A, Moons KG, Wickersham N, et al. Urine
- neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill
- adults. J Am Soc Nephrol. 2009;20(8):1823-32.

- 388 15. Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, et al. Dual action of
- neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18(2):407-13.
- 16. Yang HN, Boo CS, Kim MG, Jo SK, Cho WY, Kim HK. Urine neutrophil
- 391 gelatinase-associated lipocalin: an independent predictor of adverse outcomes in acute kidney
- 392 injury. Am J Nephrol. 2010;31(6):501-9.
- 17. Huang HS, Ma MC. High Sodium-Induced Oxidative Stress and Poor Anticrystallization
- 394Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys. PLoS One.

395 2015;10(8):e0134764.

- 18. Ma MC, Chen YS, Huang HS. Erythrocyte oxidative stress in patients with calcium oxalate
 stones correlates with stone size and renal tubular damage. Urology. 2014;83(2):510 e9-17.
- 398 19. Walshe CM, Odejayi F, Ng S, Marsh B. Urinary glutathione S-transferase as an early marker
- 399 for renal dysfunction in patients admitted to intensive care with sepsis. Crit Care Resusc.
- 400 2009;11(3):204-9.
- 401 20. Whitehurst LA, Somani BK. Semi-rigid ureteroscopy: indications, tips, and tricks. Urolithiasis.
 402 2018;46(1):39-45.
- 403 21. Somani BK, Giusti G, Sun Y, Osther PJ, Frank M, De Sio M, et al. Complications associated
- with ureterorenoscopy (URS) related to treatment of urolithiasis: the Clinical Research Office of
 Endourological Society URS Global study. World J Urol. 2017;35(4):675-81.
- 22. Schwalb DM, Eshghi M, Davidian M, Franco I. Morphological and physiological changes in
 the urinary tract associated with ureteral dilation and ureteropyeloscopy: an experimental study. J
 Urol. 1993;149(6):1576-85.
- 23. Benli E, Ayyildiz SN, Cirrik S, Noyan T, Ayyildiz A, Cirakoglu A. Early term effect of
- 410 ureterorenoscopy (URS) on the Kidney: research measuring NGAL, KIM-1, FABP and CYS C
- 411 levels in urine. Int Braz J Urol. 2017;43(5):887-95.
- 412 24. Fung LC, Atala A. Constant elevation in renal pelvic pressure induces an increase in urinary
- 413 N-acetyl-beta-D-glucosaminidase in a nonobstructive porcine model. J Urol. 1998;159(1):212-6.
- 414 25. Wang J, Zhou DQ, He M, Li WG, Pang X, Yu XX, et al. Effects of renal pelvic high-pressure
- 415 perfusion on nephrons in a porcine pyonephrosis model. Exp Ther Med. 2013;5(5):1389-92.
- 416 26. Cai XR, Zhou QC, Yu J, Feng YZ, Xian ZH, Yang WC, et al. Assessment of renal function in
- 417 patients with unilateral ureteral obstruction using whole-organ perfusion imaging with 320-detector
- 418 row computed tomography. PLoS One. 2015;10(4):e0122454.
- 419

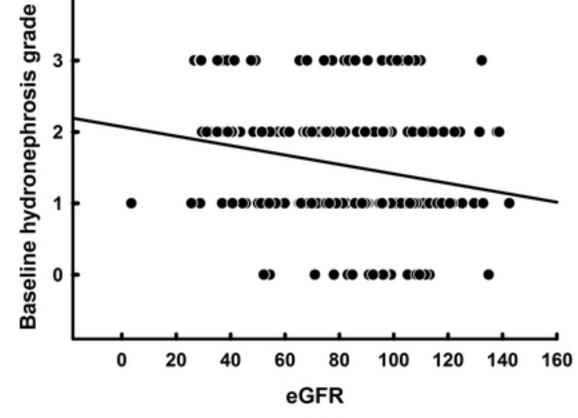


Figure 1