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Abstract

A major challenge in understanding the 3D genome organization of cancer samples is the lack of a
method adapted to solid cancer needle biopsy samples. Here we developed Biop-C, a modified in situ
Hi-C method, and applied it to characterize three nasopharyngeal cancer patient samples. We
identified Topologically-Associated Domains (TADs), chromatin interaction loops, and Frequently
Interacting regions (FIREs) at key oncogenes in nasopharyngeal cancer from Biop-C heat maps. Our
results demonstrate the utility of our Biop-C method in investigating the 3D genome organization in
solid cancers, and the importance of 3D genome organization in regulating oncogenes in
nasopharyngeal cancer.
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Background

The three-dimensional (3D) genome organization of the nucleus plays a vital role in
the regulation of transcription [1,2]. Alterations in 3D genome organization structures
including Topologically-Associated Domain boundaries and chromatin loops have been shown
to lead to oncogene expression and cancer progression [1,3—6].

High-throughput chromosome conformation capture technologies such as Hi-C have
been used to investigate three-dimensional (3D) chromatin conformation [7,8]. The standard
Hi-C approach generally requires approximately 1 million cells. Consequently, most previous
analyses of cancer samples have been restricted to human cancer cell lines [9-11], but
recently, Hi-C has been conducted on clinical samples from liquid cancers such as T-cell Acute
Lymphoblastic Leukaemia (T-ALL) [12] and Diffuse Large B-cell Lymphoma (DLBCL) [13] and
one solid cancer - gastric cancer [14]. For these cancers, it is possible to obtain 1 million cells
— for example, gastric cancers can grow to a large size. However, there are many cancers for
which only needle biopsies are available [15].

To allow interrogation of samples with more limited quantities of starting materials,
there have been several efforts to reduce the number of cells required to just 1K or 500 cells
using modified protocols such as small-scale in situ Hi-C (sisHi-C) [16] and Low-C [13]. However,
when dealing with solid cancers, a second challenge is that the tissue requires special
preparation in order to dissociate the tissue into single cells for Hi-C analysis. The core needle
biopsies pose the challenge of both limited cell numbers as well as the requirement for tissue
dissociation, which might lead to further loss or degradation of chromatin for analysis. Solid
cancers represent approximately 90% of adult human cancers [17], therefore, an easy-to-use
method for preparing Hi-C libraries from needle biopsy cancer samples would advance our
understanding of how chromatin organization contributes to cancer pathogenesis in solid
cancers.

Here, we present Biop-C, a modified in situ Hi-C method for the chromatin analysis in
solid cancer tissues from needle biopsy samples. The Biop-C method has been designed to be
used on small tissue samples obtained from needle biopsies. To demonstrate the utility of
this method, we analyzed three Nasopharyngeal Cancer (NPC) patient samples. NPC is an
epithelial malignancy of the nasopharyngeal mucosa, and is an aggressive subtype of head
and neck cancer [18,19,20]. NPCs are further subdivided into three subtypes viz Non-
keratinizing undifferentiated carcinoma, Non-keratinizing differentiated carcinoma and
Keratinizing squamous cell carcinoma. Depending on the treatment given, the stage of the
cancer, and the site where the cancer presents at, NPCs can be small and analysed using core
needle biopsies.

It has been established that NPC has a comparatively low mutational burden, and
oncogenicity is driven by epigenetic regulation. Typically, NPC associated with Epstein-Barr
Virus (EBV) are characterized as having comparatively low DNA mutation rates but
widespread DNA hypermethylation and overexpression or mutation of DNA methylation
enzymes, histone modification enzymes and chromatin remodelling enzymes [16,17]. Hence,
unravelling the 3D conformational structure will provide further insight into the epigenetic
regulatory mechanisms that promulgate the NPC phenotype. Here we obtained a
comprehensive understanding of the 3D genome organization of nasopharyngeal cancer
through Biop-C analysis, which revealed complex 3D genome organization patterns at
oncogenes important in NPC.
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Results and Discussion

A Genome-wide Map of 3D Genome Organization in Nasopharyngeal Cancer

We applied "Biop-C" to analyze three NPC tissue samples, i.e., "S009", "S010", and
"S012". The tumor cores were collected by needle biopsies and immediately flash-frozen in
liquid nitrogen (Fig. S1A). The tumor cores were approximately weighed in the range 3-10 mg,
and the clinical characteristics of the samples are listed in Table S1. To prepare the tissue for
analysis of 3D genome organization, we used a liquid nitrogen-cooled mini mortar and pestle
for the pulverization of tissue within a microtube. This approach kept the biopsy sample
frozen and reduced the risk of sample degradation. Additionally, this approach also provided
the flexibility of performing the workflow from sample acquisition to HiC library preparation
in a single microtube, which further minimized potential sample losses.

After pulverization, we processed the samples with a commercially available Arima in
situ Hi-C kit. Briefly, the chromatin was fixed with formaldehyde in the nucleus and digested
with a restriction enzyme. Then overhangs were filled in with biotinylated nucleotides
followed by proximity ligation. After ligation, crosslinks were reversed, and the DNA was
purified from protein. Further, the purified DNA was sheared to ~¥350 bp mean fragment size.
Finally, the sequencing libraries were generated using low input swift bioscience lllumina-
compatible adapters (Fig. 1A). The usage of the mini mortar and pestle followed by Hi-C is the
key innovation of the Biop-C method. While this improvement in sample processing is a small
change, it is highly effective in generating high-quality chromatin interaction libraries from
needle biopsy clinical samples (Fig. S1B).

Finally, we sequenced Biop-C libraries deeply by lllumina next-generation sequencing
using a HiSeq4000 machine. Each library contained between 450 M and 922 M contacts (Table
S2). We obtained more than 200 million mapped/valid junction reads (> 50% of total read
pairs) for each library, reflecting that our Biop-C datasets are adequately complex [23] (Fig.
1B, Table S2). Furthermore, the low ratios of the number of trans to cis contacts indicate high
library quality for all samples [24] (Table S2). Notably, in some samples (e.g., SO09), only one
lane of HiSeq4000 sequencing was sufficient to obtain a high quality Biop-C library.

We used Juicer for processing the resulting data, and the package Arrowhead was
used to annotate Topologically-Associated Domains (TADs) genome-wide, while the package
HiCCUPS was used to call loops [9]. Heatmaps were visualized with Juicebox [25]. We were
able to successfully call TADs and loops from our libraries (Fig. 1B, Table S3 & S4). The TADs
were clearly identifiable at a resolution of 10 kb. Patient S009 had 1309 TADs, while patient
S010 had 1453 TADs and patient S012 had 1516 TADs (Fig. 1B). Loops could be identified at
5kb, 10 kb, and 25 kb resolutions in all datasets, and these loops were all merged together for
subsequent analyses. Patient SO09 had 4730 merged loops, while patient S010 had 6539
merged loops, and patient S012 had 2546 merged loops.

Moreover, because Frequently Interacting Regions ("FIREs") are a new type of
chromatin interaction landmark associated with super enhancers and tissue specific
chromatin interactions [40], we used FIREcaller R package [45] to call Frequently interacting
regions (FIREs). We identified 2783 FIREs in NPC sample S009, 1393 FIREs in sample S010 and
2906 FIREs in sample S012 from our Biop-C data. We also called FIREs from NPC cell line HK1
and identified 3585 FIREs (Fig. 1B).
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Next, we examined the chromatin interactions around important oncogenes in NPC,
such as MYC [26] and epidermal growth factor receptor (EGFR)[27-29]. The c-Myc is
overexpressed in 76% of the NPC patients. The patients with c-Myc positive tumors had a
longer disease-free period [26]. EGFR is highly expressed in nearly 85 % of NPC patients and
associated with a significantly poorer prognosis in patients with advanced nasopharyngeal
cancer than in patients without EGFR overexpression [28,29]. We found that EGFR is marked
by three super enhancers in HK1 cell line, two of these three SE are localized upstream, i.e.,
near the start transcription site, and the third one is located in an intron (Fig. S1D).

Finally, for comparison with a typical Hi-C library, we generated two replicates of HK1
NPC cell line by traditional in situ Hi-C (Arima kit, [9,30]). Visual inspection of coverage
normalized Biop-C heat maps of three NPC tissue samples, and Hi-C maps of HK1 cell line
showed that the libraries were largely similar to each other, although we also noted that
certain loci contained differences suggesting patient heterogeneity which we explore further
in the next section of this manuscript (Fig 1C,1F,1G, S1C, S1l-J). Overall, our successful
detection of TADs, loops and FIRES suggest that our Biop-C method can generate high-quality
genome-wide chromatin conformation maps from the solid tumor needle biopsy samples.

Patient heterogeneity in chromatin interactions

The question of patient heterogeneity is relatively unexplored in chromatin
interaction analyses. In our previous research investigating chromatin interactions at the TP53
and MYC loci, we observed that some chromatin interactions at MYC and TP53 could be
detected in bone marrow and peripheral blood samples but not all chromatin interactions
that are observed in K562 cells were detected in clinical samples [31].

To investigate potential patient heterogeneity, we compared the TADs and Loops
between the patients' Biop-C heatmaps using the Jaccard Index. We calculated Jaccard's
similarity coefficient (Jaccard Index, JI) to measure the overlap between the called TADs and
loops in three Biop-C matrices. The resulting JI value indicates the fraction of shared TAD
boundaries and loops between the patients. We observed that 38-42% of the TADs and 53-
64 % of loops are shared in the three patients (Fig. S1L).

Next, we examined individual specific chromatin interactions. We found the
chromatin interactions for the genomic locations EGFR, PTPN1, DDIT4, MIR205HG, PDGFA,
MALAT1, CAV2, NOTCH1, TEAD1, TP63, RUNX1, CCAT1, MYC, and YAP1 (Fig. S1C) are similar
and FOXA1, MIPOL1, SP4, SGCZ, MROH9, FMO1, FMO2, FMO1, FMO4, and FMO6P gene are
different (Fig. S1l, J). In one example, we observed that two loops i.e. loop 1 and loop 2 are
present near FOXA1 and MIPOL1 genes in SO09 and S012, which are thought to be tumor
suppressors in nasopharyngeal cancer. However, these loops were absent in S010 (Fig 1F, G).
In another example we observed a loop only in SO09 and absentin S010 and SO12 near miR383,
which is considered an excellent diagnostic biomarker for head and neck cancer [35] (Fig. S1J).

Next, as we had observed patient-specific chromatin interactions, we investigated the
tissue-specificity of these chromatin interactions. Thus, we characterized the similarities and
the differences between the NPC landscape and other tissue types. We compared the Biop-C
heatmaps and the Hi-C heatmap from HK1 with the previously published Hi-C heatmaps in
human cell lines such as K562 (chronic myelogenous leukemia cell line), HAP1 (near-haploid
cell line), IMRI0 (fetal lung fibroblast cell line), KBM7 (chronic myelogenous leukemia),
HUVEC (human umbilical vein endothelial cell line), RPE1 (retinal pigment epithelium cell line),
GM12878 (lymphoblastoid cell line), NHEK (normal human epidermal keratinocytes), Hela
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(human cervical carcinoma cell line), HCT116 (colon cancer cell line), HMEC (mammary
epithelial cell line at a representative four genomic regions (Fig. S1E-H).

We observed that the HiC heatmaps of K562, HAP1, IMR90, KBM7, HUVEC, and RPE1
show a similar pattern as the Biop-C heat maps of S009, S010, S012, and HK1 Hi-C heatmap
for the genomic locations around MYC and CCAT1, but differences in the profile were
observed in GM12878, NHEK, Hela, HCT116, and HMEC (Fig. S1E). The genome organization
at RUNX1 locus was similar to our patient's Biop-C heatmaps in K562, HAP1, IMR90, RPE1,
NHEK1, Hela, HCT116, and HMEC but different in KBM7, HUVEC, and GM12878 (Fig. S1F).
However, the genomic patterns for the PTPN1 locus were found to be similar in all the Hi-C
and patient's Biop-C heat maps (Fig. S1G). On the other hand, the genomic patterns for the
MALATI locus did not show any similarity and were different in all the Hi-C, and Biop-C heat
maps (Fig. S1H). We conclude that certain chromatin interactions in nasopharyngeal cancer
are common across tissue types (PTPN1) and certain regions are tissue specific (MALAT1).

The observation of patient heterogeneity and tissue specificity in TADs appears to
contradict earlier observations that TADs are primarily conserved across different human cell
types and possibly even across different species [9,30,36]. However, Sauerwald analyzed 137
Hi-C samples from 9 studies and observed significant TAD variations across human cell and
tissue types [37], suggesting that while there are common TADs and loops, there are also TADs
and loops that vary across patient samples and tissue types.

Super enhancers are associated with Frequently Interacting Regions and loop to genes

Super enhancers (SE) are regions of the DNA which enhances the transcription of
target genes. These are comprised of group of enhancers which are at close proximity to each
other and are marked by high enrichment of H3K27ac histone modification [38]. In previous
research, we and others have shown that super enhancers can regulate distant genes via long-
range chromatin interactions [31,39]. Moreover, frequently interacting regions (FIREs) have
been reported to form at genomic regions also enriched by super enhancers [40].
Consequently, we wished to understand the relationship between super enhancers and
chromatin interactions in nasopharyngeal cancer.

As the biopsy samples were too small for us to obtain both H3K27ac ChlP-Seq data as
well as Biop-C data, we identified SE from NPC cell lines HK1, C666-1 and HNE1 using the ChlIP-
Seq data from [41] and we found that 298 SE were common in all the three cell lines (Table
S5). We reasoned that these "common" super enhancers that are present in all cell lines
examined will most likely also be present in the patient samples examined. We then used
these common super enhancers and associated them with chromatin loops obtained from
the Biop-C data of the patient samples as well as from the HiC data of HK1 cell line. As a result,
we found that these SE are highly associated with chromatin loops. In sample S009, S010 and
S012, the association of SE with chromatin loops were 54%, 57% and 41% respectively (Fig.
2A).

We further observed that more than 90% of these chromatin loops are associated with
genes on the other side of the chromatin loop. In SO09, 95% of SE associated chromatin loops
are also linked to distant genes. In S010 as well as S012, 91% of SE associated loops are linked
to genes (Fig. 2B). We also associated these SE to chromatin loops in one of the NPC cell line
HK1 and found that 92% of common super enhancers are associated with chromatin loops in
HK1 and 91% of these loops link SE to distant genes (Fig. 2A, B, Table S7). For example, DDIT4
gene which is known to be over-expressed in NPC cell lines [41] is linked to a distant SE in
patient sample S010, S012 and NPC cell line HK1 (Fig. 2C). We also repeated the above analysis
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with HK1 super enhancers and found that 85% of HK1 SE were associated with chromatin
loops in HK1 cell line and 94% of these super enhancers were linked to distant genes via
chromatin loops (Supplementary figure S2A, S2B). Next, we categorized SE which were at
close proximity (less than 15kb from a gene) to a gene and were called "proximal" SE and the
ones which are away from the gene and associated via chromatin loops were called distal SE.
Out of 298 SE tested we found 27 proximal SE and 147 distal SE in S009, 155 distal SE in SO10,
110 distal SE in SO012 and 260 distal SE in HK1 (Supplementary table S7, S8). 48 genes were
associated with proximal SE (Supplementary table S8) while 356 genes in S009, 421 genes in
S010, 291 in S012 and 944 genes in HK1 were associated with distal SE (Supplementary table
S7). There were also some genes that have both proximal and distal SE: In SO09 we found 10
genes; in SO10 as well as S012 we found 6 genes and in HK1 we found 18 such genes (Table
S8). For example, MACF1 gene in all the 3 NPC samples as well as HK1 cell line has distal as
well as proximal SE (Table S8). We conclude that SE are highly associated with chromatin loops
to distal genes in NPC.

Subsequently, we wanted to associate these SE with FIREs called (Table S6) from the
Biop-C data from patient samples as well as HK1 HiC data. We could recognize 24 common
SE in S009, 26 in S010, 31 in S012 and 56 in HK1 which are within a FIRE. Upon combining the
chromatin loops data with FIRE calling, we found 23 SE in S009, 32 in sample S010, 30 in S012
and 69 SE in HK1 cell line that loops to a FIRE (Fig. 2D, Table S9). We also found SE which fall
within the same FIRE as an oncogene like PTPN1 which is also known to be over-expressed in
NPC cell lines [41](Fig. 2E) as well as SE which loops to a distant FIRE containing ARF6 gene
whose over-expression can be correlated with metastasis and invasion in several cancers [42].
We conclude that SE are associated with FIREs in NPC.

Taken together, our new Biop-C method is suitable for interrogating needle biopsy
patient samples, and more generally, situations of limited tumor sampling when surgical
biopsies may be technically difficult. Using Biop-C, we examined chromatin interactions in 3
nasopharyngeal cancer patient samples, which allowed us to identify super enhancers
associated with FIREs and which loop to important oncogenes. We also demonstrated patient
heterogeneity in chromatin interactions in these patient samples, as well as tissue specificity.
Hi-C libraries from an NPC cell line, HK1, showed differences compared with chromatin
interactions in the patient samples. These differences could arise due to different subtype of
NPC. Our results indicate the necessity of interrogating chromatin interactions in actual
patient cancers, which Biop-C enables. Our results demonstrate the utility and importance of
Biop-C as a method for understanding cancer 3D genome organization. In the future, we
anticipate that the versatility of Biop-C will also allow us to interrogate perturbations of
chromatin gene regulation in patients undergoing therapeutic interventions.

Methods

Detailed methods are given in the Supplementary Materials. Briefly, the biopsy samples were
obtained from NPC patients using an 18 gauge needle and flash frozen. The frozen samples
were subjected to the Biop-C method for the generation of the Biop-C matrix. HK1 were
cultured at 5% CO2 at 37°C in Roswell Park Memorial Institute (RPMI) 1640 media (Hyclone)
supplemented with 10% heat-inactivated Fetal Bovine Serum (FBS; Hyclone) and 1%
penicillin/streptomycin (Hyclone). The Hi-C heat maps of HK1 were prepared using Arima HiC
kit and sequenced 150 bases paired-end on the lllumina HiSeq 4000. Hi-C data were aligned
and processed by Juicer (version 1.5.7) [9]. The reference genome was hg19. The heat maps
are visualized using Juicebox [25].
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Data deposition
We are in the process of submitting our data to GEO, dbgap and controlled short read archive.
Data availability
All relevant data supporting the key findings of this study are available within the article and
its Supplementary Information files or from the corresponding author on reasonable request.
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Fig 1: Biop-C method enables the study of high-resolution 3D Genome organization and
chromatin interactome in solid tumor samples (A) Schematic overview of the Biop-C method.
The frozen needle biopsy tissue is pulverized in a liquid nitrogen-cooled mini mortar, and then
chromatin was fixed with formaldehyde in the nucleus. The samples were processed with
commercial Arima genomics HiC Kit. Fixed cells were permeabilized using a lysis buffer
supplied in Arima HiC kit and then digested with a restriction enzyme. Following restriction
digestion, the sites were filled in with biotinylated nucleotides. The resulting DNA blunt ends
were subsequently ligated. After ligation, crosslinks were reversed to remove proteins from
DNA. Hi-C material was then sonicated using a Covaris Focused-Ultrasonicator M220
instrument to achieve fragment sizes of 300-500 bp. The sonicated DNA was double-size
selected using Ampure XP beads, and the sequencing libraries are generated using low input
Swift Bioscience lllumina-compatible adapters (B) Table of statistics of Biop-C and Hi-C data.
#Hi-C contacts indicates number of mapped/valid junction reads of each library. #TAD
indicates the number of TADs called from Biop-C and Hi-C data at 10kb resolution. #Loops
indicates the total number of loops called from Biop-C and Hi-C data at 5kb, 10 kb, and 25 kb
resolution and then merged. # FiREs indicates the number of FIREs called from Biop-C and Hi-
C data at 10kb resolution. (C) Biop-C and Hi-C heat map showing 3D genome organisation at
CCAT1 and MYC gene. Genes are indicated in black color. The “common superenhancers”,
shown in blue color, indicate the superenhancers present in all three NPC cell lines- HK1, C66-
1, and HNE1 cell lines. The superenhancers present in HK1 cell lines are indicated in red color.
The superenhancer datasets are obtained from Ke et al. 2017 [43] (D) Venn diagram showing
the overlap of TAD boundaries between the patients inferred using the Arrowhead algorithm
[9] at 10kb resolution. (E) Venn diagram depicting the overlap of Loops between the patients.
The loops were called using the HiCCUPs algorithm [9] at 5kb, 10Kb, and 25 Kb resolution. The
loops of the different resolutions were merged for this analysis. (F) Zoomed view of Biop-C
Juicebox-visualized heat map of S009, S010, and S012 showing patient heterogeneity in
chromatin interaction at FOXA1 and MIPOL1 gene. (G) UCSC genome browser [44]
screenshots of genomic coordinates chr14:36,459,966-42,220,035. Loops 1 and 2 are present
in S009 & S012, while loop 3 is present only in S010. Loop 1, Loop2, and Loop3 are represented
in green, blue, and black colors, respectively.
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Fig2: Association of super enhancers with chromatin interactions and genes. (A) Graph showing the
number of common SE associated with chromatin interactions in NPC patient sample S009, S010, S012
and cell line HK1 (blue) and number of SE which are not associated with chromatin interactions
(orange)(B) graph showing number of SE associated with distant genes via chromatin loops in NPC
patient sample S009, S010, S012 and cell line HK1 (dark blue) and number of SE which do not link to
distant genes via chromatin loops (light blue)(C) Biop-C heatmaps for NPC sample S009, S010, S012
and Hic heatmap for cell line HK1 for the DDIT4 gene locus where a SE links to the gene through a
chromatin loop (D) graph showing the number of SE associated with FIREs via chromatin loop (green)
and SE which are within FIRE (yellow) (E) Biop-C heatmaps for NPC sample S009, S010, S012 and Hic
heatmap for cell line HK1 showing a SE (blue: common SE, red: HK1 SE) and PTPN1 gene within the
same FIRE (F) Biop-C heatmaps for NPC sample S009, S010, S012 and Hic heatmap for cell line HK1
showing a SE looping to FIRE at the ARF6 gene locus.
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