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Abstract

Probabilistic MRI diffusion tractography is a sophisticated technique to in-
vestigate structural connectomes, but its steep computational cost prevents
application to broader research and clinical settings. Major speedup can be
achieved by reducing the number of tractography streamlines. To ensure this
does not degrade connectome quality, we calculate the identifiability of con-
nectomes between test and retest MRI as a proxy for information content.
We find that reducing streamline count by up to two orders of magnitude
from prevailing levels in literature has no significant impact on identifiability.
Incidentally, we also observe that Jaccard similarity is more effective than
Pearson correlation in achieving identifiability.
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1. Introduction

The structural connectome is a powerful framework for analyzing macro-
scale circuity of the living human brain and associating this connectivity
with behavioral traits and health outcomes. Structural connectome analysis,
or connectomics, has the power to distinguish autism spectrum disorder,
estimate patient age and gender, and even predict cognitive ability [1, 2, 3, 4].
Furthermore, there is a significant expectation that connectomics will provide
crucial insights into otherwise difficult-to-probe neurological conditions, such
as traumatic brain injury (TBI) and other cognitive disorders.

However, progress in this area has been hampered by the computational
cost and complexities of generating structural connectomes, particularly MRI
diffusion tractography. Creating and curating connectomes for a few dozen
patients, even at a research facility, may take weeks and requires dedicated
personnel familiar with computational neuroscience. As a result, processing
hundreds or thousands of patients for a large-scale study has been cost-
prohibitive. Furthermore, computational cost remains a major impediment
to developing future clinical applications that require rapid turnaround for
urgent patient care needs. It is only recently that computational workflows
have been developed to exploit the latest super-computers and change this
paradigm [5, 6]. Here, we exploit the Department of Energy’s ability to
compute large numbers of connectomes to examine the statistical stability of
probabilistic tractography and the predictability of its computations. These
aspects of connectomics have not been studied carefully because of the sheer
scale of computational and human resources required to analyze a large num-
ber of connectomes.

In particular, we focus on probabilistic MRI diffusion tractography, by
far the most resource-intensive stage of the connectomics workflow [7]. In
the traditional approach, tractography can easily require thousands of CPU
hours for a single subject. Traditionally, streamlines (also called fiber tracks
or samples) are computed from each voxel in the white-to-grey matter bound-
ary and connect exactly two regions of the brain. To account for the potential
of crossing tracks and the uncertainty induced by the lack of spatial resolu-
tion in the MRI scans, the research standard has been to compute 1000
streamlines per boundary voxel [8]. The unofficial publication standard is as
many as 5000 streamlines. However, the statistical basis for these numbers
remains unclear and the results presented below suggest that there may be
little to no practical benefit in computing more than 10 or 100 streamlines
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per voxel. This simple but significant change implies an immediate reduction
in computational cost by up to two orders of magnitude without apparent
loss of information.

The tractability of structural connectomes to matrix analysis has resulted
in a variety of proposed techniques to associate a patient’s clinical outcomes
with their connectome [9]. But since most of these techniques target specific
conditions, it is difficult to use them as universal metrics for information
content. In this work, we utilize a more general notion of identifiability, in-
troduced by Amico et al. [10]. Conceptually, identifiability measures how
well one can identify the connectome of a specific patient among a cohort of
participants given an independently computed connectome from a prior MRI
scan. The identifiability provides a generic measure of the information con-
tent of structural connectomes that is independent of any particular health
condition or metric. We use a multi-center cohort of participants admitted
for orthopedic, i.e. non-head related, injuries in order to demonstrate that a
large streamline count does not improve identifiability in a general popula-
tion. More specifically, we find that connectomes computed using 10 to 100
streamlines per voxel are as descriptive as connectomes that were generated
with significantly higher streamline counts. Furthermore, the random vari-
ance induced by the probabilistic tractography is often as big as any changes
observed for higher streamline counts. These two facts combined imply that
many standard analyses will perform just as well with connectomes generated
from a small number of streamline count than what is currently considered
the standard. Reducing streamline count drastically reduces the computa-
tional resources required for the generation of structural connectomes, mak-
ing structural connectomes accessible to a much wider range of researchers
and paving the way for real-time connectome analysis in a clinical setting.

2. Methods

The tractography workflow consists of three major steps [11]: 1) calcu-
lating the probability distributions of fibers within each voxel from the raw
MRI data, 2) parcellating the brain into structurally relevant regions, and
3) estimating how strongly two separate regions are connected. The main
focus of this paper is to analyze heuristics for the connectivity between brain
regions using different streamlines and use that information to estimate the
accuracy of different levels of optimization. These heuristics must, in essence,
estimate the likelihood that reconstructed connectomes match the real-world
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connectome. Since computing this likelihood directly is challenging, the ac-
cepted approach is to use uniform random sampling. Specifically, we begin
with a large number of streamlines at each white-grey-matter boundary voxel
and subsequently approximate the likelihood values by dividing the number
of successful streamlines by the total number of streamlines. The likelihood
values are then normalized by the volume of the regions and inserted into
the connectome. Each cell of this upper-triangular matrix represents the
connectivity of a region-to-region pair.

When we increase the streamline count, this process will converge to the
true connectome as defined by the given parcellation and local fiber direc-
tions. As the fiber directions form a very high dimensional sampling space
and a complex distribution, common wisdom would suggest that a very large
number of streamlines are required for an accurate estimate. The exact ori-
gin of the accepted publication standard of streamlines, between 1000 and
5000 lines per voxel. remains unclear. But these numbers are likely the
result of similar concerns regarding accuracy. However, while more stream-
lines undoubtedly add more information to the connectome it is not clear
whether this information is relevant and/or statistically meaningful. It is
well known that the physical aspects associated with an MRI procedure, i.e.
measurement noise, patient motion, etc., as well as the constant change of the
human brain add significant uncertainties to the measurements made on the
brain which affect the generated connectome. Therefore, it is unproductive
to compute the connectome to a precision that is significantly higher than the
maximal resolution implied by the inherent uncertainties. However, quan-
titatively assessing the “quality” of a connectome is not straight forward.
There are two significant challenges. The first challenge is the requirement
of a sufficient number of comparable MRI scans and the resources to com-
pute their corresponding connectomes at different streamline counts. The
second challenge is that there is no agreed-upon comparison metric between
connectomes to understand the level of differences relevant in practice.

In this work, we address the first problem through a collaboration with
the TRACK-TBI3 consortium [12]. TRACK-TBI is a longitudinal, obser-
vational study of TBI carried out at 18 Level 1 Trauma Centers across the
United States. It includes brain-injured subjects along with a matched co-

3Transforming Research and Clinical Knowledge in Traumatic Brain Injury
(https://tracktbi.ucsf.edu)
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hort of orthopedic injury control subjects. All participants were followed for
12 months following injury, and MRIs were collected from a subset of both
the brain-injured and orthopedic injury cohorts. To avoid potential bias from
the actual brain injuries, we are using a cohort of 88 orthopedic injury control
subjects all between ages 18 and 71 (mean 37.8 yr; SD 13.7 yr; 30 female). All
patients have no indication of head trauma based on clinical screening. We
utilize diffusion-weighted MR imaging for each patient at two time points: 2
weeks and 6 months after injury. MR imaging is conducted with 3T scanners
at 11 sites across the United States. All sites use the same acquisition pa-
rameters, insofar as possible across GE, Philips, and Siemens platforms [13].
Diffusion MRI and T1-weighted MRI pre-processing and post-processing are
as reported in Owen et al. [8, 14]. Given a total of 330 MRI scans we uti-
lize a new portable and parallel computing pipeline [7] that enables us to
exploit large-scale computing facilities for the necessary tractography com-
putations.4 Though still under development, our pipeline accomplishes the
tractography workflow using the following software components:

Segmentation Freesurfer [15] https://surfer.nmr.mgh.

harvard.edu

Fiber Tensor Estimation BEDPOSTX2 [16] https://fsl.fmrib.ox.ac.uk

Probabilistic Tractography PROBTRACKX2 [16] https://fsl.fmrib.ox.ac.uk

All software configurations are left to their default values, except stream-
line count in PROBTRACKX. Further acquisition and implementation de-
tails can be found in Moon et al. [7].

As mentioned above, in order to develop a metric to evaluate the in-
formation content in the computed connectomes, we adopted the notion of
identifiability originally introduced by Amico et al. [10] in the context of
functional connectomes. Information content is inherently a task-specific
concept and typically used as a biomarker for various psychiatric disorders
and varies accordingly. For example, the information necessary to diagnose
major depressive disorder may be very different from biomarkers that indi-
cate Alzheimer’s disease. However, despite significant advances, the analysis
of structural connectomes in a clinical context remains limited and when
generated, was generated in a small number of patients. As a result, there

4Publicly available at https://github.com/LLNL/MaPPeRTrac
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exists no widely accepted analysis of structural connectomes that could serve
as a gold standard.

Identifiability provides an alternative metric based on the notion that a
connectome must capture unique characteristics of the individual in order to
provide any guidance towards medical outcomes or research analyses. Formu-
lated differently, we should be able to identify a patient’s connectome within
a cohort of similar patients before we expect that the connectome will be in-
dicative of patient-specific traits. Identifiability formalizes this concept and
provides a quantitative measure of how well we can identify connectomes.

The identifiability score for each patient is computed by comparing their
connectome at one timepoint p to every connectome generated at different
timepoints, q. As discussed in more detail below we have experimented with
various forms of connectome metrics such as correlation, L2 distance, and
Jaccard similarity. This results in an N × N matrix A, composed of cor-
relations between the two timepoints where N is the number of patients.
The average of diagonal elements, Iself , measures correlation between con-
nectomes of the same patient. The average of off-diagonals, Iothers, measures
correlation between connectomes of different patients. Identifiability, Idiff ,
is measured as the difference between Iself and Iothers.

Aij = corr(pi, qj) (1)

Iself =
1

N

∑
Aii and Iothers =

1

N2 −N

i6=j∑
Aij (2)

Idiff = (Iself − Iothers) ∗ 100 (3)

Amico and Goñi [10] improve identifiability by reducing connectome di-
mensionality. If we perform principal component analysis (PCA) reconstruc-
tion with m components, then the best possible identifiability we can extract
from the data is

Idiff∗ = arg max
mεM

Idiff (m) (4)

We express identifiability as equation 4 in all subsequent sections, as it rep-
resents the strongest identification ability for any set of connectomes.

Identifiability can be used to compare the success of different procedures
at preserving the connectomes’ information content. However, larger study
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populations will necessarily have lower identifiability, since each patient must
self-identify out of a wider pool of candidates. To mitigate this, we calculate
the mean identifiability of repeated k-fold validation with fixed-size subsets.
We randomly select a subset of k patients out of n total population, calculate
identifiability of the subset, repeat this r times, and average the repetitions.
The resulting mean identifiability enables comparison between differently-
sized populations.

3. Results

Figure 1: Mean identifiability with all patients (k=20, r=10)

We re-ran probabilistic tractography with the same MRI scans for twenty
iterations: at five streamline counts with four randoms seeds. The five
streamline counts are 10, 50, 200, 500, and 1000 streamlines per voxel. In
Figure 1, each data point represents the mean identifiability at a particu-
lar streamline count and random seed. Note that streamline count refers to
streamlines per voxel. Our tractography workflow re-calculates streamlines
for every region pair, so each white matter voxel at the gray-white matter
boundary will actually originate many more streamlines than this number
suggests [7]. We do not observe a relationship between mean identifiabil-
ity and streamline count, especially considering stochastic variation and the
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narrow Y-axis. Since identifiability is the total percentage difference in cor-
relation between Iself and Iothers (see equation 3), small stochastic variations
of fractions of a percent have little impact. However, even stochastic varia-
tion appears to have a greater impact than streamline count. This suggests
that connectomes generated with low streamline counts contain just as much
information as high streamline counts, at least for identification tasks.
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Figure 2: Mean identifiability by category (k=20, r=10)

If we zoom out and compare different categories, we see that mean iden-
tifiability does not have a clear positive association with streamline count no
matter how patients are grouped together. We observe that certain categories
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present stronger differences than others. Male and female identifiability differ
by 3.9 percent, the youngest and oldest patients by 4.1 percent on average,
and various MRI platforms by less than 1 percent. Though this does not
confirm that identifiability is reading population differences between cate-
gories, it does suggest that those differences would be more significant than
any increase in identifiability from a higher streamline count.

Figure 3: Mean identifiability across streamline counts (k=20, r=10)

One could argue that by comparing connectomes only against other con-
nectomes at the same streamline count, identifiability is biased by processing
artifacts unique to that streamline count. Considering this, we compared
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identifiability with test connectomes pi against retest connectomes qj from
different streamline counts. Figure 3 appears to confirm this bias because
identifiability is higher when the test and retest share the same streamline
count. But to some degree, this is expected, as information particular to that
streamline count is shared between its tests and retests, whereas those from
different streamline counts may not carry that information. Nevertheless,
the degree of bias does not seem to be significant compared to the overall
success in identification. Again note the narrow Y-axis - even identifiability
as low as 13% is more than sufficient to distinguish a retest from all 87 other
retest connectomes.

Figure 4: Mean identifiability by correlation metric (k=20, r=10)

Though identifiability does not encompass many of the graph analysis
techniques described in the literature, it is possible to calculate identifiabil-
ity using correlation metrics other than Pearson correlation. The comparison
between test and retest connectomes (see equation 1) can be expressed using
any linear correlation algorithm. For example, equation 5 demonstrates a
comparison using L2 distance, normalized against each connectome. This
metric yields somewhat better identification power than Pearson correla-
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tion. Equation 6, the normalized dot product, appears relatively weak in
comparison. However, it is Equation 7, Jaccard similarity coefficient, that
demonstrates significantly stronger identifiability than Pearson correlation.
This is particularly unusual since Jaccard similarity discards much informa-
tion from its inputs by only selecting the maximum and minimum of the test
and retest values. Although we use Pearson correlation in all other figures
due to its prevalence in existing literature, Figure 4 suggests that there may
be room for improving the identifiability algorithm.

Aij =
|pi − qj|
|pi|+ |qj|

(5)

Aij =
pi
|pi|
· qj
|qj|

(6)

Aij =

∑
kmin(pik, qjk)∑
kmax(pik, qjk)

(7)

Figure 5: Alternative Graph Metrics
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For sake of completeness, we examine the same connectomes using al-
ternative graph metrics common in neuroimaging literature. Details of these
graph metrics for the purpose of investigating test-retest reliability have been
described by Owen et al. [17]. For each connectome, we 1) calculate its value
using each metric and streamline count, 2) normalize by its metric value at
1000 streamlines, and 3) plot each normalized metric value in Figure 5. The
resulting plots demonstrate no added value above 100 streamlines per voxel,
similar to our results for identifiability.

4. Discussion

By comparing connectomes with the concept of identifiability, we find that
probabilistic tractography does not significantly benefit from high streamline
counts. This has major ramifications for the computational cost and avail-
ability of tractography, as the same statistical results can be achieved with
a fraction of the streamlines. However, there is a major risk that optimiza-
tion would lose information not captured by identifiability. The ability to
identify a patient is necessary to connectome analysis - otherwise one could
argue that a connectome is indistinguishable and therefore dominated by
noise and external variables. But even if we could perfectly identify patients
from connectomes, this may not be sufficient for more complex analyses.

There is also the risk that we did not compute sufficient samples. To
address this, we re-ran probabilistic tractography on all patients with five
streamline counts and four different random seeds, for a total of twenty it-
erations. With that amount of data, streamline count and identifiability do
not appear to be correlated. However, it is remotely possible that running
far more than twenty iterations would show correlation instead. We do not
pursue this possibility owing to the computational expense of tractography
with high streamline counts - generating our data already consumed over
300,000 CPU hours.

Another limitation of this work is the use of a specific probabilistic stream-
line tractography approach using a specific method of gray matter atlas
parcellation for connectome reconstruction. These results will need to be
reproduced and generalized across other tractography methods and other
techniques for gray matter parcellation. There is also the concern that these
findings lack external physiological data. Brains do not exist in a vacuum, so
key markers such as clinical survey results, blood pressure, and body weight
may influence connectome analysis in subtle ways. We mitigate this to an
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extent by categorizing patients by age and gender and find that nothing in
these categories undermines our argument regarding streamline count. How-
ever, we do not possess further physiological data for this patient population,
so the influence of other external variables remains unexplored.

We also find that Jaccard similarity outperforms more commonly used
connectome correlation metrics such as Pearson correlation in the calculation
of identifiability. Though we are surprised that this is the case, it is possible
that Jaccard similarity increases the weight of low-frequency information by
effectively binarizing the non-shared values. When calculating identifiability,
high-frequency values, such as dense contiguous sections of the brain, may
often match to the wrong subject. Subjects are better distinguished by low-
frequency areas with unique structures. Given an incorrect match, choosing
a minimum or maximum of the test and retest value in low-frequency areas
will create a strongly fluctuating test-retest variation since values tend not
to overlap. And whereas Pearson correlation and other metrics would dilute
this variation by the weight of high-frequency areas, Jaccard similarity would
provide consistent test-retest variation in high-frequency areas since it does
not combine the test and retest in each voxel. As a result, Jaccard similarity
improves identifiability similarly to PCA reconstruction, by pruning low-
information data. However, this is mostly speculation and would require
further study beyond the scope of this paper.

5. Conclusions

Progress in connectomics has been limited by the steep computational
cost of probabilistic white matter fiber tractography. Creating diverse datasets
with large numbers of patients requires optimizations of the tractography
workflow. However, excessive optimization may degrade the connectome’s
information content. To measure the extent to which we can optimize trac-
tography, we use identifiability as an approximate measure of the average
information content in a set of connectomes. Identifiability is a quantifiable
metric for identification tasks predictiveness using a patient’s test and retest,
based on MRIs conducted six months apart. This enables us to optimize
computation right up to the threshold of information loss.

Probabilistic tractography is computationally expensive because it simu-
lates massive quantities of white-matter fiber streamlines. We find that the
number of streamlines can be greatly reduced from current practice. This
optimization appears to have no impact on identifiability; ergo, it does not
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degrade the connectome’s information content for most purposes. Reducing
the number of streamlines yields direct linear efficiencies, such that using
half the streamlines takes approximately half the time to compute. Exist-
ing literature uses between 1000 and 5000 streamlines per voxel to ensure a
well-converged solution. We find that identifiability is stable with as few as
10 streamlines per voxel.

We find that low streamline counts perform just as well as high streamline
counts even when analyzing our study population with different demograph-
ics. These findings hold true for male and female patients, different age
ranges, different correlation metrics, and all three common MRI hardware
platforms. The choice of population makes a far greater impact than any
decision on streamline count. In fact, variations in mean identifiability due
to streamline count are even less than those from stochastic variation due to
probabilistic tractography.

Using low streamline counts promises to greatly accelerate connectome
analysis. High streamline counts do not appear to harm identifiability in any
scenario, and will likely continue to be the standard for small-scale studies.
But by reducing the computational cost of tractography, this simple opti-
mization will enable hundreds to thousands of connectomes to be generated
on systems that previously handled a few dozen. Many open neuroimag-
ing questions cannot be answered with small-scale studies alone, particularly
those related to subtle population differences such as behavioral disorders.
As the field of connectomics grows, optimizations such as these will be nec-
essary to keep up with the large amount of clinical data and computational
resources applied to human brain research as well as foster clinical applica-
tions that require faster results for real-time patient care.
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