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Abstract 

Identifying drivers of transmission prior to an epidemic—especially of an emerging pathogen—is 

a formidable challenge for proactive disease management efforts. To overcome this gap, we 

tested a novel approach hypothesizing that an apathogenic virus could elucidate drivers of 

transmission processes, and thereby predict transmission dynamics of an analogously 

transmitted virulent pathogen. We evaluated this hypothesis in a model system, the Florida 

panther (Puma concolor coryi), using apathogenic feline immunodeficiency virus (FIV) to predict 

transmission dynamics for another retrovirus, pathogenic feline leukemia virus (FeLV). We 

derived a transmission network using FIV genome sequences, and used exponential random 

graph models to determine drivers structuring this network. We used the identified drivers to 

predict transmission pathways among panthers; simulated FeLV transmission using these 

pathways and three alternate modeling approaches; and compared predictions against 

empirical data collected during a historical FeLV outbreak in panthers. FIV transmission was 

primarily driven by panther age class and distances between panther home range centroids. 

Prospective FIV-based predictions of FeLV transmission dynamics performed at least as well as 

simpler, often retrospective approaches, with evidence that FIV-based predictions could capture 

the spatial structuring of the observed FeLV outbreak. Our finding that an apathogenic agent 

can predict transmission of an analogously transmitted pathogen is an innovative approach that 

warrants testing in other host-pathogen systems to determine generalizability. Use of such 

apathogenic agents holds promise for improving predictions of pathogen transmission in novel 

host populations, and can thereby revolutionize proactive pathogen management in human and 

animal systems.  

 

Significance Statement 
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Predicting infectious disease transmission dynamics is fraught with assumptions which limit our 

ability to proactively develop targeted control strategies. We show that transmission of 

non-disease causing (apathogenic) agents provides invaluable insight into drivers of 

transmission prior to outbreaks of more serious diseases. Integrating genomic and network 

approaches, we tested an apathogenic virus as a proxy for predicting transmission dynamics of 

a deadly virus in the Florida panther. We found that apathogenic virus-based predictions of 

pathogen transmission dynamics performed at least as well as simpler transmission models, 

and offered the advantage of prospectively identifying the underlying management-relevant 

drivers of transmission. Our innovative approach offers an opportunity to proactively design 

disease control strategies in at-risk animal and human populations.  
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Introduction 

Infectious disease outbreaks can have profound impacts on conservation, food security, 

and global health and economics. Mathematical models have proven a vital tool for 

understanding transmission dynamics of pathogens (1, 2), but struggle to predict the dynamics 

of novel or emerging agents (3, 4). This is at least partially due to the challenges associated 

with characterizing contacts relevant to transmission processes. Common modeling approaches 

that assume all hosts interact and transmit infections to the same degree ignore key drivers of 

transmission. Such drivers can include specific transmission-relevant behaviors including 

grooming or fighting in animals (5), concurrent sexual partnerships in humans (6), or assortative 

mixing (7), and result in flawed epidemic predictions (8, 9). Further, identifying drivers of 

transmission and consequent control strategies for any given pathogen is typically done 

reactively or retrospectively in an effort to stop or prevent further outbreaks or spatial spread 

(e.g., 10–12). These constraints limit the ability to perform prospective disease management 

planning tailored to a given target population, increasing the risk of potentially catastrophic 

pathogen outbreaks, as observed in humans (13–15), domestic animals (16, 17), and species of 

conservation concern including Ethiopian wolves (18), African lions (19), black-footed ferrets 

(20), and Florida panthers (21).  

A handful of studies have evaluated whether common infectious agents present in the 

healthy animal microbiome or virome can indicate contacts between individuals that may 

translate to interactions promoting pathogen transmission. Such an approach circumvents some 

of the uncertainties associated with more traditional approaches to contact detection (8). In 

these cases, genetic evidence from the transmissible agent itself is used to define 

between-individual interactions for which contact was sufficient for transmission to occur. 

Results of such studies show mixed success (22–27). For example, members of the same 

household have been found to share microbiota (28, 29), but disentangling social mechanisms 

of this sharing is complicated by shared diets, environments, behaviors, etc. (30). In animals, 
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studies of Escherichia coli in Verreaux’s sifaka and giraffe have found strain sharing 

relationships to be tied to social interactions (22, 23), but the same was not found in a similar 

study of elephants (26).  

These studies have, however, revealed ideal characteristics of non-disease inducing 

infectious agents (hereafter, apathogenic agents) for use as markers of transmission-relevant 

interactions. Such apathogenic agents should have rapid mutation rates to facilitate discernment 

of transmission relationships between individuals over time (31, 32). Furthermore, these agents 

should be relatively common and well-sampled in a target population, have a well-characterized 

mode of transmission, and feature high strain alpha-diversity (local diversity) and high strain 

turnover (32, 33). RNA viruses align well with these characteristics (34, 35) such that 

apathogenic RNA viruses could act as “proxies” of specific modes of transmission (i.e., direct 

transmission) and indicate which drivers underlie transmission processes. Such drivers, 

including but not limited to host demographics, relatedness, specific behaviors, or space use, 

would subsequently allow prediction of transmission dynamics of pathogenic agents with the 

same mode of transmission (32).  

Here, we test the feasibility of this approach using a naturally occurring host-pathogen 

system to test if an apathogenic RNA virus can act as a proxy for direct transmission processes 

and subsequently predict transmission of a pathogenic RNA virus. Florida panthers (Puma 

concolor coryi) are an endangered subspecies of puma found only in southern Florida and have 

been extensively studied and monitored for almost four decades. We have documented that this 

population is infected by several feline retroviruses relevant to our study questions. Feline 

immunodeficiency virus (FIVpco; hereafter, FIV) occurs in approximately 50% of the population 

(36), and does not appear to cause significant clinical disease. FIV is transmitted by close 

contact (i.e., fighting and biting), generally has a rapid mutation rate (intra-individual evolution 

rate of 0.00129 substitutions/site/year; 37), and, as a chronic retrovirus infection, can be 

persistently detected after the time of infection. Panthers are also affected by feline leukemia 
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virus (FeLV), also a retrovirus, which spills over into their population following exposure of 

panthers to infected domestic cats (38). Once spillover occurs, FeLV is transmitted between 

panthers by close contact and results in progressive, regressive, or abortive infection states 

(21). Progressive cases are infectious and result in mortality; regressive infections are not 

expected to be infectious—though this is unclear in panthers—and recover (21, 39, 40). 

Abortive cases clear infection and are not themselves infectious (40). A high mortality FeLV 

outbreak was documented among panthers in 2002-2004 and has been characterized in several 

studies (21, 38, 41).  

This well-observed historical outbreak is a key advantage of this naturally-occurring 

system, allowing us to compare our predictions against empirical observations. The objectives 

of this study were therefore: (1) to determine which factors shape FIV transmission in Florida 

panthers, and (2) test if these factors can predict transmission dynamics of 

analogously-transmitted FeLV in panthers. Success of this approach in our model system would 

pave the way for testing similar apathogenic agents in other host-pathogen systems, thereby 

improving our ability to predict transmission dynamics of novel agents in human and animal 

populations. 

 

Methods 

Dataset assembly 

We assembled an extensive dataset covering almost 40 years of Florida panther 

research. Ongoing panther management has documented age and sex of monitored panthers. 

In addition, a subset of the population is monitored using very high frequency (VHF) telemetry 

collars, with relocations determined via aircraft typically three times per week. Previous panther 

research has generated a microsatellite dataset for monitored panthers (42), and a dataset of 

60 full FIV genomes (proviral DNA sequenced within a tiled amplicon framework in: 43). In 

addition, the historical FeLV outbreak in panthers was well documented (21, 38), providing key 
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observations regarding FeLV dynamics in free-ranging panthers. To augment these 

observations, we also used an FeLV database which documents FeLV status (positive and 

negative) for 31 panthers as determined by qPCR from 2002-04. 

 

FIV transmission inference 

To determine drivers of FIV transmission, we first generated a “who transmitted to 

whom” transmission network using 60 panther FIV genomes collected from 1988 to 2011 (see 

Figure 1 for workflow across all analyses). We used the program Phyloscanner (44), which 

maximizes the information gleaned from next generation sequencing reads to infer transmission 

relationships. Phyloscanner operates in a two step process, first inferring within- and 

between-host phylogenies in windows along the FIV genome, and then analysing those 

phylogenies to produce transmission trees or networks. For step one, we used 150bp windows, 

allowing 25bp overlap between windows. To test sensitivity to this choice, we separately ran a 

full Phyloscanner analysis with 150bp windows, but without overlap between windows 

(supplementary methods).  For step two, we held k, which penalizes within-host diversity, equal 

to 0. We used a patristic distance threshold of 0.05 and allowed missing and more complex 

transmission relationships. Because we had uneven read depth across FIV genomes, we 

downsampled to a maximum of 200 reads per host. The output of the full Phyloscanner analysis 

was a single transmission network (hereafter, main FIV network), but see supplementary 

methods for details regarding analysis of the sensitivity of our results to variations in and 

summary across multiple transmission networks (resulting in two summary FIV networks).  
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Figure 1:  Conceptual workflow across all analysis steps. Processes are shown on the left in 

blue; specific outcomes are shown on the right in green; the final analysis outcome is in yellow 

at the bottom right. Solid lines show direct flows or outcomes. Dashed lines show processes 

acting on or in concert with prior outcomes: for example, exponential random graph modeling 

was performed using the FIV transmission network, and the combination of the two produced 

the ERGM coefficients outcome.  

 

Statistical analysis of FIV transmission networks 
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We performed statistical analysis of unweighted, binary FIV transmission networks using 

exponential random graph models (ERGMs), which account for non-independence in network 

structure (45). The network structural terms we considered included an intercept-like edges term 

(45), geometrically weighted edgewise shared partner distribution (gwesp; representation of 

network triangles), alternating k-stars (altkstar; representation of star structures), and 2-paths (2 

step paths from i  to k  via j; 46).  

The dyad-independent variables included panther sex (both as a node factor and node 

mixing variable; see supplementary methods for terminology and additional variable details). We 

assessed panther age as a categorical variable (both as a node factor and node mixing 

variable), with subadults classified as individuals between the ages of 6 months and two years, 

and adults classified as individuals over two years of age. We included pairwise genetic 

relatedness from panther microsatellite data as an edge covariate. Spatial variables included a 

node-matching variable for the location of panthers’ minimum convex polygon (MCP) home 

range centroid or capture location (hereafter centroid; see supplementary methods) north 

versus south of the major I-75 freeway. In addition, we included a node covariate term for the 

distance from the centroid to the nearest urban area (in km; USA Urban Areas layer, ArcGIS; 

47). Pairwise geographic distances between panthers were calculated using distances between 

centroids (in km), and log-transformed for use as an edge covariate. Lastly, we included a 

spatial overlap edge covariate based on the pairwise utilization distribution overlap indices of 

95% home range kernels (48), using the adehabitat package in R (49).  

Because ERGMs are prone to degeneracy with increasing complexity (45), we first 

performed forward selection for network structural variables, followed by forward selection of 

dyad-independent variables, while controlling for network structure. Model selection was based 

on AIC and goodness of fit, and MCMC diagnostics were assessed for the final model 

(supplementary methods).  
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Panther population simulations 

To test if predictors of FIV transmission identified in the ERGM analysis can predict 

FeLV transmission, we next simulated FeLV transmission through networks which were based 

on these FIV predictors among simulated populations representing panthers during the 

well-characterized FeLV outbreak (2002-2004; 21). Hereafter, a full-simulation includes both 

simulation of the panther population and its network of likely transmission pathways during the 

historical outbreak period and simulation of FeLV transmission within that population. Below, we 

describe the process for a single simulation, but these procedures were repeated for each full 

simulation.  

We first based the simulated population size on the range of empirical estimates from 

2002-2004 (50). Additional characteristics of the simulated population included those identified 

as significant variables in the ERGM analysis, which were: age category and pairwise 

geographic distances between panther home range centroids. We randomly assigned age 

categories to the simulated population based on the proportion of adults versus subadults. Age 

proportions were based on age distributions in the western United States (51) which 

qualitatively align with the historically elevated mean age of the Florida panther population (52). 

Pairwise geographic distances for the simulated population were generated by randomly 

assigning simulated home range centroids based on the distribution of observed centroids on 

the landscape (supplementary methods).  

We then used ERGM coefficients to generate network edges in the simulated panther 

population representing potential transmission pathways between panthers. The FIV 

transmission network spanned 15 years of observations and represents a subset of the actual 

contact network, as it includes only those interactions that resulted in successful transmission 

(53). We therefore had a high degree of uncertainty regarding the appropriate network density 

for our simulations. To manage this uncertainty, we constrained density in our network 

simulations across a range of parameter space (net_dens, Table 1).  
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Table 1: Network and transmission simulation parameters 

Note: Parameter gives parameter symbols or abbreviations; definition gives the description for 

each parameter. Range shows the continuous range or discrete values sampled from in 

simulations, with references giving literature supporting ranges or values. *We tested a lower 

death rate (prolonged duration of infection) due to the low number of observed panther cases 

and the generally longer infection duration in domestic cats (39).  

 

Simulation of FeLV transmission on FIV-based networks 

The next step in each full simulation was to model FeLV transmission on the network 

generated from FIV predictors of transmission. FeLV transmission was based on a chain 

binomial process on the simulated networks, following a modified SIR compartmental model 

(Figure 2). Simulations were initiated with one randomly selected infectious individual and 

11 

Parameter Definition Range Reference 

Pop_size Population size 80-120 (50) 

Adult_prop Proportion adults versus subadults 0.82-0.99 (51) 

Net_dens Simulated network density 0.05-0.15 NA 

β 
Probability of transmission from progressives, 
given effective contact 0.17-0.29 (54) 

C 
Constant multiplier for probability of transmission 
from regressives, given effective contact 0, 0.1, 0.5, 1 NA 

⍵ Weekly probability of contact 0.1-0.4 (55) 

𝜇 
Weekly probability of death from progressive 
infection 1/18, 1/26* (21) 

K 
Constant multiplier for weekly probability of 
recovery from regressive infection 0.5, 1 NA 

𝜈 
Weekly probability of territory repopulation 
("respawn rate") 1/12-1/4 NA 

𝜏 Weekly probability of vaccination 0.5-1 NA 

ve Probability of vaccine efficacy 0.4-1 (21) 

P 
Proportion randomly assigned to progressive, 
regressive 0.25 (21) 
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proceeded in weekly time steps. Transmission simulations lasted until no infectious individuals 

remained or until 2.5 years, whichever came first.  

 

 

Figure 2: Diagram of flows of individuals between compartments in transmission model. Virus 

icons indicate infectious states, with the regressive infection icon darkened to represent reduced 

or uncertain infectiousness of this class. Note: a vaccination process was also included in the 

transmission model, but is not shown for simplicity. With vaccination, susceptibles could be 

vaccinated, and vaccinated individuals subsequently infected analogously to susceptibles, but 

with an additional probability of (1-ve ). See Table 1 for definitions of parameters. 

  

Transmission (Figure 2) was dependent on the following: (1) existence of an edge 

between two individuals, (2) the dyad in question involving a susceptible and infectious 

individual, and (3) a random binomial draw based on the probability of transmission given 

contact (β, Table 1). In addition, Puma concolor generally have low expected weekly contact 

rates (55); we therefore included an additional weekly contact probability, represented as a 

random binomial draw for contact in a given week (⍵, Table 1).  
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Upon successful transmission, infectious individuals were randomly assigned to one of 

three outcomes of FeLV infection (21). Progressive infections (probability P, Table 1) are 

infectious, develop clinical disease, and die due to infection at a mortality rate, 𝜇. Regressive 

infections (also probability P) recover at a rate based on a constant, K, multiplied by the 

mortality rate of progressives (Table 1). Anecdotal evidence suggests regressive individuals are 

not infectious (21), but given ongoing uncertainty, we allowed regressives to be infectious by 

multiplying the probability of transmission for progressives (β) by a constant, C  (Table 1). 

Abortive infections (probability 1-2 P) are never infectious, clearing infection and joining the 

recovered class.  

A vaccination process was included in simulations as panthers were vaccinated against 

FeLV during the historical FeLV outbreak starting in 2003. Vaccination occurred at a rate, 𝜏, and 

applied to the whole population as wildlife managers are unlikely to know if a panther is 

susceptible at the time of capture or darting. However, only susceptible individuals transitioned 

to the vaccinated class (i.e. vaccination failed in non-susceptibles). Because panthers were 

vaccinated in the empirical outbreak with a domestic cat vaccine with unknown efficacy in 

panthers, we allowed vaccinated individuals to become infected in transmission simulations by 

including a binomial probability for vaccine failure (1-vaccine efficacy, ve, Table 1).  

The panther population size remained roughly static through the course of the FeLV 

outbreak (50, 56). We therefore elected not to include background mortality, but did include 

infection-induced mortality. To maintain a consistent population size, we therefore included a 

birth/recruitment process. Because FIV-based simulated networks drew edges based on 

population characteristics, we treated births as a “respawning” process, in which territories 

vacated due to mortality were reoccupied by a new susceptible at rate, 𝜈. This approach allowed 

us to maintain the ERGM-based network structure and is biologically reasonable, as vacated 

panther territories are unlikely to remain unoccupied for long.  
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FeLV infection is uncommon in puma as a species, resulting in a high degree of 

uncertainty regarding differences in within-individual infection dynamics in panthers (e.g., 

epidemiological parameters such as infectious period). Given these uncertainties, we performed 

all simulations across a range of parameter space. To more efficiently cover this parameter 

space, we generated parameter sets using a Latin hypercube design (LHS), using the lhs 

package in R (57). We generated 150 parameter sets, conducting 50 full simulations per 

parameter set.  

 

Comparison of simulation predictions to observed FeLV outbreak 

We compared FIV-based simulation predictions to the observed FeLV outbreak as well 

as predictions from three simpler types of models: random networks, home range overlap-based 

networks, and a well-mixed model. All models used the parameterizations from our LHS 

parameter sets, as relevant.  

For our random networks model, we generated Erdős-Rényi random networks, with the 

simulated network densities from our LHS parameter sets (Table 1). Overlap-based networks 

were generated using the degree distributions of panther home range overlap networks from 

2002-2004 and simulated annealing with the R package statnet (58, 59; supplementary 

methods). These overlap-based networks were not spatially explicit, as they were based only on 

the degree distributions from real spatial overlap networks. For both random and overlap-based 

networks, FeLV transmission was simulated as in the FIV-based simulations. The well-mixed 

model was a Gillespie algorithm (stochastic, continuous time compartmental model), with rate 

functions aligning with the chain binomial FeLV transmission probabilities (supplementary 

methods). 

Target ranges for predicted outcomes were based on observed FeLV dynamics (21), 

with ranges to account for uncertainty in observations and population size in this cryptic species 

(supplementary methods). The primary outcomes of interest were (1) duration of outbreak: 
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78-117 weeks, (2) total number of progressive infections: 5-20, and (3) presence of spatial 

clustering (see below). While our primary focus was progressive infections, we also included an 

expectation that at least 5 individuals were abortive infections. Empirically, these individuals 

were the most numerous, but as they were not clinically ill, abortive infections were less likely to 

be detected in normal panther management; we therefore did not include an upper bound for 

this target.  

Using our database of qPCR results for FeLV in panthers (positive and negative tests), 

we performed a local spatial clustering analysis of FeLV cases and controls using SaTScan 

(50% maximum, circular window; 60), and a global cluster analysis with Cuzick and Edward’s 

test in the R package smacpod (1, 3, 5, 7, 9, and 11 nearest neighbors; 999 iterations; 61, 62). 

These analyses found evidence of local (weak) and global clustering (at 3, 5, and 7 

neighborhood levels) among progressive and regressive cases (see results, supplementary 

methods and results). In simulations, we therefore included spatial clustering of progressive and 

regressive cases as a target outcome.  

For the duration of outbreaks and total number of progressives, we calculated median 

values of both outcomes for each parameter set (i.e., 50 simulations) within each model type. If 

a parameter set’s medians were within the target ranges for both of these outcomes, it was 

considered feasible. To quantify differences in model prediction performance, we fit a binomial 

generalized linear mixed model (GLMM), assuming a logistic regression with “feasible” (vs 

“unfeasible”) as the outcome, model type as a predictor variable, and a random intercept for 

LHS parameter set.  

To determine if simulated results demonstrated spatial clustering, we performed 

SaTScan spatial cluster analysis (50% maximum, circular window) and Cuzick and Edward’s 

tests (at 3, 5, and 7 nearest neighbors) on simulation results. Only FIV-based simulations were 

spatially explicit, and we performed spatial analyses only on those parameter sets that were 

classified as feasible. To determine if any detected clustering in FIV simulations was simply 
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based on our respawning protocol, we also performed both spatial analyses with feasible 

overlap-based simulation results. For these, we assigned the same geographic locations to 

nodes in the overlap-based networks from the corresponding FIV-based networks (i.e., 

matching simulation number from matching parameter set). 

 

Results 

FIV transmission network analysis 

The main FIV network included 19 nodes (individuals) with 42 edges (representing 

potential transmission events; network density = 0.25) after removing 9 edges that were 

between individuals known not to be alive at the same time (Figure S1). ERGM results for the 

main FIV network identified geometrically weighted edgewise shared partner distribution 

(gwesp) and alternating k-stars (altkstar) as key structural variables, and age category (as a 

node-level factor) and log transformed pairwise geographic distance as key dyad-independent 

variables (Table 2). Though altkstar was not statistically significant, inclusion of this variable 

contributed to improved AIC and goodness of fit outcomes. Adults were more likely to be 

involved in transmission events (but see discussion of sample size limitations) and inferred 

transmission events were more likely between individuals which were geographically closer to 

each other. The fitted model showed reasonable goodness of fit (Figure S2). ERGM results 

were largely consistent across two replicate analyses with alternative transmission networks 

formed by summarizing across four single Phyloscanner outputs (see supplementary results for 

further details). 

 

Table 2: Main FIV transmission network exponential random graph model results 
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Variable Estimate SE p-value 

Edges (intercept) -2.56 1.33 0.055 
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Note: “gwesp” is geometrically weighted edgewise shared partner distribution and “altkstar” is 

alternating k-stars. Age classes were subadult and adult; pairwise distances were between 

home range centroids. Only those variables from the final model are shown. Estimates shown 

are untransformed; SE represents standard error; p -values less than 0.05 were considered 

statistically significant.  

 

FeLV simulations 

 SaTScan analysis of observed FeLV status found weak evidence of local spatial 

clustering (two clusters detected, but not statistically significant with p=0.165 and 0.997, 

respectively; Figure S4). Cuzick and Edward’s tests found evidence of global clustering at 3, 5, 

and 7 nearest neighbor levels (test statistic Tk where k is number of nearest neighbors 

considered: T3 = 20, p  = 0.049; T5 = 32, p  = 0.028; T7 = 43, p  = 0.023). Both sets of spatial 

analysis results were then compared against FeLV predictions from FIV and overlap-based 

models.  

About 9% of parameter sets across all model types were classified as feasible (Figures 

3, S5-S6). The GLMM for model type performance (i.e., FIV-based, random, overlap-based, or 

well-mixed) did not find statistically significant differences between odds of generating feasible 

simulation outcomes, though the FIV-based model had the highest odds of feasibility 

(exponentiated estimate = 1.55, though p  = 0.30; Table S2). Feasible parameter sets from both 

the FIV-based and overlap-based models produced some evidence of local and global spatial 

clustering of simulated FeLV cases (Figures 4, S7). However, the FIV-based model was better 
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gwesp 0.98 0.26 <0.001 

altkstar -0.70 0.96 0.47 

Age (Adult) 0.93 0.44 0.03 
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able to capture the size and strength (observed/expected FeLV cases) of predicted local 

clusters (Figure 4) and was moderately better at capturing global spatial patterns (Figure S7).  

In order to determine if certain transmission parameters were particularly important for 

feasible performance, we performed post hoc random forest analyses using the R package 

randomForest (63, 64) for each of the four model types (see supplementary results). While 

random forests typically showed poor balanced accuracy and area under the curve (AUC) 

results, the parameter shaping transmission from regressively infected individuals (C), showed 

support for weak to moderate transmission from regressives (i.e., C = 0.1 or 0.5; Figure S10).  

 

 

Figure 3: FIV-based networks perform at least as well as other models in predicting number of 

progressive infections, as seen in violin plots of median total number of progressive infections 

from parameter sets classified as “feasible.” To be feasible, medians needed to fall between 5 

and 20 progressive infections, while also having median epidemic duration between 78-117 
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weeks, and a median of at least 5 abortive infections. Gray points show median values from 

each feasible parameter set; black points are the median value within each violin plot. Model 

types are given on the x-axis.  

 

 

 

Figure 4:  SaTScan cluster analysis for feasible FIV-based and overlap-based network 

simulations show stronger agreement between empirical observations (red horizontal lines) and 

FIV-based predictions for (A) predicted FeLV cluster size and (B) Observed/Expected FeLV 

cases associated with the top detected cluster. Shown are feasible simulation results in which at 

least one cluster was detected with p -value less than or equal to 0.1; further, only the results 

from the top cluster are shown. 

 

Discussion 
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In this study we develop a new approach whereby we leveraged knowledge of 

transmission dynamics of a common apathogenic agent to prospectively predict dynamics of an 

uncommon and virulent pathogen. Our approach was distinctly different from simpler models we 

tested, as the apathogenic (FIV)-based approach could be used to prospectively identify 

predictors of transmission and develop disease control plans prior to an outbreak of a virulent 

pathogen (FeLV), while other approaches either make broad assumptions about 

transmission-relevant contacts (e.g., homogeneous mixing), or rely on retrospective or reactive 

modeling. We found that FIV transmission in panthers is primarily driven by distance between 

home range centroids and age class, and that our prospective FIV-based approach predicted 

FeLV transmission dynamics at least as well as simpler or more reactive approaches. While we 

do not propose that this apathogenic agent approach could accurately predict exactly when, 

where, and to whom transmission might occur, our results support the role of apathogenic 

agents as novel tools for prospectively identifying relevant drivers of transmission and 

consequently improving proactive disease management.  

 

Pairwise geographic distances and panther age class predict FIV transmission 

Combining genomic and network approaches, we determined that pairwise geographic 

distances and age category structure FIV transmission in the Florida panther. Because FIV is a 

persistent infection, we would expect cumulative risk of transmission to increase over an 

individual’s lifetime and adults would consequently be involved in more transmission events. 

The low number of subadult individuals in our dataset, however, means that this finding must be 

interpreted with caution.  

Panthers are wide-ranging animals but maintain home ranges, and this appears to 

translate to increased transmission between individuals that are close geographically. This 

finding is further supported by the tendency for FIV phylogenies to show distinct geographic 

clustering (65, 66), but is in contrast to other infectious agents of puma. An additional feline 
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retrovirus, feline foamy virus (FFV), does not show distinct geographic clustering but is 

commonly transmitted between domestic cats and puma (67). A prior study of several 

pathogens in puma across the United States rarely identified spatial autocorrelation in pathogen 

exposures, but notably found that FIV infection status approached statistical significance 

specifically in Florida panthers (68). The wide-ranging nature of puma appears to limit 

geographic clustering of many infectious agents, with FIV a notable exception to this pattern. 

Multi-host agents such as FFV are presumably more able to escape geographical limitations 

and/or may be transmitted prior to dispersal and thereby lack spatial structuring. More generally, 

the importance of distance rather than panther relatedness in structuring transmission may 

support the resource dispersion or land tenure hypotheses as drivers of spatial and social 

structuring in panthers, rather than kinship. The high inbreeding among panthers (52) may limit 

our power for identifying a relationship between relatedness and FIV transmission, but support 

for resource dispersion or land tenure would be in agreement with findings in other puma 

systems (69) and even other territorial carnivores (70). 

Surprisingly, sex was not a significant predictor of FIV transmission. FIV force of 

infection is generally higher in male panthers, likely due to their increased fighting behaviors 

(71). However, studies in other felid species have found mixed importance of sex for FIV 

transmission, ranging from little to no importance (puma in the western United States: 72; 

bobcat: 73) to importance only among certain FIV subtypes (African lions: 74). Our results add 

to this body of research to suggest that the relationship between host sex and FIV transmission 

is more complex than can be explained by sex-specific behaviors or susceptibility alone. 

 

An FIV-based model captures FeLV transmission dynamics 

In our study, a network model based on principles of FIV transmission produced FeLV 

outbreak predictions consistent with the observed FeLV outbreak. The FIV-based approach 

performed at least as well as simpler models, per our GLMM analysis, with evidence that FIV 
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better predicted the observed spatial dynamics for FeLV transmission. A key difference between 

the FIV-based approach and other spatially-explicit methods is that FIV allowed us to determine 

the importance of spatial dynamics prospectively and then translate to predictions of FeLV 

transmission, rather than relying on retrospective FeLV spatial analyses. Furthermore, while 

more complex potential drivers of transmission (e.g., host relatedness or assortative mixing by 

age or sex) were not found to be important for FIV transmission, these may yet be key factors 

structuring transmission in other systems. Simpler model types like random networks or 

metapopulation models may struggle to make transmission predictions that incorporate these 

factors as drivers of transmission-relevant contact. The predictive power we observed here 

using an apathogenic virus could thus significantly shape proactive epidemic management 

strategies for pathogens such as FeLV. 

FIV and FeLV have different epidemiologies (e.g., progressive versus regressive 

infections, duration of infectiousness); despite this, FIV-based predictors of transmission were 

able to capture dynamics of FeLV transmission. Here, FIV determined the key drivers of close, 

direct contact transmission in panthers, fundamentally acting as a proxy for this type of contact. 

FeLV simulations were then able to independently account for differences in epidemiology to 

produce appropriate predictions for a different but analogously transmitted virus. Key 

components of this success are likely that (1) FIV is a largely species-specific virus with 

transmission pathways closely matching intra-species transmission of FeLV, and (2) both FIV 

and FeLV, perhaps unusually for infectious agents of puma, display spatial clustering of 

infection. If, for example, FIV also exhibited strong vertical or environmental transmission, we 

would no longer expect the predictive success for FeLV we observed here.  

Domestic cats are the reservoir host for FeLV (38) and panthers are subject to repeated 

spillover events from domestic cats (41). Determining the predictors and frequency of these 

spillover events would be less feasible with FIVpco, which adapted to the puma host (75–77). 

Rather, targeted investigation of spillover dynamics could draw on studies of other apathogenic 
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viral candidates that are frequently transmitted from domestic cats to puma, such as FFV (67). 

Using such agents to identify drivers of spillover events could be key for better understanding 

the dynamics of “pathogen release from reservoir hosts” (4), which is of profound relevance 

across wildlife, domestic animal, and human systems.  

While few parameter sets were classified as feasible across all model types, this 

appears to be predominantly the result of the wide range of parameter space explored through 

our LHS sampling design. This limitation was fundamentally due to uncertainties in FeLV 

transmission parameters, and is representative of the uncertainties experienced in predicting 

transmission of emerging or understudied pathogens. Key here were the interacting 

uncertainties regarding infectiousness of regressives, the number of introductions of FeLV to the 

panther population, and the duration of FeLV infection in panthers. All three of these dynamics 

can have significant impacts on the duration of a simulated epidemic, allowing an epidemic to 

continue to “stutter” along at low levels (78), much as was observed in the empirical FeLV 

outbreak. Our post hoc random forest analysis provided some evidence of weak transmission 

from regressive individuals, but this finding would need to be validated with additional research, 

as it is in stark contrast to FeLV dynamics in domestic cats. Reducing uncertainties in these 

three key dynamics would significantly narrow the range of our predictions, and even assist in 

ongoing management efforts for FeLV in endangered panthers.  

Furthermore, the effect of transmission parameter uncertainties underscores the 

importance of linking laboratory and model-based research to generate more accurate 

transmission forecasts (79). Experimental research could help to narrow the range of parameter 

space for FeLV—or other emerging pathogens—to produce more consistent and accurate 

model predictions. This necessity is all the more apparent during the current COVID-19 

pandemic, in which mathematical models have benefited from rapid laboratory and 

epidemiological research to reduce uncertainty in model parameters.  
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Limitations and future directions 

This study found evidence for the utility of an apathogenic agent to predict transmission 

of a related pathogenic agent, but this approach must now be tested in additional host-pathogen 

systems. The mixed results when using commensal agents to identify close social relationships 

in other systems (22–27) highlights that some host-apathogenic agent combinations will work 

better than others for determining drivers of transmission. More research is therefore necessary 

to determine which apathogenic agents may be most suitable as markers of transmission, and 

how divergent an apathogenic agent may be from a pathogen of interest while still predicting 

transmission dynamics.  

The suite of tools for inferring transmission networks from infectious agent genomes is 

rapidly expanding (31, 80). In this study, we used the program Phyloscanner as it maximized 

the information from our next generation sequencing viral data. However, our FIV sequences 

were generated within a tiled amplicon framework (43, 81), which biases intrahost diversity and 

likely limits viral haplotypes (82). Phyloscanner was originally designed to analyze RNA from 

virions and not proviral DNA, as we have done here. We have attempted to mitigate the effects 

of these limitations by analyzing several different Phyloscanner outputs to confirm consistency 

in our results, and by using only binary networks to avoid putting undue emphasis on 

transmission network edge probabilities, as these are likely highly uncertain. Further, our 

primary conclusions from the transmission networks—that age and pairwise distance are 

important for transmission—are biologically plausible and supported by other literature, as 

discussed above. Nevertheless, future work should evaluate additional or alternative 

transmission network inference platforms. 

In addition, ERGMs assume the presence of the “full network” and it is as yet unclear 

how missing data may affect transmission inferences (45). ERGMs are also prone to 

degeneracy with increased complexity and do not easily capture uncertainty in transmission 

events, as most weighted network ERGM (or generalized ERGM) approaches have been 
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tailored for count data (e.g., 83). ERGMs may therefore not be the ideal solution for identifying 

drivers of transmission networks in all systems. Alternatives may include advancing dyad-based 

modeling strategies (84), which may more easily manage weighted networks and instances of 

missing data.  

Our FIV-based approach required extensive field sampling, and many disciplines from 

viral genomics through simulation modeling. However, with increasing availability of virome data 

and even field-based sequencing technology, our approach may become more accessible with 

time. Further, the predictive benefits seen here, while needing further testing and validation, 

could become a key strategy for proactive pathogen management in species of conservation 

concern, populations of high economic value (e.g. production animals), or populations at high 

risk of spillover, all of which may most benefit from rapid, efficient epidemic responses.  

 

Conclusions 

Here, we integrated genomic and network approaches to identify drivers of FIV 

transmission in the Florida panther. This apathogenic agent acted as a marker of close, direct 

contact transmission, and was subsequently successful in predicting the observed transmission 

dynamics of the related pathogen, FeLV. Further testing of apathogenic agents as markers of 

transmission and their ability to predict transmission of related pathogenic agents is needed, but 

holds great promise for revolutionizing proactive epidemic management across host-pathogen 

systems.  
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