- 1 Engineering the thermotolerant industrial yeast Kluyveromyces marxianus for anaerobic growth 2 Wijbrand J. C. Dekker, Raúl A. Ortiz-Merino, Astrid Kaljouw, Julius Battjes, Frank W. Wiering, Christiaan 3 Mooiman, Pilar de la Torre, and Jack T. Pronk* 4 Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The 5 Netherlands 6 *Corresponding author: Department of Biotechnology, Delft University of Technology, van der Maasweg 7 9, 2629 HZ Delft, The Netherlands, E-mail: j.t.pronk@tudelft.nl, Tel: +31 15 2783214. 8 Wijbrand J.C. Dekker w.j.c.dekker@tudelft.nl https://orcid.org/0000-0003-4186-8941 9 Raúl A. Ortiz-Merino raul.ortiz@tudelft.nl 10 Astrid Kaljouw astridk20@gmail.com 11 Julius Battjes juliusbattjes@hotmail.com 12 Frank Willem Wiering frank.wiering@gmail.com 13 Christiaan Mooiman c.mooiman@tudelft.nl 14 Pilar de la Torre pilartocortes@gmail.com 15 j.t.pronk@tudelft.nl https://orcid.org/0000-0002-5617-4611 Jack T. Pronk
- 16 Manuscript for submission in Nature Biotechnology, section: Article.

17 Abstract

18	Current large-scale, anaerobic industrial processes for ethanol production from renewable
19	carbohydrates predominantly rely on the mesophilic yeast Saccharomyces cerevisiae. Use of
20	thermotolerant, facultatively fermentative yeasts such as Kluyveromyces marxianus could confer
21	significant economic benefits. However, in contrast to S. cerevisiae, these yeasts cannot grow in the
22	absence of oxygen. Response of K. marxianus and S. cerevisiae to different oxygen-limitation regimes
23	were analyzed in chemostats. Genome and transcriptome analysis, physiological responses to sterol
24	supplementation and sterol-uptake measurements identified absence of a functional sterol-uptake
25	mechanism as a key factor underlying the oxygen requirement of K. marxianus. Heterologous expression
26	of a squalene-tetrahymanol cyclase enabled oxygen-independent synthesis of the sterol surrogate
27	tetrahymanol in K. marxianus. After a brief adaptation under oxygen-limited conditions, tetrahymanol-
28	expressing <i>K. marxianus</i> strains grew anaerobically on glucose at temperatures of up to 45 °C. These
29	results open up new directions in the development of thermotolerant yeast strains for anaerobic
30	industrial applications.
31	Keywords: Ergosterol, tetrahymanol, anaerobic metabolism, thermotolerance, ethanol production,

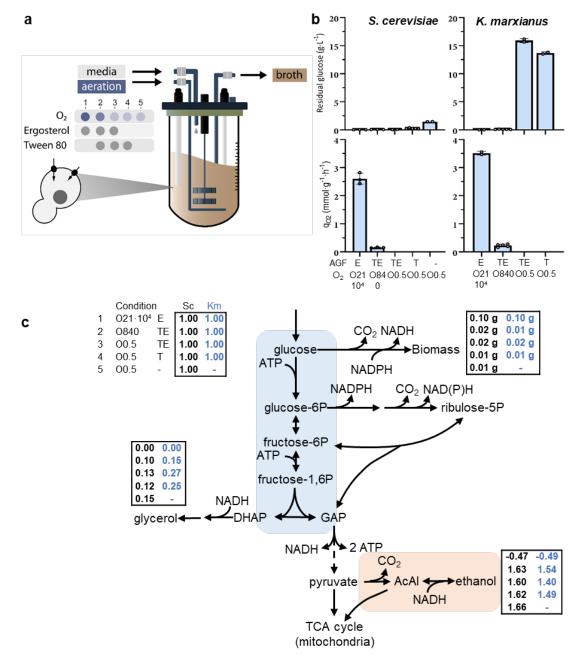
32 yeast biotechnology, metabolic engineering

In terms of product volume (87 Mton $y^{-1})^{1,2}$, anaerobic conversion of carbohydrates into ethanol by the 33 34 yeast Saccharomyces cerevisiae is the single largest process in industrial biotechnology. For 35 fermentation products such as ethanol, anaerobic process conditions are required to maximize product yields and to minimize both cooling costs and complexity of bioreactors³. While S. cerevisiae is applied in 36 many large-scale processes and is readily accessible to modern genome-editing techniques^{4,5}, several 37 38 non-Saccharomyces yeasts have traits that are attractive for industrial application. In particular, the high maximum growth temperature of thermotolerant yeasts, such as Kluyveromyces marxianus (up to 50 °C 39 as opposed to 39 °C for S. cerevisiae), could enable lower cooling $costs^{6-8}$. Moreover, it could reduce the 40 required dosage of fungal polysaccharide hydrolases during simultaneous saccharification and 41 fermentation (SSF) processes^{9,10}. However, as yet unidentified oxygen requirements hamper 42 implementation of K. marxianus in large-scale anaerobic processes 11-13. 43 44 In S. cerevisiae, fast anaerobic growth on synthetic media requires supplementation with a source of unsaturated fatty acids (UFA), sterols, as well as several vitamins^{14–17}. These nutritional requirements 45 46 reflect well-characterized, oxygen-dependent biosynthetic reactions. UFA synthesis involves the oxygen-47 dependent acyl-CoA desaturase Ole1, NAD⁺ synthesis depends on the oxygenases Bna2, Bna4, and Bna1, while synthesis of ergosterol, the main yeast sterol, even requires 12 moles of oxygen per mole. 48 49 Oxygen-dependent reactions in NAD⁺ synthesis can be bypassed by nutritional supplementation of 50 nicotinic acid, which is a standard ingredient of synthetic media for cultivation of *S. cerevisiae*^{17,18}. 51 Ergosterol and the UFA source Tween 80 (polyethoxylated sorbitan oleate) are routinely included in media for anaerobic cultivation as 'anaerobic growth factors' (AGF)^{15,17,19}. Under anaerobic conditions, S. 52 cerevisiae imports exogenous sterols via the ABC transporters Aus1 and Pdr11²⁰. Mechanisms for uptake 53 54 and hydrolysis of Tween 80 by S. cerevisiae are unknown but, after its release, oleate is activated by the 55 acyl-CoA synthetases Faa1 and Faa4^{21,22}.

Outside the whole-genome duplicated (WGD) clade of Saccharomycotina yeasts, only few yeasts 56 57 (including *Candida albicans* and *Brettanomyces bruxellensis*) are capable of anaerobic growth in synthetic media supplemented with vitamins, ergosterol and Tween 80^{12,13,23,24}. However, most currently 58 59 known yeast species readily ferment glucose to ethanol and carbon dioxide when exposed to oxygenlimited growth conditions^{13,25,26}, indicating that they do not depend on respiration for energy 60 61 conservation. The inability of the large majority of facultatively fermentative yeast species to grow 62 under strictly anaerobic conditions is therefore commonly attributed to incompletely understood 63 oxygen requirements for biosynthetic processes¹¹. Several oxygen-requiring processes have been proposed including involvement of a respiration-coupled dihydroorotate dehydrogenase in pyrimidine 64 65 biosynthesis, limitations in uptake and/or metabolism of anaerobic growth factors, and redox-cofactor balancing constraints^{11,13,27}. 66

67 Quantitation, identification and elimination of oxygen requirements in non-Saccharomyces yeasts is 68 hampered by the very small amounts of oxygen required for non-dissimilatory purposes. For example, 69 preventing entry of the small amounts of oxygen required for sterol and UFA synthesis in laboratory-70 scale bioreactor cultures of S. cerevisiae requires extreme measures, such as sparging with ultra-pure 71 nitrogen gas and use of tubing and seals that are resistant to oxygen diffusion^{25,28}. This technical 72 challenge contributes to conflicting reports on the ability of non-Saccharomyces yeasts to grow anaerobically, as exemplified by studies on the thermotolerant yeast K. marxianus^{29–31}. Paradoxically, 73 74 the same small oxygen requirements can represent a real challenge in large-scale bioreactors, in which 75 oxygen availability is limited by low surface-to-volume ratios and vigorous carbon-dioxide production. 76 Identification of the non-dissimilatory oxygen requirements of non-conventional yeast species is 77 required to eliminate a key bottleneck for their application in industrial anaerobic processes and, on a

fundamental level, can shed light on the roles of oxygen in eukaryotic metabolism. The goal of this study


79	was to identify and eliminate the non-dissimilatory oxygen requirements of the facultatively
80	fermentative, thermotolerant yeast K. marxianus. To this end, we analyzed and compared physiological
81	and transcriptional responses of K. marxianus and S. cerevisiae to different oxygen- and anaerobic-
82	growth factor limitation regimes in chemostat cultures. Based on the outcome of this comparative
83	analysis, subsequent experiments focused on characterization and engineering of sterol metabolism and
84	yielded <i>K. marxianus</i> strains that grew anaerobically at 45 °C.
85	Results
85 86	Results <i>K. marxianus</i> and <i>S. cerevisiae</i> show different physiological responses to extreme oxygen limitation
86	K. marxianus and S. cerevisiae show different physiological responses to extreme oxygen limitation
86 87	<i>K. marxianus</i> and <i>S. cerevisiae</i> show different physiological responses to extreme oxygen limitation To investigate oxygen requirements of <i>K. marxianus</i> , physiological responses of strain CBS6556 were

90 these cultures were compared to those of *S. cerevisiae* CEN.PK113-7D subjected to the same cultivation

91 regimes.

In glucose-limited, aerobic chemostat cultures (supplied with 0.5 L air·min⁻¹, corresponding to 54 mmol 92 O_2 h⁻¹), the Crabtree-negative yeast *K. marxianus*³² and the Crabtree-positive yeast *S. cerevisiae*³³ both 93 94 exhibited a fully respiratory dissimilation of glucose, as evident from absence of ethanol production and 95 a respiratory quotient (RQ) close to 1 (Table 1). Apparent biomass yields on glucose of both yeasts exceeded 0.5 g biomass (g glucose)⁻¹ and were approximately 10 % higher than previously reported due 96 97 to co-consumption of ethanol, which was used as solvent for the anaerobic growth factor ergosterol^{32,34}. At a reduced oxygen-supply rate of 0.4 mmol O_2 h⁻¹, both yeasts exhibited a mixed respiro-fermentative 98 99 glucose metabolism. RQ values close to 50 and biomass-specific ethanol-production rates of 11.5 ± 0.6 mmol·g·h⁻¹ for *K. marxianus* and 7.5 \pm 0.1 mmol·g·h⁻¹ for *S. cerevisiae* (Table 1), indicated that glucose 100

101	dissimilation in these cultures was predominantly fermentative. Biomass-specific rates of glycerol
102	production which, under oxygen-limited conditions, enables re-oxidation of NADH generated in
103	biosynthetic reactions ³⁵ , were approximately 2.5-fold higher ($p = 2.3 \cdot 10^{-4}$) in K. marxianus than in S.
104	cerevisiae. Glycerol production showed that the reduced oxygen-supply rate constrained mitochondrial
105	respiration. However, low residual glucose concentrations (Table 1) indicated that sufficient oxygen was
106	provided to meet most or all of the biosynthetic oxygen requirements of <i>K. marxianus</i> .
107	To explore growth of <i>K. marxianus</i> under an even more stringent oxygen-limitation, we exploited
108	previously documented challenges in achieving complete anaerobiosis in laboratory bioreactors ^{19,28} .
109	Even in chemostats sparged with pure nitrogen, S. cerevisiae grew on synthetic medium lacking Tween
110	80 and ergosterol, albeit at an increased residual glucose concentration (Fig. 1, Table 1). In contrast, K.
111	marxianus cultures sparged with pure N_2 and supplemented with both AGFs consumed only 20 % of the
112	glucose fed to the cultures. These severely oxygen-limited cultures showed a residual glucose
113	concentration of 15.9 \pm 0.3 g·L ⁻¹ and a low but constant biomass concentration of 0.4 \pm 0.0 g·L ⁻¹ . This
114	pronounced response of K. marxianus to extreme oxygen-limitation provided an experimental context
115	for further analyzing its unknown oxygen requirements.
116	<i>S. cerevisiae</i> can import exogenous sterols under severely oxygen-limited or anaerobic conditions ²⁰ . If
117	the latter were also true for K. marxianus, omission of ergosterol from the growth medium of severely
118	oxygen-limited cultures would increase biomass-specific oxygen requirements and lead to an even lower
119	biomass concentration. In practice however, omission of ergosterol led to a small increase of the
120	biomass concentration and a corresponding decrease of the residual glucose concentration in severely
121	oxygen-limited chemostat cultures (Fig. 1b, Table 1). This observation suggested that, in contrast to S.
122	cerevisiae, K. marxianus cannot replace de novo oxygen-dependent sterol synthesis by uptake of
123	exogenous sterols.

124 Fig. 1 | Chemostat cultivation of S. cerevisiae CEN.PK113-7D and K. marxianus CBS6556 under

125 different aeration and anaerobic-growth-factor (AGF) supplementation regimes. The ingoing gas flow

- of all cultures was 500 mL·min⁻¹, with oxygen partial pressures of 21·10⁴ ppm (O21·10⁴), 840 ppm
- 127 (O840), or < 0.5 ppm (O0.5). The AGFs Ergosterol (E) and/or Tween 80 (T) were added to media as
- 128 indicated. a, Schematic representation of experimental set-up. Data for each cultivation regime were
- 129 obtained from independent replicate chemostat cultures. b, Residual glucose concentrations and

130	biomass-specific oxygen consumption rates (q_{02}) under different aeration and AGF-supplementation
131	regimes. Data represent mean and standard deviation of independent replicate chemostat cultures. c ,
132	Distribution of consumed glucose over biomass and products in chemostat cultures of S. cerevisiae (left
133	column) and <i>K. marxianus</i> (right column), normalized to a glucose uptake rate of 1.00 mol·h ⁻¹ . Numbers
134	in boxes indicate averages of measured metabolite formation rates (mol·h $^{-1}$) and biomass production
135	rates (g dry weight \cdot h ⁻¹) for each aeration and AGF supplementation regime.
136	Table 1 Physiology of <i>S. cerevisiae</i> CEN.PK113-7D and <i>K. marxianus</i> CBS6556 in glucose-grown
137	chemostat cultures with different aeration and anaerobic-growth-factor (AGF) supplementation
138	regimes. Cultures were grown at pH 6.0 on synthetic medium with urea as nitrogen source and 7.5 g·L ⁻¹

139 glucose (aerobic cultures) or $20 \text{ g} \cdot \text{L}^{-1}$ glucose (oxygen-limited cultures) as carbon and energy source.

140 Data are represented as mean ± SE of data from independent chemostat cultures for each condition.

141 The AGFs ergosterol (E) and Tween 80 (T) were added to the media as indicated. Cultures were aerated

142 at 500 mL·min⁻¹ with gas mixtures containing $21 \cdot 10^4$ ppm O₂ (O21 · 10⁴), 840 ppm O₂ (O840) or < 0.5 ppm

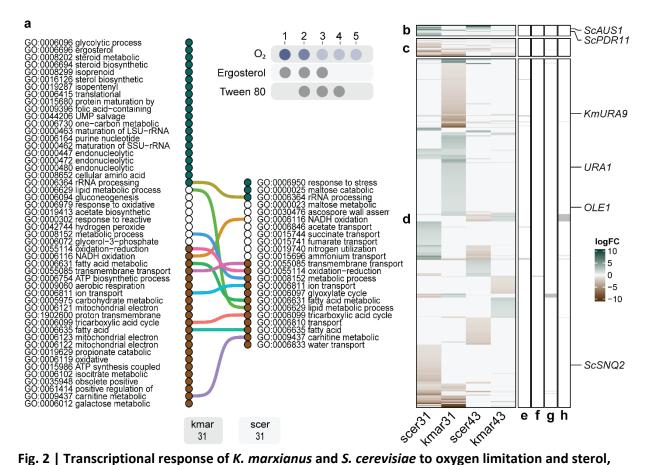
143 O₂ (O0.5). Tween 80 was omitted from media used for aerobic cultivation to prevent excessive foaming.

144 Ethanol measurements were corrected for evaporation (Supplementary Fig. 1). Positive and negative

biomass-specific conversion rates (q) represent consumption and production rates, respectively.

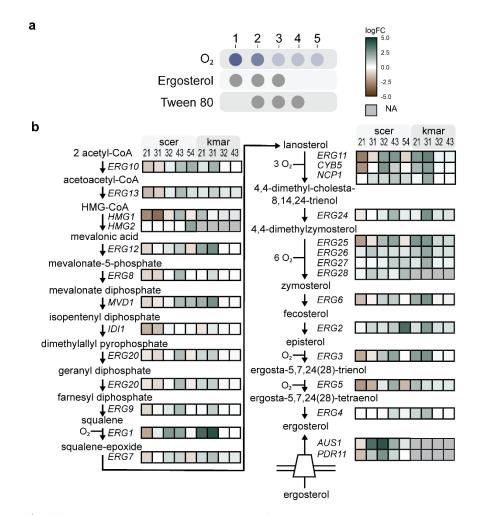
		S. cerevis	<i>iae</i> CEN.	PK113-70)	К.	marxian	us CBS65	56
Condition	1	2	3	4	5	1	2	3	4
Aeration regime	021·1 0 ⁴	0840	00.5	00.5	00.5	021·1 0 ⁴	0840	00.5	00.5
AGF	E	TE	TE	Т	-	E	TE	TE	Т
Replicates	3	3	2	5	2	2	5	2	2
	0.10 ±	0.10 ±	0.10 ±	0.10 ±	0.10 ±	0.10 ±	0.11 ±	0.12 ±	0.12 ±
D (h⁻¹)	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	4.22 ±	2.29 ±	1.98 ±	1.56 ±	1.12 ±	3.79 ±	1.57 ±	0.35 ±	0.50 ±
Biomass (g·L ⁻¹)	0.06	0.04	0.01	0.03	0.02	0.02	0.10	0.02	0.04
Residual glucose	0.00 ±	0.07 ±	0.06 ±	0.23 ±	1.47 ±	0.00 ±	0.10 ±	15.92	13.67
(g·L ⁻¹)	0.00	0.00	0.02	0.04	0.01	0.00	0.02	± 0.26	± 0.16
Y biomass/glucose	0.57 ±	0.12 ±	0.10 ±	0.08 ±	0.06 ±	0.53 ±	0.08 ±	0.09 ±	0.09 ±
(g·g ⁻¹)	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01

Y ethanol/glucose		1.67 ±	1.63 ±	1.65 ±	1.68 ±		1.53 ±	1.31 ±	1.40 ±
(g·g⁻¹)	-	0.06	0.02	0.02	0.02	-	0.03	0.05	0.02
	-0.95	-4.59	-5.25	-6.77	-9.06	-1.05	-7.46	-7.30	-8.53
q _{glucose} (mmol·g·h⁻¹)	± 0.03	± 0.10	± 0.04	± 0.27	± 0.15	± 0.00	± 0.30	±0.81	± 0.00
	-0.44	7.48 ±	8.40 ±	10.96	15.03	-0.52	11.49	10.25	12.69
q _{ethanol} (mmol·g·h⁻¹)	± 0.03	0.10	0.02	± 0.56	± 0.47	± 0.00	± 0.44	± 0.66	±0.11
	1.08 ±	52.2 ±				1.06 ±	49.3 ±		
RQ	0.02	2.4	-	-	-	0.01	7.5	-	-
Glycerol/biomass	0.00 ±	3.67 ±	5.58 ±	6.73 ±	11.26	0.00 ±	9.51 ±	16.90	18.45
(mmol·(g biomass) ⁻¹)	0.00	0.05	0.02	0.25	± 0.40	0.00	0.46	± 0.76	± 2.09
	99.9 ±	101.2	100.4	100.1	104.0	100.5	91.1 ±	101.6	99.7 ±
Carbon recovery (%)	0.7	± 3.3	±0.1	± 1.3	± 0.2	± 0.1	2.0	± 6.5	3.9
Degree of reduction	98.4 ±	100.9	100.1	98.1 ±	100.1	98.8 ±	94.5 ±	97.8 ±	99.1 ±
recovery (%)	0.7	± 0.8	± 0.9	0.6	± 1.8	0.1	0.4	6.2	3.5


146

147 Transcriptional responses of *K. marxianus* to oxygen limitation involve ergosterol metabolism

148 To further investigate the non-dissimilatory oxygen requirements of K. marxianus, transcriptome 149 analyses were performed on cultures of S. cerevisiae and K. marxianus grown under the aeration and 150 anaerobic-growth-factor supplementation regimes discussed above. The genome sequence of K. marxianus CBS6556 was only available as draft assembly and was not annotated³⁶. Therefore, long-read 151 152 genome sequencing, assembly and *de novo* genome annotation were performed, the annotation was 153 refined by using transcriptome assemblies (**Data availability**). Comparative transcriptome analysis of S. 154 cerevisiae and K. marxianus focused on orthologous genes with divergent expression patterns that 155 revealed a strikingly different transcriptional response to growth limitation by oxygen and/or anaerobic-156 growth-factor availability (Fig. 2). 157 In S. cerevisiae, import of exogenous sterols by Aus1 and Pdr11 can alleviate the impact of oxygen limitation on sterol biosynthesis²⁰. Consistent with this role of sterol uptake, sterol biosynthetic genes in 158 159 S. cerevisiae were only highly upregulated in severely oxygen-limited cultures when ergosterol was 160 omitted from the growth medium (Fig. 3b, Supplementary Fig. 6, contrast 43). Also the mevalonate


161 pathway for synthesis of the sterol precursor squalene, which does not require oxygen, was upregulated

162	(contrast 43), reflecting a relief of feedback regulation by ergosterol ³⁷ . In contrast, <i>K. marxianus</i> showed
163	a pronounced upregulation of genes involved in sterol, isoprenoid and fatty-acid metabolism (Fig. 2ab,
164	Fig. 3, contrast 31) in severely oxygen-limited cultures supplemented with ergosterol and Tween 80. No
165	further increase of the expression levels of sterol biosynthetic genes was observed upon omission of
166	these anaerobic growth factors from the medium of these cultures (Supplementary Fig. 6, contrast 43).
167	These observations suggested that <i>K. marxianus</i> may be unable to import ergosterol when sterol
168	synthesis is compromised. Consistent with this hypothesis, co-orthology prediction with Proteinortho ³⁸
169	revealed no orthologs of the S. cerevisiae sterol transporters Aus1 and Pdr11 in K. marxianus.
170	K. marxianus harbors two dihydroorotate dehydrogenases, a cytosolic fumarate-dependent enzyme
171	(KmUra1) and a mitochondrial quinone-dependent enzyme (KmUra9). In vivo activity of the latter
172	requires oxygen because the reduced quinone is reoxidized by the mitochondrial respiratory chain ³⁹ .
173	Consistent with these different oxygen requirements, KmURA9 was down-regulated under severely
174	oxygen-limited conditions, while KmURA1 was upregulated (Fig. 2b, contrast 31). Upregulation of
175	KmURA1 coincided with increased production of succinate (Table 1).

176 **Tween 80 supplementation.** Transcriptome analyses were performed for each cultivation regime (1 to 177 178 5) of S. cerevisiae CEN.PK113-7D (scer) and K. marxianus CBS6556 (kmar). Data for each regime were 179 obtained from independent replicate chemostat cultures (Fig. 1). a, Comparison of GO-term gene-set 180 enrichment analysis of biological processes in contrast 31 of S. cerevisiae and K. marxianus with short 181 description of GO-terms (Supplementary Fig. 2-5). GO-terms were vertically ordered based on their distinct directionality calculated with Piano⁴⁰ with GO-terms enriched solely with up-regulated genes 182 183 (blue) at the top, GO-terms with mixed- or no-directionality in the middle (white) and GO-terms with 184 solely down-regulated genes at the bottom (brown). b, c, d, Subsets of differentially expressed 185 orthologous genes obtained from the gene-set analyses for both yeasts in contrasts 31 and 43, and with 186 genes without orthologs depicted with logFC value of 0 in the respective yeast. b, S. cerevisiae genes 187 previously shown as consistently upregulated under anaerobic conditions in four different nutrient-

- 188 limitations⁴¹. **c**, As described for panel b but for downregulated genes. **d**, Differentially expressed genes
- uniquely found in this study. e, f, g, h, Highlighted gene-sets showing divergent expression patterns
- across the two yeasts. e, S. cerevisiae genes upregulated in contrast 31 but downregulated in K.
- 191 marxianus. f, S. cerevisiae genes downregulated in contrast 31 but upregulated in K. marxianus. g, h,
- 192 Similar to e and f but for contrast 43.

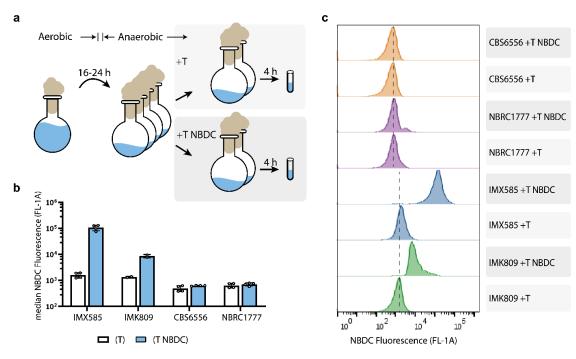
193 Fig. 3 | Different transcriptional regulation of ergosterol-biosynthesis in *K. marxianus* and *S.*

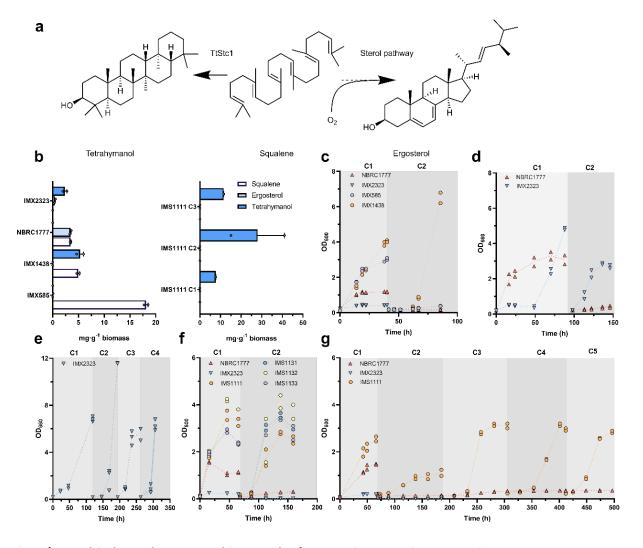
- 194 *cerevisiae.* a, RNAseq was performed on independent replicate chemostat cultures of *S. cerevisiae*
- 195 CEN.PK113-7D and K. marxianus CBS6556 for each aeration and anaerobic-growth-factor
- 196 supplementation regime (1 to 5; Fig. 1). **b**, Transcriptional differences in the mevalonate- and
- ergosterol-pathway genes of *S. cerevisiae* and *K. marxianus* for contrasts 21 (O₂ 840 TE | O 21·10⁴ E), 31

198 (O₂ 0.5 TE | O 21·10⁴ E), 32 (O₂ 0.5 TE | O₂ 840 TE), 43 (O₂ 0.5 T | O₂ 0.5 TE), 54 (O₂ 0.5 | O₂ 0.5 T). 199 Lumped biochemical reactions are represented by arrows. Colors indicate up- (blue) or down-regulation 200 (brown) with color intensity indicating the log 2 fold change with color range capped to a maximum of 4. 201 Reactions are annotated with corresponding gene, K. marxianus genes are indicated with the name of 202 the S. cerevisiae orthologs. Ergosterol uptake by S. cerevisiae requires additional factors beyond the membrane transporters Aus1 and Pdr11⁴². No orthologs of the sterol-transporters or Hmg2 were 203 204 identified for K. marxianus and low read counts for Erg3, Erg9 and Erg20 precluded differential gene 205 expression analysis across all conditions (dark grey). Enzyme abbreviations: Erg10 acetyl-CoA 206 acetyltransferase, Erg13 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase, Hmg1/Hmg2 HMG-CoA 207 reductase, Erg12 mevalonate kinase, Erg8 phosphomevalonate kinase, Mvd1 mevalonate 208 pyrophosphate decarboxylase, Idi1 isopentenyl diphosphate:dimethylallyl diphosphate (IPP) isomerase, 209 Erg20 farnesyl pyrophosphate synthetase, Erg9 farnesyl-diphosphate transferase (squalene synthase), 210 Erg7 lanosterol synthase, Erg11 lanosterol 14α -demethylase, Cyb5 cytochrome b5 (electron donor for 211 sterol C5-6 desaturation), Ncp1 NADP-cytochrome P450 reductase, Erg24 C-14 sterol reductase, Erg25 C-212 4 methyl sterol oxidase, Erg26 C-3 sterol dehydrogenase, Erg27 3-keto-sterol reductase, Erg28 213 endoplasmic reticulum membrane protein (may facilitate protein-protein interactions between Erg26 214 and Erg27, or tether these to the ER), Erg6 Δ24-sterol C-methyltransferase, Erg2 Δ24-sterol C-215 methyltransferase, Erg3 C-5 sterol desaturase, Erg5 C-22 sterol desaturase, Erg4 C24/28 sterol 216 reductase, Aus1/Pdr11 plasma-membrane sterol transporter.

217 Absence of sterol import in K. marxianus

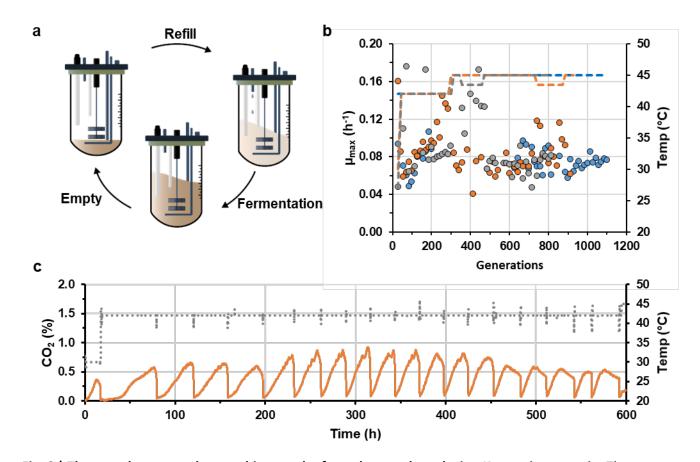
218 To test the hypothesis that K. marxianus lacks a functional sterol-uptake mechanism, uptake of 219 fluorescent sterol derivative 25-NBD-cholesterol (NBDC) was measured by flow cytometry⁴³. Since S. cerevisiae sterol transporters are not expressed in aerobic conditions²⁰ and to avoid interference of 220 sterol synthesis, NBDC uptake was analysed in anaerobic cell suspensions (Fig. 4a). Four hours after 221 222 NBDC addition to cell suspensions of the reference strain S. cerevisiae IMX585, median single-cell 223 fluorescence increased by 66-fold (Fig. 4bc). In contrast, the congenic sterol-transporter-deficient strain 224 IMK809 ($aus1\Delta pdr11\Delta$) only showed a 6-fold increase of fluorescence, probably reflected detergentresistant binding of NBDC to S. cerevisiae cell-wall proteins^{43,44}. K. marxianus strains CBS6556 and 225 226 NBRC1777 did not show increased fluorescence, neither after 4 h nor after 23 h of incubation with NBDC 227 (< 2-fold, Fig. 4bc, Supplementary Fig. 7).




Fig. 4 | Uptake of the fluorescent sterol derivative NBDC by S. cerevisiae and K. marxianus strains. a,

229 Experimental approach. S. cerevisiae strains IMX585 (reference) and IMK809 (aus1Δ pdr11Δ), and K.

230 marxianus strains NBRC1777 and CBS6556 were each anaerobically incubated in four replicate shake-


231	flask cultures. NBDC and Tween 80 (NBDC T) were added to two cultures, while only Tween 80 (T) was
232	added to the other two. After 4 h incubation, cells were stained with propidium iodide (PI) and analysed
233	by flow cytometry. PI staining was used to eliminate cells with compromised membrane integrity from
234	analysis of NBDC fluorescence. Cultivation conditions and flow cytometry gating are described in
235	Methods and in Supplementary Fig. 8, Supplementary Data set 1 and 2. b , Median and pooled standard
236	deviation of fluorescence intensity (λ_{ex} 488 nm λ_{em} 533/30 nm, FL1-A) of PI-negative cells with variance
237	of biological replicates after 4 h exposure to Tween 80 (white bars) or Tween 80 and NBDC (blue bars).
238	Variance was pooled for the strains IMX585, CBS6556 and NBRC1777 by repeating the experiment. c ,
239	NBDC fluorescence-intensity distribution of cells in a sample from a single culture for each strain, shown
240	as modal-scaled density function. Dashed lines represent background fluorescence of unstained cells of
241	S. cerevisiae and K. marxianus. Fluorescence data for 23-h incubations with NBDC are shown in
242	Supplementary Fig. 7.
243	Engineering <i>K. marxianus</i> for oxygen-independent growth
243 244	Engineering K. marxianus for oxygen-independent growth Sterol uptake by S. cerevisiae, which requires cell wall proteins as well as a membrane transporter, has
244	Sterol uptake by <i>S. cerevisiae</i> , which requires cell wall proteins as well as a membrane transporter, has
244 245	Sterol uptake by <i>S. cerevisiae</i> , which requires cell wall proteins as well as a membrane transporter, has not yet been fully resolved ^{42,43} . Instead of expressing a heterologous sterol-import system in <i>K</i> .
244 245 246	Sterol uptake by <i>S. cerevisiae</i> , which requires cell wall proteins as well as a membrane transporter, has not yet been fully resolved ^{42,43} . Instead of expressing a heterologous sterol-import system in <i>K. marxianus</i> , we therefore explored production of tetrahymanol, which acts as a sterol surrogate in
244 245 246 247	Sterol uptake by <i>S. cerevisiae</i> , which requires cell wall proteins as well as a membrane transporter, has not yet been fully resolved ^{42,43} . Instead of expressing a heterologous sterol-import system in <i>K.</i> <i>marxianus</i> , we therefore explored production of tetrahymanol, which acts as a sterol surrogate in strictly anaerobic fungi ⁴⁵ . Expression of a squalene-tetrahymanol cyclase from <i>Tetrahymena</i>
244 245 246 247 248	Sterol uptake by <i>S. cerevisiae</i> , which requires cell wall proteins as well as a membrane transporter, has not yet been fully resolved ^{42,43} . Instead of expressing a heterologous sterol-import system in <i>K.</i> <i>marxianus</i> , we therefore explored production of tetrahymanol, which acts as a sterol surrogate in strictly anaerobic fungi ⁴⁵ . Expression of a squalene-tetrahymanol cyclase from <i>Tetrahymena</i> <i>thermophila</i> (<i>TtSTC1</i>), which catalyzes the single-step oxygen-independent conversion of squalene into
244 245 246 247 248 249	Sterol uptake by <i>S. cerevisiae</i> , which requires cell wall proteins as well as a membrane transporter, has not yet been fully resolved ^{42,43} . Instead of expressing a heterologous sterol-import system in <i>K. marxianus</i> , we therefore explored production of tetrahymanol, which acts as a sterol surrogate in strictly anaerobic fungi ⁴⁵ . Expression of a squalene-tetrahymanol cyclase from <i>Tetrahymena thermophila</i> (<i>TtSTC1</i>), which catalyzes the single-step oxygen-independent conversion of squalene into tetrahymanol (Fig. 5a), was recently shown to enable sterol-independent growth of <i>S. cerevisiae</i> ⁴⁶ .
244 245 246 247 248 249 250	Sterol uptake by <i>S. cerevisiae</i> , which requires cell wall proteins as well as a membrane transporter, has not yet been fully resolved ^{42,43} . Instead of expressing a heterologous sterol-import system in <i>K. marxianus</i> , we therefore explored production of tetrahymanol, which acts as a sterol surrogate in strictly anaerobic fungi ⁴⁵ . Expression of a squalene-tetrahymanol cyclase from <i>Tetrahymena</i> <i>thermophila</i> (<i>TtSTC1</i>), which catalyzes the single-step oxygen-independent conversion of squalene into tetrahymanol (Fig. 5a), was recently shown to enable sterol-independent growth of <i>S. cerevisiae</i> ⁴⁶ . <i>TtSTC1</i> was expressed in <i>K. marxianus</i> NBRC1777, which is more genetically amenable than strain

254	free medium, strain NBRC1777 grew immediately after inoculation but not after transfer to a second
255	anaerobic culture (Fig. 5c), consistent with 'carry-over' of ergosterol from the aerobic preculture ¹⁹ . The
256	tetrahymanol-producing strain did not grow under these conditions (Fig. 5c) but showed sustained
257	growth under severely oxygen-limited conditions that did not support growth of strain NBRC1777 (Fig.
258	5de). Single-cell isolates derived from these oxygen-limited cultures (IMS1111, IMS1131, IMS1132,
259	IMS1133) showed instantaneous as well as sustained growth under strictly anaerobic conditions (Figure
260	5f and 5g). Tetrahymanol contents in the first, second and third cycle of anaerobic cultivation of isolate
261	IMS1111 were 7.6 \pm 0.0 mg·g ⁻¹ , 28.0 \pm 13.0 mg·g ⁻¹ and 11.5 \pm 0.1 mg·g ⁻¹ , respectively (Fig. 5b), while no
262	ergosterol was detected.
262 263	ergosterol was detected. To identify whether adaptation of the tetrahymanol-producing strain IMX2323 to anaerobic growth
263	To identify whether adaptation of the tetrahymanol-producing strain IMX2323 to anaerobic growth
263 264	To identify whether adaptation of the tetrahymanol-producing strain IMX2323 to anaerobic growth involved genetic changes, its genome and those of the four adapted isolates were sequenced
263 264 265	To identify whether adaptation of the tetrahymanol-producing strain IMX2323 to anaerobic growth involved genetic changes, its genome and those of the four adapted isolates were sequenced (Supplementary Table 1). No copy number variations were detected in any of the four adapted isolates.
263 264 265 266	To identify whether adaptation of the tetrahymanol-producing strain IMX2323 to anaerobic growth involved genetic changes, its genome and those of the four adapted isolates were sequenced (Supplementary Table 1). No copy number variations were detected in any of the four adapted isolates. Only strain IMS1111 showed two non-conservative mutations in coding regions: a single-nucleotide

270 Fig. 5 | Sterol-independent anaerobic growth of K. marxianus strains expressing TtSTC1. a, Oxygen-271 dependent sterol synthesis and cyclisation of squalene to tetrahymanol by TtStc1. b, Squalene, 272 ergosterol, and tetrahymanol contents with mean and standard error of the mean of (left panel) S. 273 cerevisiae strains IMX585 (reference), IMX1438 (sga1A::TtSTC1), and K. marxianus strains NBRC1777 274 (reference), IMX2323 (*TtSTC1*). Lipid composition of single-cell isolate IMS1111 (*TtSTC1*) (right panel) 275 over 3 serial transfers (C1-C3). Data from replicate cultures grown in strictly anaerobic (c, f, g) or 276 severely oxygen-limited shake-flask cultures (d, e). Aerobic grown pre-cultures were used to inoculate 277 the first anaerobic culture on SMG-urea and Tween 80, when the optical density started to stabilize the 278 cultures were transferred to new media. Data depicted are of each replicate culture (points) and the

279	mean (dotted line) from independent biological duplicate cultures, serial transfers cultures are
280	represented with C1-C5. Strains NBRC1777 (wild-type, upward red triangles), IMX2323 (<i>TtSTC1</i> , cyan
281	downward triangle), and the single-cell isolates IMS1111 (<i>TtSTC1</i> , orange circles), IMS1131 (<i>TtSTC1</i> , blue
282	circles), IMS1132 (<i>TtSTC1</i> , yellow circles), IMS1133 (<i>TtSTC1</i> , purple circles). <i>S. cerevisiae</i> IMX585
283	(reference, purple circle) and IMX1438 (<i>TtSTC1</i> , orange circles). c , Extended data with double inoculum
284	size is available in Supplementary Fig. 10. d , Extended data is available in Supplementary Fig. 9a.
285	Test of anaerobic thermotolerance and selection for fast growing anaerobes
286	One of the attractive phenotypes of <i>K. marxianus</i> for industrial application is its high thermotolerance
287	with reported maximum growth temperatures of 46-52 °C ^{49,50} . To test if anaerobically growing
288	tetrahymanol-producing strains retained thermotolerance, strain IMS1111 was grown in anaerobic
289	sequential-batch-reactor (SBR) cultures (Fig. 6) in which, after an initial growth cycle at 30 °C, the growth
290	temperature was shifted to 42 °C. Specific growth at 42 °C progressively accelerated from 0.06 h^{-1} to
291	0.13 h ⁻¹ over 17 SBR cycles (corresponding to ca. 290 generations; Fig. 6b). A subsequent temperature
292	increase to 45 °C led to a strong decrease of the specific growth rate which, after approximately 1000
293	generations of selective growth, stabilized at approximately 0.08 h ⁻¹ . Whole-population genome
294	sequencing of the evolved populations revealed no common mutations or chromosomal copy number
295	variations (Supplementary Table 1). These data show that <i>TtSTC1</i> -expressing <i>K. marxianus</i> can grow
296	anaerobically at temperatures up to at least 45 °C.

297 Fig. 6 | Thermotolerance and anaerobic growth of tetrahymanol-producing K. marxianus strain. The 298 strain IMS1111 was grown in triplicate sequential batch bioreactor cultivations in synthetic media supplemented with 20 g·L⁻¹ glucose and 420 mg·L⁻¹ Tween 80 at pH 5.0. a, Experimental design of 299 300 sequential batch fermentation with cycles at step-wise increasing temperatures to select for faster 301 growing mutants, each cycle consisted of three phases; (i) (re)filling of the bioreactor with fresh media 302 up to 100 mL and adjustment of temperature to a new set-point, (ii) anaerobic batch fermentation at a 303 fixed culture temperature with continuous N₂ sparging for monitoring of CO₂ in the culture off-gas, and 304 (iii) fast broth withdrawal leaving 7 mL (14.3 fold dilution) to inoculate the next batch. b, Maximum 305 specific estimated growth rate (circles) of each batch cycle for the three independent bioreactor 306 cultivations (M3R blue, M5R orange, M6L grey) with the estimated number of generations. The growth 307 rate was calculated from the CO₂ production as measured in the off-gas and should be interpreted as an 308 estimate and in some cases could not be calculated. The culture temperature profile (dotted line) for

each independent bioreactor cultivation (blue, grey, orange) consisted of a step-wise increment of the
temperature at the onset of the fermentation phase in each batch cycle. c, Representative section of
CO₂ off-gas profiles of the individual bioreactor (M5R) cultivation over time with CO₂ fraction (orange
line) and culture temperature (grey dotted line), data of the entire experiment is available in
Supplementary Fig. 11 (Data availability).

314 Discussion

315 Industrial production of ethanol from carbohydrates relies on S. cerevisiae, due to its capacity for 316 efficient, fast alcoholic fermentation and growth under strictly anaerobic process conditions. Many 317 facultatively fermentative yeast species outside the Saccharomycotina WGD-clade also rapidly ferment sugars to ethanol under oxygen-limited conditions²⁶, but cannot grow and ferment in the complete 318 319 absence of oxygen^{11,13,25}. Identifying and eliminating oxygen requirements of these yeasts is essential to 320 unlock their industrially relevant traits for application. Here, this challenge was addressed for the 321 thermotolerant yeast K. marxianus, using a systematic approach based on chemostat-based quantitative 322 physiology, genome and transcriptome analysis, sterol-uptake assays and genetic modification. S. cerevisiae, which was used as a reference in this study, shows strongly different genome-wide 323 expression profiles under aerobic and anaerobic or oxygen-limited conditions⁵¹. Although only a small 324 325 fraction of these differences were conserved in K. marxianus (Fig. 2), we were able to identify absence 326 of a functional sterol import system as the critical cause for its inability to grow anaerobically. Enabling 327 synthesis of the sterol surrogate tetrahymanol yielded strains that grew anaerobically at temperatures 328 above the permissive temperature range of *S. cerevisiae*.

A short adaptation phase of tetrahymanol-producing *K. marxianus* strains under oxygen-limited conditions reproducibly enabled strictly anaerobic growth. Although this ability was retained after aerobic isolation of single-cell lines, we were unable to attribute this adaptation to mutations. In

332 contrast to wild-type K. marxianus, a non-adapted tetrahymanol-producing strain did not show 'carry-333 over growth' after transfer from aerobic to strictly anaerobic conditions and adapted cultures showed 334 reduced squalene contents (Fig. 5). These observations suggest that interactions between tetrahymanol, 335 ergosterol and/or squalene influence the onset of anaerobic growth and that oxygen-limited growth 336 results in a stable balance between these lipids that is permissive for anaerobic growth. 337 Comparative genomic studies in Saccharomycotina yeasts have previously led to the hypothesis that sterol transporters are absent from pre-WGD yeast species^{11,52}. While our observations on *K. marxianus* 338 339 reinforce this hypothesis, which was hitherto not experimentally tested, they do not exclude 340 involvement of additional oxygen-requiring reactions in other non-Saccharomyces yeasts. For example, pyrimidine biosynthesis is often cited as a key oxygen-requiring process in non-Saccharomyces yeasts, 341 342 due to involvement of a respiratory-chain-linked dihydroorotate dehydrogenase (DHOD)^{53,54}. K. 343 marxianus, is among a small number of yeast species that, in addition to this respiration dependent enzyme (KmUra9), also harbors a fumarate-dependent DHOD (KmUra1)⁵⁵. In K. marxianus the activation 344 345 of this oxygen-independent KmUra1 is a crucial adaptation for anaerobic pyrimidine biosynthesis. The 346 experimental approach followed in the present study should be applicable to resolve the role of 347 pyrimidine biosynthesis and other oxygen-requiring reactions in additional yeast species. 348 Enabling K. marxianus to grow anaerobically represents an important step towards application of this 349 thermotolerant yeast in large-scale anaerobic bioprocesses. However, specific growth rates and biomass 350 yields of tetrahymanol-expressing K. marxianus in anaerobic cultures were lower than those of wild-type 351 S. cerevisiae strains. A similar phenotype of tetrahymanol-producing S. cerevisiae was proposed to reflect an increased membrane permeability⁴⁶. Additional membrane engineering or expression of a 352 353 functional sterol transport system is therefore required for further development of robust, anaerobically 354 growing industrial strains of *K. marxianus*⁵⁶.

355 online Methods

356 Yeast strains, maintenance and shake-flask cultivation

- 357 Saccharomyces cerevisiae CEN.PK113-7D^{57,58} (MATa MAL2-8c SUC2) was obtained from Dr. Peter Kötter,
- J.W. Goethe University, Frankfurt. *Kluyveromyces marxianus* strains CBS 6556 (ATCC 26548; NCYC 2597;
- 359 NRRL Y-7571) and NBRC 1777 (IFO 1777) were obtained from the Westerdijk Fungal Biodiversity
- 360 Institute (Utrecht, The Netherlands) and the Biological Resource Center, NITE (NBRC) (Chiba, Japan),
- 361 respectively. Stock cultures of S. cerevisiae were grown at 30 °C in an orbital shaker set at 200 rpm, in
- 362 500 mL shake flasks containing 100 mL YPD (10 g·L⁻¹ Bacto yeast extract, 20 g·L⁻¹ Bacto peptone, 20 g·L⁻¹
- 363 glucose). For cultures of *K. marxianus*, the glucose concentration was reduced to 7.5 g·L⁻¹. After addition

of glycerol to early stationary-phase cultures, to a concentration of 30 % (v/v), 2 mL aliquots were stored

- 365 at -80 °C. Shake-flask precultures for bioreactor experiments were grown in 100 mL synthetic medium
- 366 (SM) with glucose as carbon source and urea as nitrogen source (SMG-urea)^{17,59}. For anaerobic
- 367 cultivation, synthetic medium was supplemented with ergosterol (10 mg·L⁻¹) and Tween 80 (420 mg·L⁻¹)
- 368 as described previously^{14,17,19}.

369 Expression cassette and plasmid construction

Plasmids used in this study are described in (Table 4). To construct plasmids pUDE659 (gRNA_{AUS1}) and
pUDE663 (gRNA_{PDR11}), the pROS11 plasmid-backbone was PCR amplified using Phusion HF polymerase
(Thermo Scientific, Waltham, MA) with the double-binding primer 6005. PCR amplifications were
performed with desalted or PAGE-purified oligonucleotide primers (Sigma-Aldrich, St Louis, MO)
according to manufacturer's instructions. To introduce the gRNA-encoding nucleotide sequences into
gRNA-expression plasmids, a 2µm fragment was first amplified with primers 11228 and 11232
containing the specific sequence as primer overhang using pROS11 as template. PCR products were

377 purified with genElutePCR Clean-Up Kit (Sigma-Aldrich) or Gel DNA Recovery Kit (Zymo Research, Irvine,

378	CA). The two DNA fragments were then assembled by Gibson Assembly (New England Biolabs, Ipswich,
379	MA) according to the manufacturer's instructions. Gibson assembly reaction volumes were downscaled
380	to 10 μ L and 0.01 pmol· μ L ⁻¹ DNA fragments at 1:1 molar ratio for 1 h at 50 °C. Chemically competent <i>E</i> .
381	coli XL1-Blue was transformed with the Gibson assembly mix via a 5 min incubation on ice followed by a
382	40 s heat shock at 42 °C and 1 h recovery in non-selective LB medium. Transformants were selected on
383	LB agar containing the appropriate antibiotic. Golden Gate assembly with the yeast tool kit^{60} was
384	performed in 20 μ L reaction mixtures containing 0.75 μ L Bsal HF V2 (NEB, #R3733), 2 μ L DNA ligase
385	buffer with ATP (New England Biolabs), 0.5 μ L T7-ligase (NEB) with 20 fmol DNA donor fragments and
386	MilliQ water. Before ligation at 16 °C was initiated by addition of T7 DNA ligase, an initial Bsal digestion
387	(30 min at 37 °C) was performed. Then 30 cycles of digestion and ligation at 37 °C and 16 °C,
388	respectively, were performed, with 5 min incubation times for each reaction. Thermocycling was
389	terminated with a 5 min final digestion step at 60 °C.
390	To construct a <i>TtSTC1</i> expression vector, the coding sequence of <i>TtSTC1</i> (pUD696) was PCR amplified
390 391	To construct a <i>TtSTC1</i> expression vector, the coding sequence of <i>TtSTC1</i> (pUD696) was PCR amplified with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori
390 391	To construct a <i>TtSTC1</i> expression vector, the coding sequence of <i>TtSTC1</i> (pUD696) was PCR amplified with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori
391	with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori
391 392	with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori ampR), pP2 (KmPDC1p), pYTK053 (ScADH1t) resulting in pUDE909 (ori ampR KmPDC1p-TtSTC1-
391 392 393	with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori ampR), pP2 (KmPDC1p), pYTK053 (ScADH1t) resulting in pUDE909 (ori ampR KmPDC1p-TtSTC1-ScADH1t). For integration of TtSTC1 cassette into the <i>lac4</i> locus both upstream and downstream flanks
391 392 393 394	with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori ampR), pP2 (KmPDC1p), pYTK053 (ScADH1t) resulting in pUDE909 (ori ampR KmPDC1p-TtSTC1-ScADH1t). For integration of TtSTC1 cassette into the <i>lac4</i> locus both upstream and downstream flanks (877/878 bps) of the <i>lac4</i> locus were PCR amplified with the primer pairs 14197/14198 and
391 392 393 394 395	with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori ampR), pP2 (KmPDC1p), pYTK053 (ScADH1t) resulting in pUDE909 (ori ampR KmPDC1p-TtSTC1- ScADH1t). For integration of TtSTC1 cassette into the <i>lac4</i> locus both upstream and downstream flanks (877/878 bps) of the <i>lac4</i> locus were PCR amplified with the primer pairs 14197/14198 and 14199/14200, respectively. An empty integration vector, pGGKd068, was constructed by <i>Bsal</i> golden
391 392 393 394 395 396	with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori ampR), pP2 (KmPDC1p), pYTK053 (ScADH1t) resulting in pUDE909 (ori ampR KmPDC1p-TtSTC1- ScADH1t). For integration of TtSTC1 cassette into the <i>lac4</i> locus both upstream and downstream flanks (877/878 bps) of the <i>lac4</i> locus were PCR amplified with the primer pairs 14197/14198 and 14199/14200, respectively. An empty integration vector, pGGKd068, was constructed by <i>Bsal</i> golden gate cloning of pYTK047 (GFP-dropout), pYTK079 (hygB), pYTK090 (kanR), pYTK073 (ConRE'), pYTK008
391 392 393 394 395 396 397	with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori ampR), pP2 (KmPDC1p), pYTK053 (ScADH1t) resulting in pUDE909 (ori ampR KmPDC1p-TtSTC1- ScADH1t). For integration of TtSTC1 cassette into the <i>lac4</i> locus both upstream and downstream flanks (877/878 bps) of the <i>lac4</i> locus were PCR amplified with the primer pairs 14197/14198 and 14199/14200, respectively. An empty integration vector, pGGKd068, was constructed by <i>Bsal</i> golden gate cloning of pYTK047 (GFP-dropout), pYTK079 (hygB), pYTK090 (kanR), pYTK073 (ConRE'), pYTK008 (ConLS') together with the two <i>lac4</i> homologous nucleotide sequences. Plasmid assembly was verified
 391 392 393 394 395 396 397 398 	with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori ampR), pP2 (Km <i>PDC1</i> p), pYTK053 (Sc <i>ADH1</i> t) resulting in pUDE909 (ori ampR Km <i>PDC1</i> p- <i>TtSTC1</i> - Sc <i>ADH1</i> t). For integration of <i>TtSTC1</i> cassette into the <i>lac4</i> locus both upstream and downstream flanks (877/878 bps) of the <i>lac4</i> locus were PCR amplified with the primer pairs 14197/14198 and 14199/14200, respectively. An empty integration vector, pGGKd068, was constructed by <i>Bsal</i> golden gate cloning of pYTK047 (GFP-dropout), pYTK079 (hygB), pYTK090 (kanR), pYTK073 (ConRE'), pYTK008 (ConLS') together with the two <i>lac4</i> homologous nucleotide sequences. Plasmid assembly was verified by PCR amplification with primers 15210, 9335, 16274 and 16275 and by digestion with <i>BsmBl</i> (New
 391 392 393 394 395 396 397 398 399 	with primer pair 16096/16097 and Golden gate assembled with the donor plasmids pGGkd015 (ori ampR), pP2 (KmPDC1p), pYTK053 (ScADH1t) resulting in pUDE909 (ori ampR KmPDC1p-TtSTC1- ScADH1t). For integration of TtSTC1 cassette into the <i>lac4</i> locus both upstream and downstream flanks (877/878 bps) of the <i>lac4</i> locus were PCR amplified with the primer pairs 14197/14198 and 14199/14200, respectively. An empty integration vector, pGGKd068, was constructed by <i>Bsal</i> golden gate cloning of pYTK047 (GFP-dropout), pYTK079 (hygB), pYTK090 (kanR), pYTK073 (ConRE'), pYTK008 (ConLS') together with the two <i>lac4</i> homologous nucleotide sequences. Plasmid assembly was verified by PCR amplification with primers 15210, 9335, 16274 and 16275 and by digestion with <i>BsmBl</i> (New England Biolabs, #R0580). The integration vector pUDI246 with the <i>TtSTC1</i> expression cassette was

- 402 incubation time of the Gibson assembly was increased to 90 min. Plasmid assembly was verified by
- 403 diagnostic PCR amplification using DreamTaq polymerase (Thermo Scientific) with primers 5941, 8442,
- 404 15216 and subsequent Illumina short-read sequencing.

405 **Table 2 | Strains used in this study.** Abbreviations: *Saccharomyces cerevisiae* (Sc), *Kluyveromyces*

406 *marxianus* (Km), *Tetrahymena thermophila* (Tt).

Genus	Strain	Relevant genotype	Reference
S. cerevisiae	CEN.PK113-7D	MATa URA3 HIS3 LEU2 TRP1 MAL2-8c SUC2	Entian and Kötter, 2007
S. cerevisiae	IMX585	CEN.PK113-7D <i>can1</i> ∆::cas9-natNT2	Mans <i>et al.,</i> 2015 61
S. cerevisiae	IMX1438	IMX585 sga1∆::TtSTC1	Wiersma <i>et al.,</i> 2020 ⁴⁶
S. cerevisiae	IMK802	IMX585 <i>aus1</i> Δ	This study
S. cerevisiae	IMK806	IMX585 <i>pdr11</i> Δ	This study
S. cerevisiae	IMK809	IMX585 aus1Δ pdr11Δ	This study
K. marxianus	CBS6556	URA3 HIS3 LEU2 TRP1	CBS-KNAW*
K. marxianus	NBRC1777	URA3 HIS3 LEU2 TRP1	NBRC**
K. marxianus	IMX2323	KmPDC1p-TtSTC1-ScADH1t-hygB	This study
K. marxianus	IMS1111	KmPDC1p-TtSTC1-ScADH1t-hygB	This study
K. marxianus	IMS1112	KmPDC1p-TtSTC1-ScADH1t-hygB	This study
K. marxianus	IMS1113	KmPDC1p-TtSTC1-ScADH1t-hygB	This study
K. marxianus	IMS1131	KmPDC1p-TtSTC1-ScADH1t-hygB	This study
K. marxianus	IMS1132	KmPDC1p-TtSTC1-ScADH1t-hygB	This study
K. marxianus	IMS1133	KmPDC1p-TtSTC1-ScADH1t-hygB	This study

408 Table 3 | CRISPR gRNA target sequences used in this study. gRNA target sequences are shown with

409 PAM sequences underlined. Position in ORF indicates the base pair after which the Cas9-mediated

410 double-strand break is introduced. AT score indicates the AT content of the 20-bp target sequence and

- 411 RNA score indicates the fraction of unpaired nucleotides of the 20-bp target sequence, predicted with
- 412 the complete gRNA sequence using a minimum free energy prediction by the RNAfold algorithm⁶².

Locus	Target sequence (5'-3')	Position in ORF (bp)	AT score	RNA score
AUS1	CATTATTGTAAATGATTTGG <u>TGG</u>	320/4184	0.75	1
PDR11	ATCTTTCATATAAATAACAT <u>AGG</u>	1627/4235	0.85	1

413

414 **Table 4 | Plasmids used in this study.** Restriction enzyme recognition sites are indicated in superscript.

- 415 US/DS represent upstream and downstream homologous recombination sequences used for genomic
- 416 integration into the K. marxianus lac4 locus. Abbreviations: Saccharomyces cerevisiae (Sc),
- 417 Kluyveromyces marxianus (Km), Tetrahymena thermophila (Tt).

Plasmid	Characteristics	Source
pGGkd015	ori ampR ConLS GFP ConR1	Hassing <i>et al.</i> , 2019 63
pGGKd068	ori kanR ^{Noti} Kmlac4 _{US} ^{BsmBl} ConRE' ^{Bsal} sfGFP ^{Bsal} ConLS' ^{BsmBl} hygB Kmlac4 _{DS} ^{Noti}	This study
pP2	ori cam ^R <i>KmPDC1</i> p	Rajkumar <i>et al.,</i> 2019 47
pROS11	ori amp ^R 2μm amdSYM pSNR52-gRNA _{CAN1} pRSNR52-gRNA _{ADE2}	Mans <i>et al.,</i> 2015 61
pUD696	ori kanR TtSTC1	Wiersma <i>et al.,</i> 2020
pUDE659	ori amp ^R 2µm amdSYM pSNR52-gRNA _{AUS1} pRSNR52-gRNA _{AUS1}	This study
pUDE663	ori amp ^R 2µm amdSYM pSNR52-gRNA _{PDR11} pRSNR52-gRNA _{PDR11}	This study
pUDE909	ori ampR KmPDC1p-TtSTC1-ScADH1t	This study
pUDI246	ori kanR ^{NotI} Kmlac4 _{US} KmPDC1p-TtSTC1-ScADH1t hygB Kmlac4 _{DS} ^{NotI}	This study
pYTK008	ori camR ConLS'	Lee <i>et al.,</i> 2015 ⁶⁰
pYTK047	ori camR GFP dropout	Lee <i>et al.,</i> 2015 ⁶⁰
pYTK053	ori camR <i>ScADH1</i> t	Lee <i>et al.,</i> 2015 ⁶⁰
рҮТК073	ori camR ConRE'	Lee <i>et al.,</i> 2015 ⁶⁰
рҮТК079	ori camR hygB	Lee <i>et al.,</i> 2015 ⁶⁰

419 Table 5 | Oligonucleotide primers used in this study.

Primer	Sequence (5'->3')
11228	TGCGCATGTTTCGGCGTTCGAAACTTCTCCGCAGTGAAAGATAAATGATCCATTATTGTAAATGATTTGGGTTTTA
	GAGCTAGAAATAGCAAGTTAAAATAAG
11232	TGCGCATGTTTCGGCGTTCGAAACTTCTCCGCAGTGAAAGATAAATGATCATCTTTCATATAAATAA
	GAGCTAGAAATAGCAAGTTAAAAATAAG
11233	TAGTAAAGACTGCTGTAATTCATCTCTCAGTCCTTGCAGTCTGCTTTTTCTGGAATTAATT
	ATTTCTACTTTCTACTTAATAGCAATTTTAATTAATCTAATTAT
11234	ATAATTAGATTAATTAAAATTGCTATTAAGTAGAAAGTAGAAATATATTTAAAAATGGTAATTAATTCCAGAAAAA
11041	GCAGACTGCAAGGACTGAGAGATGAATTACAGCAGTCTTTACTA
11241	TAGCAAAAAAATTCACAACTAAACACGATAGAGTAAAATTAGAGAAGCAACGCCTCGCGGTCAGTGAATAGCGTTC
11040	
11242	AGAACTGTTGAATAGTATTAGGTAATTTTGAATGTTTTCTAACGGAACGCTATTCACTGACCGCGAGGCGTTGCTT CTCTAATTTTACTCTATCGTGTTTTAGTTGTGAATTTTTTTGCTA
11243	TGTCACTACAGCCACAGCAG
11243	TTGGTAAGGCGCCACACTAG
11244	
	AGAGAAGCGCCACATAGACG
11252	TGCATATGCTACGGGTGACG
11897	CACCCAAGTATGGTGGGTAG
14148	AAGCATCGTCTCATCGGTCTCATATGTCAATTTCAAAGTACTTCACTCCCGTTGCTGAC
14149	TTATGCCGTCTCAGGTCTCAGGATTTAGTTCTGTACAGGCTTCTTC
14150	TTATGCCGTCTCAGGTCTCAAGAATTAGTTCTGTACAGGCTTCTTC
14151	AAGCATCGTCTCATCGGTCTCATATGTCTTTCACTAAAATCGCTGCCTTATTAG
14152	TTATGCCGTCTCAGGTCTCAGGATATCATAAGAGCATAGCAGCGGCACCGGCAATAG
14197	AAGCATCGTCTCATCGGTCTCACAATGAAAGTGATTGAAGAACCCTCAAAC
14198	TTATGCCGTCTCAGGTCTCAAGGGTTAAGCAATTGGATCCTACC
14199	AAGCATCGTCTCATCGGTCTCAGAGTTGCTTAATTAGCTTGTACATGGCTTTG
14200	TTATGCCGTCTCAGGTCTCATCGGGAAGGCCCATATTGAAGACG
14339	CCCAAATCATTTACAATAATGGATCATTTATC
14340	CATGTTATTTATATGAAAGATGATCATTTATC
16366	GTCCCTAGGTTCGTCATT
16367	CAAGATCAATGGTGGCTCTC

420

421 Strain construction

- 422 The lithium-acetate/polyethylene-glycol method was used for yeast transformation⁶⁴. Homologous
- 423 repair (HR) DNA fragments for markerless CRISPR-Cas9-mediated gene deletions in S. cerevisiae were
- 424 constructed by annealing two 120 bp primers, using primer pairs 11241/11242 and 11233/11234 for
- 425 deletion of PDR11 and AUS1, respectively. After transformation of S. cerevisiae IMX585 with gRNA
- 426 plasmids pUDE659 and pUDE663 and double-stranded repair fragments, transformants were selected
- 427 on synthetic medium with acetamide as sole nitrogen source⁶⁵. Deletion of *AUS1* and *PDR11* was

428 confirmed by PCR amplification with primer pairs 11243/11244 and 11251/11252, respectively. Loss of 429 gRNA plasmids was induced by cultivation of single-colony isolates on YPD, after which plasmid loss was 430 assessed by absence of growth of single-cell isolates on synthetic medium with acetamide as nitrogen 431 source. An *aus1 pdr11* double-deletion strain was similarly constructed by chemical transformation of 432 S. cerevisiae IMK802 with pUDE663 and repair DNA. To integrate a TtSTC1 expression cassette into the 433 K. marxianus lac4 locus, K. marxianus NBRC1777 was transformed with 2 µg DNA Notl-digested 434 pUDI246. After centrifugation, cells were resuspended in YPD and incubated at 30 °C for 3 h. Cells were 435 then again centrifuged, resuspended in demineralized water and plated on 200 μ g·L⁻¹ hygromycin B (InvivoGen, Toulouse, France) containing agar with 40 μ g·L⁻¹ X-gal, 5-bromo-4-chloro-3-indolyl- β -D-436 437 galactopyranoside (Fermentas, Waltham, MA). Colonies that could not convert X-gal were analyzed for 438 correct genomic integration of the *TtSTC1* by diagnostic PCR with primers 16366, 16367 and 11897. 439 Genomic integration of TtSTC1 into the chromosome outside the lac4 locus was confirmed by short-read 440 Illumina sequencing.

441 Chemostat cultivation

Chemostat cultures were grown at 30 °C in 2 L bioreactors (Applikon, Delft, the Netherlands) with a 442 443 stirrer speed of 800 rpm. The dilution rate was set at 0.10 h⁻¹ and a constant working volume of 1.2 L 444 was maintained by connecting the effluent pump to a level sensor. Cultures were grown on synthetic 445 medium with vitamins¹⁷. Concentrated glucose solutions were autoclaved separately at 110 °C for 20 446 min and added at the concentrations indicated, along with sterile antifoam pluronic 6100 PE (BASF, 447 Ludwigshafen, Germany; final concentration 0.2 g·L⁻¹). Before autoclaving, bioreactors were tested for 448 gas leakage by submerging them in water while applying a 0.3 bar overpressure. 449 Anaerobic conditions of bioreactor cultivations were maintained by continuous reactor headspace

- 450 aeration with pure nitrogen gas (≤ 0.5 ppm O₂, HiQ Nitrogen 6.0, Linde AG, Schiedam, the Netherlands)

at a flowrate of 500 mL N₂ min⁻¹ (2.4 vvm). Gas pressure of 1.2 bar of the reactor headspace was set with a reduction valve (Tescom Europe, Hannover, Germany) and remained constant during cultivation. To prevent oxygen diffusion into the cultivation the bioreactor was equipped with Fluran tubing (14 Barrer O_2 , F-5500-A, Saint-Gobain, Courbevoie, France), Viton O-rings (Eriks, Alkmaar, the Netherlands), and no pH probes were mounted. The medium reservoir was deoxygenated by sparge aeration with nitrogen gas (\leq 1 ppm O₂, HiQ Nitrogen 5.0, Linde AG).

457 For aerobic cultivation the reactor was sparged continuously with dried air at a flowrate of 500 mL air

458 min⁻¹ (2.4 vvm). Dissolved oxygen levels were analyzed by Clark electrodes (AppliSens, Applikon) and

459 remained above 40% during the cultivation. For micro-aerobic cultivations nitrogen (≤ 1 ppm O₂, HiQ

460 Nitrogen 5.0, Linde AG) and air were mixed continuously by controlling the fractions of mass flow rate of

the dry gas to a total flow of 500 mL min⁻¹ per bioreactor. The mixed gas was distributed to each

bioreactor and analyzed separately in real-time. Continuous cultures were assumed to be in steady state

463 when after at least 5 volumes changes, culture dry weight and the specific carbon dioxide production

464 rates changed by less than 10%.

465 Cell density was routinely measured at a wavelength of 660 nm with spectrophotometer Jenway 7200

466 (Cole Palmer, Staffordshire, UK). Cell dry weight of the cultures were determined by filtering exactly 10

467 mL of culture broth over pre-dried and weighed membrane filters (0.45 μm, Thermo Fisher Scientific),

which were subsequently washed with demineralized water, dried in a microwave oven (20 min, 350 W)

469 and weighed again⁶⁶.

470 Metabolite analysis

For determination of substrate and extracellular metabolite concentrations, culture supernatants were
obtained by centrifugation of culture samples (5 min at 13000 rpm) and analyzed by high-performance
liquid chromatography (HPLC) on a Waters Alliance 2690 HPLC (Waters, MA, USA) equipped with a Bio-

Rad HPX-87H ion exchange column (BioRad, Veenendaal, the Netherlands) operated at 60 °C with a
mobile phase of 5 mM H₂SO₄ at a flowrate of 0.6 mL·min⁻¹. Compounds were detected by means of a
dual-wavelength absorbance detector (Waters 2487) and a refractive index detector (Waters 2410) and
compared to reference compounds (Sigma-Aldrich). Residual glucose concentrations in continuous
cultivations were determined by HPLC analysis from rapid quenched culture samples with cold steel
beads⁶⁷.

480 Gas analysis

The off-gas from bioreactor cultures was cooled with a condenser (2 °C) and dried with PermaPure Dryer (Inacom Instruments, Veenendaal, the Netherlands) prior to analysis of the carbon dioxide and oxygen fraction with a Rosemount NGA 2000 Analyser (Baar, Switzerland). The Rosemount gas analyzer was calibrated with defined mixtures of 1.98 % O₂, 3.01 % CO₂ and high quality nitrogen gas N6 (Linde AG).

485 Ethanol evaporation rate

486 To correct for ethanol evaporation in the continuous bioreactor cultivations the ethanol evaporation 487 rate was determined in the same experimental bioreactor set-up without the yeast. To SM glucose 488 media with urea 400 mM of ethanol was added after which the decrease in the ethanol concentration 489 was measured over time by periodic measurements and quantification by HPLC analysis over the course 490 of at least 140 hours. To reflect the media composition used for the different oxygen regimes and 491 anaerobic growth factor supplementation, the ethanol evaporation was measured for bioreactor sparge 492 aeration with Tween 80, bioreactor head-space aeration both with and without Tween 80. The ethanol 493 evaporation rate was measured for each condition in triplicate.

494 Lipid extractions & GC analysis

495 For analysis of triterpene and triterpenoid cell contents biomass was harvested, washed once with 496 demineralized water and stored as pellet at -80 °C before freeze-drying the pellets using an Alpha 1-4 LD 497 Plus (Martin Christ, Osterode am Harz, Germany) at -60 °C and 0.05 mbar. Freeze-dried biomass was 498 saponificated with 2.0 M NaOH (Bio-Ultra, Sigma-Aldrich) in methylation glass tubes (PYREX[™] 499 Boroslicate glass, Thermo Fisher Scientific) at 70 °C. As internal standard 5α-cholestane (Sigma-Aldrich) 500 was added to the saponified biomass suspension. Subsequently tert-butyl-methyl-ether (tBME, Sigma-501 Aldrich) was added for organic phase extraction. Samples were extracted twice using tBME and dried 502 with sodium-sulfate (Merck, Darmstadt, Germany) to remove remaining traces of water. The organic 503 phase was either concentrated by evaporation with N₂ gas aeration or transferred directly to an 504 injection vial (VWR International, Amsterdam, the Netherlands). The contents were measured by GC-FID 505 using Agilent 7890A Gas Chromatograph (Agilent Technologies, Santa Clara, CA) equipped with an 506 Agilent CP9013 column (Agilent). The oven was programmed to start at 80 °C for 1 min, ramp first to 280 507 °C with 60 °C·min⁻¹ and secondly to 320 °C with a rate of 10 °C·min⁻¹ with a final temperature hold of 15 508 min. Spectra were compared to separate calibration lines of squalene, ergosterol, α -cholestane, 509 cholesterol and tetrahymanol as described previously⁴⁶.

510 Sterol uptake assay

Sterol uptake was monitored by the uptake of fluorescently labelled 25-NBD-cholesterol (Avanti Polar Lipids, Alabaster, AL). A stock solution of 25-NBD-cholesterol (NBDC) was prepared in ethanol under an argon atmosphere and stored at -20 °C. Shake flasks with 10 mL SM glucose media were inoculated with yeast strains from a cryo-stock and cultivated aerobically at 200 rpm at 30 °C overnight. The yeast cultures were subsequently diluted to an OD₆₆₀ of 0.2 in 400 mL SM glucose media in 500 mL shake flasks to gradually reduce the availability of oxygen and incubated overnight. Yeast cultures were transferred to fresh SM media with 40 g·L⁻¹ glucose and incubated under anaerobic conditions at 30 °C

518 at 200 rpm. After 22 hours of anaerobic incubation 4 µg·L⁻¹NBD-cholesterol with 420 mg·L⁻¹ Tween 80 519 were pulsed to the cultures. Samples were taken and washed with PBS 5 mL·L⁻¹ Tergitol NP-40 pH 7.0 520 (Sigma-Aldrich) twice before resuspension in PBS and subsequent analysis. Propidium Iodide (PI) 521 (Invitrogen) was added to the sample (20 μ M) and stained according to the manufacturer's instructions⁶⁸. PI intercalates with DNA in cells with a compromised cell membrane, which results in red 522 523 fluorescence. Samples both unstained and stained with PI were analyzed with Accuri C6 flow cytometer 524 (BD Biosciences, Franklin Lakes, NJ) with a 488 nm laser and fluorescence was measured with emission 525 filter of 533/30 nm (FL1) for NBD-cholesterol and > 670 nm (FL3) for PI. Cell gating and median fluorescence of cells were determined using FlowJo (v10, BD Bioscience). Cells were gated based on 526 527 forward side scatter (FSC) and side-scatter (SSC) to exclude potential artifacts or clumping cells. Within 528 this gated population PI positive and negatively stained cells were differentiated based on the cell 529 fluorescence across a FL3 FL1 dimension. Flow cytometric gates were drafted for each yeast species and 530 used for all samples. The gating strategy is given in Supplementary Fig. 8. Fluorescence of a strain was 531 determined by a sample of cells from independent shake-flask cultures and compared to cells from 532 identical unstained cultures of cells with the exact same chronological age. The staining experiment of 533 the strains IMX585, CBS6556 and NBRC1777 samples was repeated twice for reproducibility, the mean and pooled variance was subsequently calculated from the biological duplicates of the two experiments. 534 535 The NBDC intensity and cell counts obtained from the NBDC experiments are available for re-analysis in 536 Supplementary Data set 1, and raw flow cytometry plots are depicted in Supplementary Data set 2.

537 Long read sequencing, assembly, and annotation

Cells were grown overnight in 500-mL shake flasks containing 100 mL liquid YPD medium at 30 °C in an
orbital shaker at 200 rpm. After reaching stationary phase the cells were harvested for a total OD₆₆₀ of
600 by centrifugation for 5 min at 4000 g. Genomic DNA of CBS6556 and NBRC1777 was isolated using

541 the Qiagen genomic DNA 100/G kit (Qiagen, Hilden, Germany) according to the manufacturer's 542 instructions. MinION genomic libraries were prepared using the 1D Genomic DNA by ligation (SQK-543 LSK108) for CBS6556, and the 1D native barcoding Genomic DNA (EXP-NBD103 & LSK108) for NBRC1777 544 according to the manufacturer's instructions with the exception of using 80% EtOH during the 'End 545 Repair/dA-tailing module' step. Flow cell quality was tested by running the MinKNOW platform QC 546 (Oxford Nanopore Technology, Oxford, UK). Flow cells were prepared by removing 20 µL buffer and subsequently primed with priming buffer. The DNA library was loaded dropwise into the flow cell for 547 548 sequencing. The SQK-LSK108 library was sequenced on a R9 chemistry flow cell (FLO-MIN106) for 48 h. 549 Base-calling was performed using Albacore (v2.3.1, Oxford Nanopore Technologies) for CBS6556, and for 550 NBRC1777 with Guppy (v2.1.3, Oxford Nanopore Technologies) using dna r9.4.1 450bps flipflop.cfg. CBS6556 reads were assembled using Canu (v1.8)⁶⁹, and NBRC1777 reads were assembled using Flye 551 (v2.7.1-b1673)⁷⁰. Assemblies were polished with Pilon (v1.18)⁷¹ using Illumina data available at the 552 553 Sequence Read Archive under accessions SRX3637961 and SRX3541357. Both de novo genome assemblies were annotated using Funannotate (v1.7.1)⁷², trained and refined using *de novo* 554 555 transcriptome assemblies (see below), adding functional annotation with Interproscan (v5.25-64.0)⁷³. 556 Illumina sequencing 557 Plasmids were sequenced on a MiniSeq (Illumina, San Diego, CA) platform. Library preparation was 558 performed with Nextera XT DNA library preparation according to the manufacturer's instructions 559 (Illumina). The library preparation included the MiniSeq Mid Output kit (300 cycles) and the input & final 560 DNA was quantified with the Qubit HS dsDNA kit (Life Technologies, Thermo Fisher Scientific). Nucleotide sequences were assembled with SPAdes⁷⁴ and compared to the intended *in silico* DNA 561 562 construct. For whole-genome sequencing, yeast cells were harvested from overnight cultures and DNA

563 was isolated with the Qiagen genomic DNA 100/G kit (Qiagen) as described earlier. DNA quantity was

PuSeq DNA PCR-free library prep kit (Illumina) according to the manufacturer's ead whole-genome sequencing was performed on a MiSeq platform (Illumina). encing and transcriptome analysis hemostat cultures was directly sampled into liquid nitrogen to prevent mRNA ltures were stored at -80 °C and processed within 10 days after sampling. After were harvested by centrifugation. Total RNA was extracted by a 5 min heatshock at soamyl alcohol, phenol and chloroform at a ratio of 125:24:1, respectively
encing and transcriptome analysis hemostat cultures was directly sampled into liquid nitrogen to prevent mRNA ltures were stored at -80 °C and processed within 10 days after sampling. After were harvested by centrifugation. Total RNA was extracted by a 5 min heatshock at
hemostat cultures was directly sampled into liquid nitrogen to prevent mRNA Itures were stored at -80 °C and processed within 10 days after sampling. After were harvested by centrifugation. Total RNA was extracted by a 5 min heatshock at
ltures were stored at -80 °C and processed within 10 days after sampling. After were harvested by centrifugation. Total RNA was extracted by a 5 min heatshock at
were harvested by centrifugation. Total RNA was extracted by a 5 min heatshock at
oamyl alcohol, phenol and chloroform at a ratio of 125:24:1, respectively
is extracted from the organic phase with Tris-HCl and subsequently precipitated by
Nac-acetate and 40 % (v/v) ethanol at -20 °C. Precipitated RNA was washed with
nd after drying resuspended in RNAse free water. The quantity of total RNA was
ubit RNA BR assay kit (Thermo Fisher Scientific). RNA quality was determined by the
er with RNA screen tape using a Tapestation (Agilent). RNA libraries were prepared
nded mRNA LT protocol (Illumina, #15031047) and subjected to paired-end
read length, NovaSeq Illumina) by Macrogen (Macrogen Europe, Amsterdam, the
a

Pooled RNAseq libraries were used to perform *de novo* transcriptome assembly using Trinity (v2.8.3)⁷⁵
which was subsequently used as evidence for both CBS6556 and NBRC1777 genome annotations.
RNAseq libraries were mapped into the CBS6556 genome assembly described above, using bowtie
(v1.2.1.1)⁷⁶ with parameters (-v 0 -k 10 --best -M 1) to allow no mismatches, select the best out of 10
possible alignments per read, and for reads having more than one possible alignment randomly report
only one. Alignments were filtered and sorted using samtools (v1.3.1)⁷⁷. Read counts were obtained

with featureCounts (v1.6.0)⁷⁸ using parameters (-B -C) to only count reads for which both pairs are
aligned into the same chromosome.

588	Differential gene expression (DGE) analysis was performed using edgeR (v3.28.1) ⁷⁹ . Genes with 0 read
589	counts in all conditions were filtered out from the analysis, same as genes with less than 10 counts per
590	million. Counts were normalized using the trimmed mean of M values (TMM) method ⁸⁰ , and dispersion
591	was estimated using generalized linear models. Differentially expressed genes were then calculated
592	using a log ratio test adjusted with the Benjamini-Hochberg method. Absolute log2 fold-change values >
593	2, false discovery rate < 0.5, and P value < 0.05 were used as significance cutoffs.
594	Gene set analysis (GSA) based on gene ontology (GO) terms was used to get a functional interpretation
595	of the DGE analysis. For this purpose, GO terms were first obtained for the S. cerevisiae CEN.PK113-7D
596	(GCA_002571405.2) and <i>K. marxianus</i> CBS6556 genome annotations using Funannotate and
597	Interproscan as described above. Afterwards, Funannotate compare was used to get (co)ortholog
598	groups of genes generated with ProteinOrtho5 ³⁸ using the following public genome annotations <i>S</i> .
599	cerevisiae S288C (GCF_000146045.2), K. marxianus NBRC1777 (GCA_001417835.1), K. marxianus
600	DMKU3-1042 (GCF_001417885.1), in addition to the new genome annotations generated here for S.
601	cerevisiae CEN.PK113-7D, and K. marxianus CBS6556 and NBRC1777. Predicted GO terms for S.
602	cerevisiae CEN.PK113-7D and K. marxianus CBS6556 were kept, and merged with those from
603	corresponding (co)orthologs from <i>S. cerevisiae</i> S288C. Genes with term GO:0005840 (ribosome) were
604	not considered for further analyses. GSA was then performed with Piano (v2.4.0) ⁴⁰ . Gene set statistics
605	were first calculated with the Stouffer, Wilcoxon rank-sum test, and reporter methods implemented in
606	Piano. Afterwards, consensus results were derived by p-value and rank aggregation, considered
607	significant if absolute Fold Change values > 1. ComplexHeatmap (v2.4.3) ⁸¹ was used to draw GSA results

into Fig. 2, highlighting differentially expressed genes found in a previous study⁵¹. DGE and GSA were
 performed using R (v4.0.2)⁸².

610 Anaerobic growth experiments

611 Anaerobic shake-flask experiments were performed in a Bactron anaerobic workstation (BACTRON300-

612 2, Sheldon Manufacturing, Cornelius, OR) at 30 °C. The gas atmosphere consisted of 85% N₂, 10% CO₂

and 5% H₂ and was maintained anaerobic by a Pd catalyst. The catalyst was re-generated by heating till

614 160 °C every week and interchanged by placing it in the airlock whenever the pass-box was used. 50-mL

615 Shake flasks were filled with 40 mL (80 % volumetric) media and placed on an orbital shaker (KS 130

basic, IKA, Staufen, Germany) set at 240 rpm inside the anaerobic chamber. Sterile growth media was

617 placed inside the anaerobic chamber 24 h prior to inoculation to ensure complete removal of traces of

618 oxygen.

The anaerobic growth ability of the yeast strains was tested on SMG-urea with 50 g·L⁻¹ glucose at pH 6.0

620 with Tween 80 prepared as described earlier. The growth experiments were started from aerobic pre-

621 cultures on SMG-urea media and the anaerobic shake flasks were inoculated at an OD₆₆₀ of 0.2

622 (corresponding to an OD₆₀₀ of 0.14). In order to minimize opening the anaerobic chamber, culture

623 growth was monitored by optical density measurements inside the chamber using an Ultrospec 10 cell

624 density meter (Biochrom, Cambridge, UK) at a 600 nm wavelength. When the optical density of culture

no longer increased or decreased new shake-flask cultures were inoculated by serial transfer at an initial
OD₆₀₀ of 0.2.

627 Laboratory evolution in low oxygen atmosphere

628 Adaptive laboratory evolution for strict anaerobic growth was performed in a Bactron anaerobic

629 workstation (BACTRON BAC-X-2E, Sheldon Manufacturing) at 30 °C. 50-mL Shake flasks were filled with

630	40 mL SMG-urea with 50 g·L ⁻¹ glucose and including 420 mg·L ⁻¹ Tween 80. Subsequently the shake-flask
631	media were inoculated with IMX2323 from glycerol cryo-stock at OD_{660} < 0.01 and thereafter placed
632	inside the anaerobic chamber. Due to frequent opening of the pass-box and lack of catalyst inside the
633	pass-box oxygen entry was more permissive. After the optical density of the cultures no longer
634	increased, cultures were transferred to new media by 40-50x serial dilution. For IMS1111, IMS1112,
635	IMS1113 three and for IMS1131, IMS1132, IMS1133 four serial transfers in shake-flask media were
636	performed after which single colony isolates were made by plating on YPD agar media with hygromycin
637	antibiotic at 30 °C aerobically. Single colony isolates were subsequently restreaked sequentially for
638	three times on the same media before the isolates were propagated in SM glucose media and glycerol
639	cryo stocked.
640	To determine if an oxygen-limited pre-culture was required for the strict anaerobic growth of IMX2323
641	strain a cross-validation experiment was performed. In parallel, yeast strains were cultivated in 50-mL
642	shake-flask cultures with SMG-urea with 50 g·L ⁻¹ glucose at pH 6.0 with Tween 80 in both the Bactron
643	anaerobic workstation (BACTRON BAC-X-2E, Sheldon Manufacturing) with low levels of oxygen-
644	contamination, and in the Bactron anaerobic workstation (BACTRON300-2, Sheldon Manufacturing) with
645	strict control of oxygen-contamination. After stagnation of growth was observed in the second serial
646	transfer of the shake-flask cultures a 1.5 mL sample of each culture was taken, sealed, and used to
647	inoculate fresh-media in the other Bactron anaerobic workstation. Simultaneously, the original culture
648	was used to inoculate fresh media in the same Bactron anaerobic workstation, thereby resulting in 4
649	parallel cultures of each strain of which halve were derived from the other Bactron anaerobic
650	workstation.

651 Laboratory evolution in sequential batch reactors

652 Laboratory evolution for selection of fast growth at high temperatures was performed in 400-mL 653 MultiFors (Infors Benelux, Velp, the Netherlands) bioreactors with a working volume of 100 mL for the 654 strain IMS1111 on SMG 20 g·L⁻¹ glucose media with Tween 80 in triplicate. Anaerobic conditions were created and maintained by continuous aeration of the cultures with 50 mL·min⁻¹ (0.5 vvm) N₂ gas and 655 656 continuous aeration of the media vessels with N₂ gas. The pH was set at 5.0 and maintained by the 657 continuous addition of sterile 2 M KOH. Growth was monitored by analysis of the CO₂ in the bioreactor 658 off-gas and a new empty-refill cycle was initiated when the batch time had at least elapsed 15 hours and 659 the CO₂ signal dropped to 70% of the maximum reached in each batch. The dilution factor of each empty-refill cycle was 14.3-fold (100 mL working volume, 7 mL residual volume). The first batch 660 661 fermentation was performed at 30 °C after which in the second batch the temperature was increased to 662 42 °C and maintained at for 18 consecutive sequential batches. After the 18 batch cycle at 42 °C the 663 culture temperature was again increased to 45 °C and maintained subsequently. Growth rate was 664 calculated based on the CO₂ production as measured by the CO₂ fraction in the culture off-gas in 665 essence as described previously⁸³. In short, the CO_2 fraction in the off-gas was converted to a CO_2 666 evolution rate of mmol per hour and subsequently summed over time for each cycle. The corresponding cumulative CO₂ profile was transformed to natural log after which the stepwise slope of the log 667 transformed data was calculated. Subsequently an iterative exclusion of datapoints of the stepwise 668 669 slope of the log transformed cumulative CO₂ profile was performed with exclusion criteria of more than 670 one standard deviation below the mean.

671 Variant calling

DNA sequencing reads were aligned into the NBRC1777 described above including an additional
 sequence with *TtSTC1* construct, and used to detect sequence variants using a method previously
 reported⁸⁴. Briefly, reads were aligned using BWA (v0.7.15-r1142-dirty)⁸⁵, alignments were processed

using samtools (v1.3.1)⁷⁷ and Picard tools (v2.20.2-SNAPSHOT) (http://broadinstitute.github.io/picard), and variants were then called using the Genome Analysis Toolkit (v3.8-1-0-gf15c1c3ef)⁸⁶ HaplotypeCaller in DISCOVERY and GVCF modes. Variants were only called at sites with minimum variant confidence normalized by unfiltered depth of variant samples (QD) of 20, read depth (DP) \ge 5, and genotype quality (GQ) > 20, excluding a 7.1 kb region in chromosome 5 containing rDNA. Variants were annotated using the genome annotation described above, including the *TtSTC1* construct, with SnpEff (v5.0)⁸⁷ and VCFannotator (http://vcfannotator.sourceforge.net).

682 Statistics

683 Statistical test performed are given as two sided with unequal variance t-test unless specifically stated 684 otherwise. We denote technical replicates as measurements derived from a single cell culture. Biological 685 replicates are measurements originating from independent cell cultures. Independent experiments are 686 two experiments identical in set-up separated by the difference in execution days. If possible variance 687 from independent experiments with identical setup were pooled together, but independent 688 experiments from time-course experiments (anaerobic growth studies) are reported separately. pvalues were corrected for multiple-hypothesis testing which is specifically reported each time. No data 689 690 was excluded based on the resulting data out-come.

691 Data availability

- Data supporting the findings of this work are available within the paper and source data for all figures in
- this study are available at the <u>www.data.4TU.nl</u> repository with the doi:10.4121/13265552.
- 694 The raw RNA-sequencing data that supports the findings of this study are available from the Genome
- 695 Expression Omnibus (GEO) website (<u>https://www.ncbi.nlm.nih.gov/geo/</u>) with number GSE164344.

- 696 Whole-genome sequencing data of the CBS6556, NBRC1777 and evolved strains were deposited at NCBI
- 697 (https://www.ncbi.nlm.nih.gov/) under BioProject accession number PRJNA679749.

698 Code availability

- 699 The code that were used to generate the results obtained in this study are archived in a Gitlab
- 700 repository (<u>https://gitlab.tudelft.nl/rortizmerino/kmar_anaerobic</u>).

701 Author's contributions

- 702 WD and JTP designed the study and wrote the manuscript. WD performed molecular cloning, bioreactor
- 703 cultivation experiment, transcriptome analysis and sterol-uptake experiments. JB contributed to
- bioreactor cultivation experiments and molecular cloning. FW contributed to the molecular cloning and
- sterol-uptake experiments. AK and CM contributed to bioreactor experiments and transcriptome
- studies. PdIT performed plasmid and genome sequencing. RO contributed to transcriptome analysis and
- 707 performed sequence annotation and assembly.

708 Acknowledgements

- 709 We thank Mark Bisschops and Hannes Jürgens for fruitful discussions. We thank Erik de Hulster for
- 710 fermentation support and Marcel van den Broek for input on the bioinformatics analyses.

711 Competing interest

- 712 WD and JTP are co-inventors on a patent application that covers aspects of this work. The authors
- 713 declare no conflict of interest.

714 Funding

715 This work was supported by Advanced Grant (grant #694633) of the European Research Council to JTP.

716 References

717 718	1.	Annual World Fuel Ethanol Production. <i>Renewable Fuels Association</i> (2020). Available at: https://ethanolrfa.org/statistics/annual-ethanol-production/. (Accessed: 2nd May 2020)
719 720 721	2.	Jansen, M. L. A. <i>et al.</i> Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. <i>FEMS Yeast Res.</i> 17 , 1–20 (2017).
722 723	3.	Weusthuis, R. A., Lamot, I., van der Oost, J. & Sanders, J. P. M. Microbial production of bulk chemicals: development of anaerobic processes. <i>Trends Biotechnol.</i> 29 , 153–158 (2011).
724 725 726	4.	Favaro, L., Jansen, T. & van Zyl, W. H. Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol. <i>Crit. Rev. Biotechnol.</i> 39 , 800–816 (2019).
727 728	5.	Stovicek, V., Holkenbrink, C. & Borodina, I. CRISPR/Cas system for yeast genome engineering: advances and applications. <i>FEMS Yeast Res.</i> 17 , 1–16 (2017).
729 730	6.	Hong, J., Wang, Y., Kumagai, H. & Tamaki, H. Construction of thermotolerant yeast expressing thermostable cellulase genes. <i>J. Biotechnol.</i> 130 , 114–123 (2007).
731 732	7.	Laman Trip, D. S. & Youk, H. Yeasts collectively extend the limits of habitable temperatures by secreting glutathione. <i>Nat. Microbiol.</i> 5 , 943–954 (2020).
733 734	8.	Choudhary, J., Singh, S. & Nain, L. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. <i>Electron. J. Biotechnol.</i> 21 , 82–92 (2016).
735 736	9.	Thorwall, S., Schwartz, C., Chartron, J. W. & Wheeldon, I. Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. <i>Nat. Chem. Biol.</i> 16 , 113–121 (2020).
737 738 739	10.	Mejía-Barajas, J. A. <i>et al.</i> Second-Generation Bioethanol Production through a Simultaneous Saccharification-Fermentation Process Using Kluyveromyces Marxianus Thermotolerant Yeast. in <i>Special Topics in Renewable Energy Systems</i> (InTech, 2018). doi:10.5772/intechopen.78052
740 741 742	11.	Snoek, I. S. I. & Steensma, H. Y. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome. <i>FEMS Yeast Res.</i> 6 , 393–403 (2006).
743 744	12.	Visser, W., Scheffers, W. A., Batenburg-Van der Vegte, W. H. & Van Dijken, J. P. Oxygen requirements of yeasts. <i>Appl. Environ. Microbiol.</i> 56 , 3785–3792 (1990).
745 746	13.	Merico, A., Sulo, P., Piškur, J. & Compagno, C. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. <i>FEBS J.</i> 274 , 976–989 (2007).
747 748	14.	Andreasen, A. A. & Stier, T. J. B. Anaerobic nutrition of Saccharomyces cerevisiae I. Ergosterol requirement for growth in a defined medium. <i>J. Cell. Physiol.</i> 41 , 23–26 (1953).
749 750	15.	Andreasen, A. A. & Stier, T. J. B. Anaerobic nutrition of Saccharomyces cerevisiae II. Unsaturated fatty acid requirement for growth in a defined medium. <i>J. Cell. Physiol.</i> 43 , 271–281 (1953).
751 752	16.	Passi, S. <i>et al.</i> Saturated dicarboxylic acids as products of unsaturated fatty acid oxidation. <i>Biochim. Biophys. Acta - Lipids Lipid Metab.</i> 1168 , 190–198 (1993).
753 754	17.	Verduyn, C., Postma, E., Scheffers, W. A. & van Dijken, J. P. Physiology of Saccharomyces Cerevisiae in Anaerobic Glucose-Limited Chemostat Cultures. <i>J. Gen. Microbiol.</i> 136 , 395–403

755	(1990).

- Perli, T., Wronska, A. K., Ortiz-Merino, R. A., Pronk, J. T. & Daran, J. M. Vitamin requirements and
 biosynthesis in Saccharomyces cerevisiae. *Yeast* 1–22 (2020). doi:10.1002/yea.3461
- Dekker, W. J. C., Wiersma, S. J., Bouwknegt, J., Mooiman, C. & Pronk, J. T. Anaerobic growth of
 Saccharomyces cerevisiae CEN.PK113-7D does not depend on synthesis or supplementation of
 unsaturated fatty acids. *FEMS Yeast Res.* 19, (2019).
- Wilcox, L. J. *et al.* Transcriptional profiling identifies two members of the ATP-binding cassette
 transporter superfamily required for sterol uptake in yeast. *J. Biol. Chem.* 277, 32466–32472
 (2002).
- Black, P. N. & DiRusso, C. C. Yeast acyl-CoA synthetases at the crossroads of fatty acid
 metabolism and regulation. *Biochim. Biophys. Acta Mol. Cell Biol. Lipids* 1771, 286–298 (2007).
- Jacquier, N. & Schneiter, R. Ypk1, the yeast orthologue of the human serum- and glucocorticoidinduced kinase, is required for efficient uptake of fatty acids. *J. Cell Sci.* 123, 2218–2227 (2010).
- Blomqvist, J., Nogue, V. S., Gorwa-Grauslund, M. & Passoth, V. Physiological requirements for
 growth and competitveness of Dekkera bruxellensis under oxygen limited or anaerobic
 conditions. *Yeast* 29, 265–274 (2012).
- Zavrel, M., Hoot, S. J. & White, T. C. Comparison of sterol import under aerobic and anaerobic
 conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces
 cerevisiae. *Eukaryot. Cell* **12**, 725–738 (2013).
- Visser, W., Scheffers, W. A., Batenburg-Van der Vegte, W. H. & Van Dijken, J. P. Oxygen
 requirements of yeasts. *Appl. Environ. Microbiol.* 56, 3785–3792 (1990).
- Dashko, S., Zhou, N., Compagno, C. & Piškur, J. Why, when, and how did yeast evolve alcoholic
 fermentation? *FEMS Yeast Res.* 14, 826–832 (2014).
- Snoek, I. S. I. & Steensma, H. Y. Factors involved in anaerobic growth of Saccharomyces
 cerevisiae. *Yeast* 24, 1–10 (2007).
- Vale da Costa, B. L., Basso, T. O., Raghavendran, V. & Gombert, A. K. Anaerobiosis revisited:
 growth of Saccharomyces cerevisiae under extremely low oxygen availability. *Appl. Microbiol. Biotechnol.* 1–16 (2018). doi:10.1007/s00253-017-8732-4
- Wilkins, M. R., Mueller, M., Eichling, S. & Banat, I. M. Fermentation of xylose by the
 thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic
 conditions. *Process Biochem.* 43, 346–350 (2008).
- Hughes, S. R. *et al.* Automated UV-C Mutagenesis of *Kluyveromyces marxianus* NRRL Y-1109 and
 Selection for Microaerophilic Growth and Ethanol Production at Elevated Temperature on
 Biomass Sugars. *J. Lab. Autom.* 18, 276–290 (2013).
- Tetsuya, G. *et al.* Bioethanol Production from Lignocellulosic Biomass by a Novel Kluyveromyces
 marxianus Strain. *Biosci. Biotechnol. Biochem.* **77**, 1505–1510 (2013).
- van Urk, H., Postma, E., Scheffers, W. A. & van Dijken, J. P. Glucose Transport in Crabtree-positive
 and Crabtree-negative Yeasts. *J. Gen. Microbiol.* 135, 2399–2406 (1989).
- von Meyenburg, K. Katabolit-Repression und der Sprossungszyklus von Saccharomyces
 cerevisiae. (ETH Zürich, 1969). doi:10.3929/ethz-a-000099923

795 796 797	34.	Rouwenhorst, R. J., Visser, L. E., Van Der Baan, A. A., Scheffers, W. A. & Van Dijken, J. P. Production, Distribution, and Kinetic Properties of Inulinase in Continuous Cultures of Kluyveromyces marxianus CBS 6556. <i>Appl. Environ. Microbiol.</i> 54 , 1131–1137 (1988).
798 799	35.	Bakker, B. M. <i>et al.</i> Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. <i>FEMS Microbiol. Rev.</i> 25 , 15–37 (2001).
800 801	36.	Jeong, H. <i>et al.</i> Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. <i>Eukaryot. Cell</i> 11 , 1584–1585 (2012).
802 803	37.	Jordá, T. & Puig, S. Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. <i>Genes (Basel).</i> 11 , 795 (2020).
804 805	38.	Lechner, M. <i>et al.</i> Proteinortho: Detection of (Co-)orthologs in large-scale analysis. <i>BMC Bioinformatics</i> 12 , 124 (2011).
806 807	39.	Nagy, M., Lacroute, F. & Thomas, D. Divergent evolution of pyrimidine biosynthesis between anaerobic and aerobic yeasts. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 89 , 8966–8970 (1992).
808 809 810	40.	Väremo, L., Nielsen, J. & Nookaew, I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. <i>Nucleic Acids Res.</i> 41 , 4378–4391 (2013).
811 812 813	41.	Tai, S. L. <i>et al</i> . Two-dimensional transcriptome analysis in chemostat cultures: Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. <i>J. Biol. Chem.</i> 280 , 437–447 (2005).
814 815 816	42.	Alimardani, P. <i>et al.</i> SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process. <i>Biochem. J.</i> 381 , 195–202 (2004).
817 818 819	43.	Marek, M., Silvestro, D., Fredslund, M. D., Andersen, T. G. & Pomorski, T. G. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast. <i>FEMS Yeast Res.</i> 14 , 1223–1233 (2014).
820 821 822	44.	Marek, M. <i>et al.</i> The yeast plasma membrane ATP binding cassette (ABC) transporter Aus1: Purification, characterization, and the effect of lipids on its activity. <i>J. Biol. Chem.</i> 286 , 21835– 21843 (2011).
823 824 825	45.	Takishita, K. <i>et al.</i> Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen. <i>Biol. Direct</i> 7 , 5 (2012).
826 827 828	46.	Wiersma, S. J., Mooiman, C., Giera, M. & Pronk, J. T. Squalene-Tetrahymanol Cyclase Expression Enables Sterol-Independent Growth of Saccharomyces cerevisiae. <i>Appl. Environ. Microbiol.</i> 86 , 1– 15 (2020).
829 830	47.	Rajkumar, A. S., Varela, J. A., Juergens, H., Daran, J. G. & Morrissey, J. P. Biological Parts for Kluyveromyces marxianus Synthetic Biology. <i>Front. Bioeng. Biotechnol.</i> 7 , 1–15 (2019).
831 832	48.	Landry, B. D., Doyle, J. P., Toczyski, D. P. & Benanti, J. A. F-Box Protein Specificity for G1 Cyclins Is Dictated by Subcellular Localization. <i>PLoS Genet.</i> 8 , e1002851 (2012).
833 834	49.	Fonseca, G. G., Heinzle, E., Wittmann, C. & Gombert, A. K. The yeast Kluyveromyces marxianus and its biotechnological potential. <i>Appl. Microbiol. Biotechnol.</i> 79 , 339–354 (2008).
835	50.	Madeira-Jr, J. V. & Gombert, A. K. Towards high-temperature fuel ethanol production using

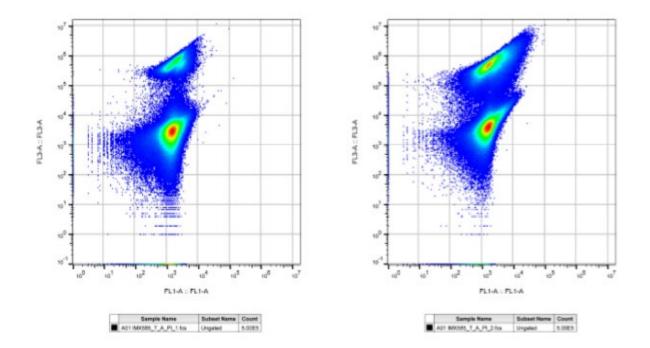
Kluyveromyces marxianus: On the search for plug-in strains for the Brazilian sugarcane-based 836 837 biorefinery. Biomass and Bioenergy 119, 217–228 (2018). 51. 838 Tai, S. L. et al. Two-dimensional transcriptome analysis in chemostat cultures: Combinatorial 839 effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J. Biol. 840 Chem. 280, 437-447 (2005). 841 52. Seret, M. L., Diffels, J. F., Goffeau, A. & Baret, P. V. Combined phylogeny and neighborhood 842 analysis of the evolution of the ABC transporters conferring multiple drug resistance in 843 hemiascomycete yeasts. BMC Genomics 10, 459 (2009). 844 53. Shi, N. Q. & Jeffries, T. W. Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 50, 339–345 (1998). 845 846 Gojković, Z. et al. Horizontal gene transfer promoted evolution of the ability to propagate under 54. 847 anaerobic conditions in yeasts. Mol. Genet. Genomics 271, 387–393 (2004). 848 Riley, R. et al. Comparative genomics of biotechnologically important yeasts. Proc. Natl. Acad. Sci. 55. 849 U. S. A. 113, 9882-9887 (2016). 850 56. Guo, L., Pang, Z., Gao, C., Chen, X. & Liu, L. Engineering microbial cell morphology and membrane 851 homeostasis toward industrial applications. Curr. Opin. Biotechnol. 66, 18–26 (2020). 852 Entian, K.-D. & Kötter, P. 25 Yeast Genetic Strain and Plasmid Collections. in Methods in 57. 853 Microbiology 629-666 (2007). doi:10.1016/S0580-9517(06)36025-4 854 58. Nijkamp, J. F. et al. De novo sequencing, assembly and analysis of the genome of the laboratory 855 strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. 856 Microb. Cell Fact. 11, 36 (2012). 857 59. Bracher, J. M. et al. Laboratory evolution of a biotin-requiring Saccharomyces cerevisiae strain for 858 full biotin prototrophy and identification of causal mutations. Appl. Environ. Microbiol. 83, 1–16 859 (2017). 860 60. Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A Highly Characterized Yeast Toolkit for 861 Modular, Multipart Assembly. ACS Synth. Biol. 4, 975–986 (2015). 862 61. Mans, R. et al. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of 863 multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 15, 1–15 (2015). 864 62. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011). 865 63. Hassing, E. J., de Groot, P. A., Marquenie, V. R., Pronk, J. T. & Daran, J. M. G. Connecting central 866 carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in 867 Saccharomyces cerevisiae. Metab. Eng. 56, 165–180 (2019). 868 64. Gietz, R. D. & Woods, R. A. Genetic Transformation of Yeast. *Biotechniques* 30, 816–831 (2001). 869 65. Solis-Escalante, D. et al. amdSYM, A new dominant recyclable marker cassette for Saccharomyces 870 cerevisiae. FEMS Yeast Res. 13, 126-139 (2013). Postma, E., Verduyn, C., Scheffers, W. A. & Van Dijken, J. P. Enzymic analysis of the crabtree 871 66. 872 effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl. Environ. 873 Microbiol. 55, 468-477 (1989). 874 67. Mashego, M. R., van Gulik, W. M., Vinke, J. L. & Heijnen, J. J. Critical evaluation of sampling 875 techniques for residual glucose determination in carbon-limited chemostat culture

876 of Saccharomyces cerevisiae. *Biotechnol. Bioeng.* **83**, 395–399 (2003).

- 877 68. Boender, L. G. M., De Hulster, E. A. F., Van Maris, A. J. A., Daran-Lapujade, P. A. S. & Pronk, J. T.
 878 Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates. *Appl.*879 *Environ. Microbiol.* **75**, 5607–5614 (2009).
- Koren, S. *et al.* Canu: Scalable and accurate long-read assembly via adaptive κ-mer weighting and
 repeat separation. *Genome Res.* 27, 722–736 (2017).
- Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using
 repeat graphs. *Nat. Biotechnol.* 37, 540–546 (2019).
- Walker, B. J. *et al.* Pilon : An Integrated Tool for Comprehensive Microbial Variant Detection and
 Genome Assembly Improvement. *PLoS One* 9, (2014).
- 886 72. Palmer, J. & Stajich, J. funannotate. (2019). doi:10.5281/zenodo.3548120
- Jones, P. *et al.* InterProScan 5: Genome-scale protein function classification. *Bioinformatics* 30, 1236–1240 (2014).
- 889 74. Bankevich, A. *et al.* SPAdes: A new genome assembly algorithm and its applications to single-cell
 890 sequencing. *J. Comput. Biol.* 19, 455–477 (2012).
- 891 75. Grabherr, M. G. *et al.* Full-length transcriptome assembly from RNA-Seq data without a reference
 892 genome. *Nat. Biotechnol.* 29, 644–652 (2011).
- Kangmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of
 short DNA sequences to the human genome. *Genome Biol.* 10, R25 (2009).
- ki, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079 (2009).
- K. & Shi, W. FeatureCounts: An efficient general purpose program for assigning
 sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).
- McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq
 experiments with respect to biological variation. *Nucleic Acids Res.* 40, 4288–4297 (2012).
- 80. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis
 902 of RNA-seq data. *Genome Biol.* 11, (2010).
- 90381.Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in904multidimensional genomic data. *Bioinformatics* **32**, 2847–2849 (2016).
- 905 82. R Core Team. R: A Language and Environment for Statistical Computing. (2017).
- 906 83. Juergens, H. *et al.* Evaluation of a novel cloud-based software platform for structured experiment
 907 design and linked data analytics. *Sci. Data* 5, 1–12 (2018).
- 908 84. Ortiz-Merino, R. A. *et al.* Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-909 dairy Isolates. *Front. Genet.* **9**, 1–16 (2018).
- 85. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
 Bioinformatics 25, 1754–1760 (2009).
- 86. Auwera, G. A. *et al.* From FastQ Data to High-Confidence Variant Calls: The Genome Analysis
 Toolkit Best Practices Pipeline. *Curr. Protoc. Bioinforma.* 43, 11.10.1-11.10.33 (2013).
- 914 87. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide

915 polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-

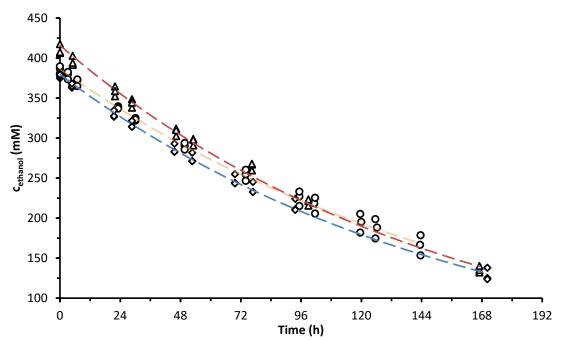
916 3. Fly (Austin). **6**, 80–92 (2012).

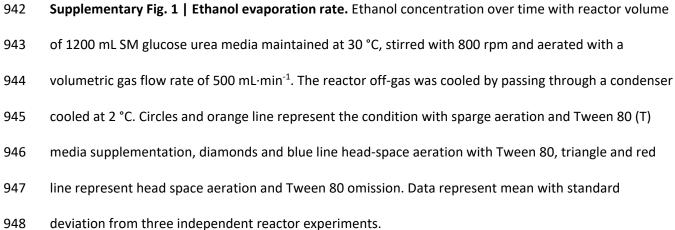

918 Description of Additional Supplementary Files

- 919 Supplementary Data Set 1 | Overview of flow cytometry samples with meta-data. Meta-data Table of
- 920 file names, frequency of cells compared to parent, number of cells in each group, strain name, time
- 921 point of fluorescence measurement after 4 hours (1) or 23 hours (2), staining of cells with propidium-
- 922 iodide (PI) with value (PI) or without PI staining (-), staining of cells with Tween 80 NBD-cholesterol (TN)
- 923 or with Tween 80 only (T), with species names abbreviated *K. marxianus* (Km) or *S. cerevisiae* (Sc).
- 924 [Example picture of file FlowCyto_Table.xlsx]

	Filename	 Strain 	Time pc 💌	ΡI	▼ #	Day 🚽	Staining 🝸	Cells/P	Cells/P	Cells/P
	A09 CBS6556_T_A_PI_1.fcs	CBS6556	1	ΡI	A	1	Т	576	411000	75590
	B09 CBS6556_T_B_PI_1.fcs	CBS6556	1	ΡI	В	1	Т	625	398024	88212
925	A01 IMX585_T_A1.fcs	IMX585	1	-	A	2	Т	1391	3	472000

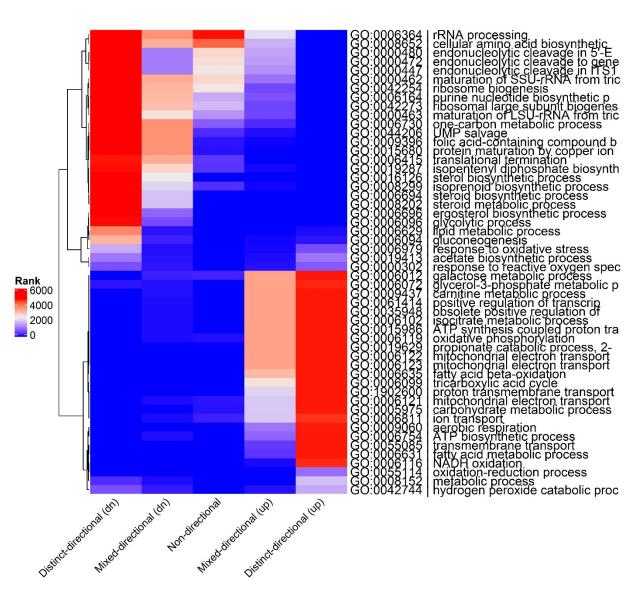
926 Supplementary Data set 2 | Flow cytometry non-gated data of FL3-A versus FL1-A of all samples.

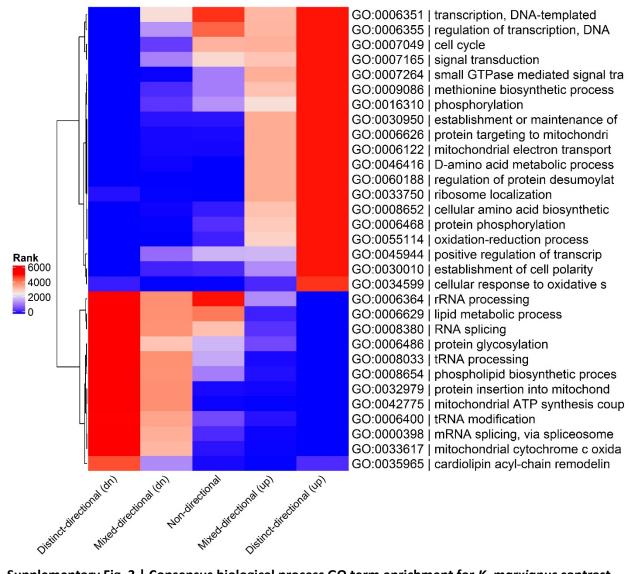

- 927 Flow cytometry data of showing fluorescent NBDC uptake by K. marxianus, S. cerevisiae strains with for
- each sample the intensity of counts (pseudo-colored) for 533/30 nm (FL1) for NBDC and > 670 nm (FL3)
- 929 for PI.
- 930 [Example of first row of FlowCyto_FL1_FL3.pdf]



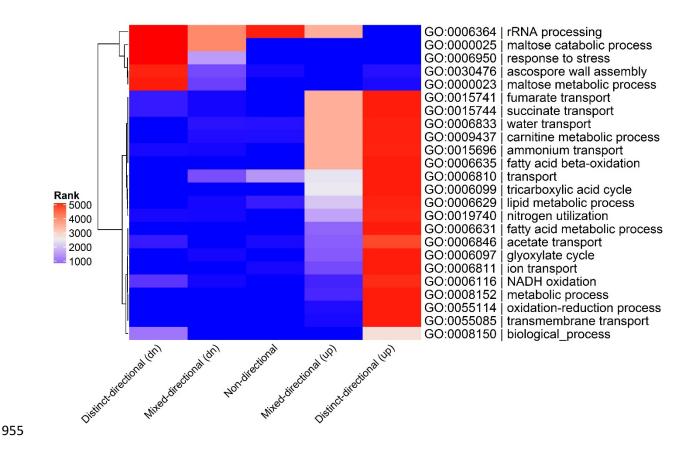
931

934 Supplemental material for:

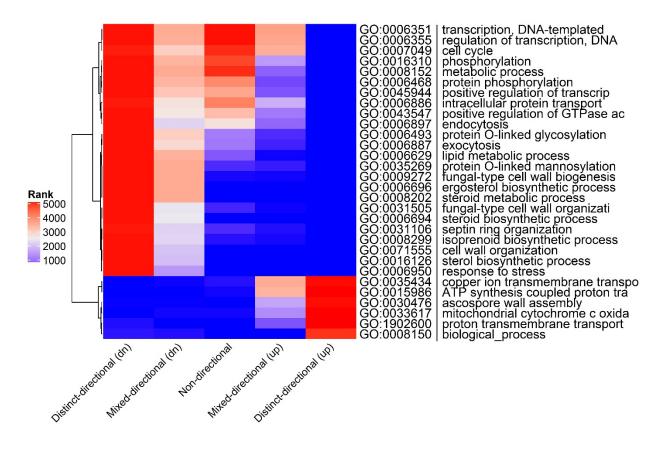

- 935 Engineering the thermotolerant industrial yeast *Kluyveromyces marxianus* for anaerobic growth
- 936 Wijbrand J. C. Dekker, Raúl A. Ortiz-Merino, Astrid Kaljouw, Julius Battjes, Frank Wiering, Christiaan
- 937 Mooiman, Pilar de la Torre, and Jack T. Pronk*
- 938 Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The
- 939 Netherlands
- 940 *Corresponding author: Department of Biotechnology, Delft University of Technology, Van der Maasweg
- 941 9, 2629 HZ Delft, The Netherlands, E-mail: <u>j.t.pronk@tudelft.nl</u>, Tel: +31 15 2783214.


AGF	Aeration	Ethanol evaporation
	type	(mmol·h⁻¹)
Т	Sparge	0.00578 ± 0.00062
Т	Head-space	0.00625 ± 0.00032
	Head-space	0.00653 ± 0.00020

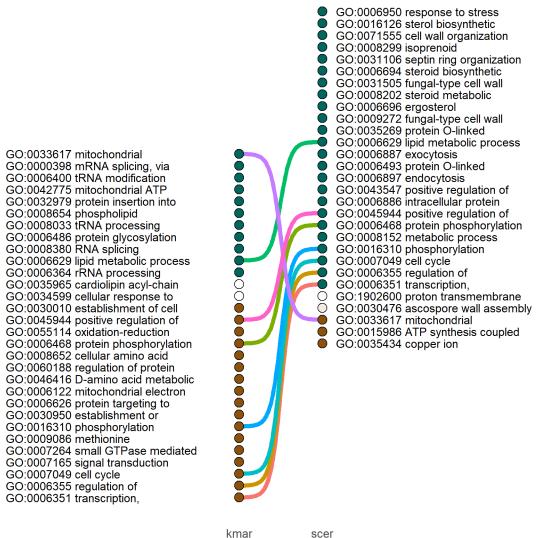
949


951 Supplementary Fig. 2 | Consensus biological process GO term enrichment for K. marxianus contrast

952 **31.** GO terms are clustered according to their rank. See legend of Fig. 2 for experimental details.

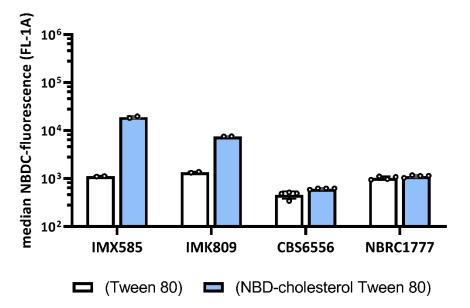

953 Supplementary Fig. 3 | Consensus biological process GO term enrichment for K. marxianus contrast

^{43.} GO terms are clustered according to their rank. See legend of Fig. 2 for experimental details.

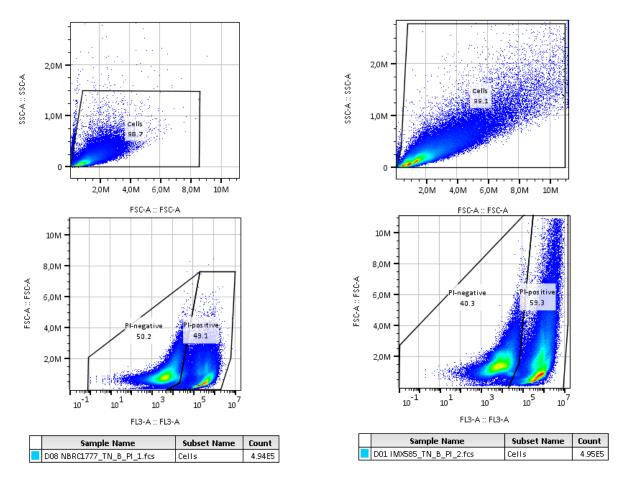

956 Supplementary Fig. 4 | Consensus biological process GO term enrichment for *S. cerevisiae* contrast 31.

957 GO terms are clustered according to their rank. See legend of Fig. 2 for experimental details.

959 Supplementary Fig. 5 | Consensus biological process GO term enrichment for *S. cerevisiae* contrast 43.


960 GO terms are clustered according to their rank. See legend of Fig. 2 for experimental details.

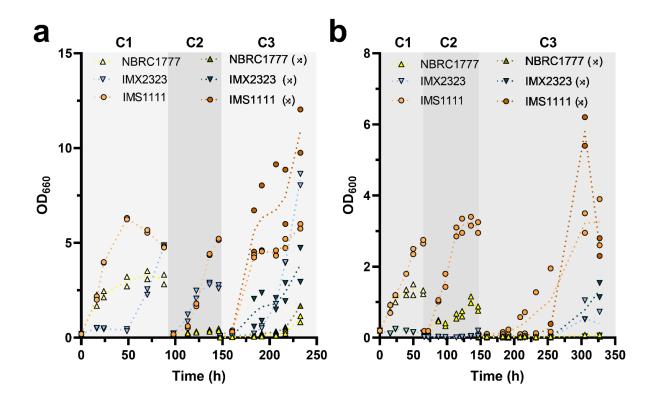
scer


961 Supplementary Fig. 6 | GO term enrichment comparison of biological process of K. marxianus (kmar)

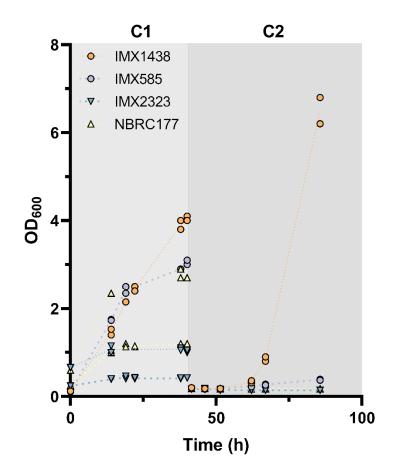
- 962 to S. cerevisiae (scer) of contrast 43. GO terms were annotated with the color of distinct directionality
- 963 (up (blue) down (brown)) and the color intensity was determined by the magnitude of the inverse rank.
- 964 GO terms with significant mixed-directionality or non-directionality, as having no pronounced distinct
- directionality, are colored white. Shared GO terms between K. marxianus and S. cerevisiae are 965
- connected by a line. 966

967 Supplementary Fig. 7 | Uptake of the fluorescent sterol derivative NBDC by S. cerevisiae and K.

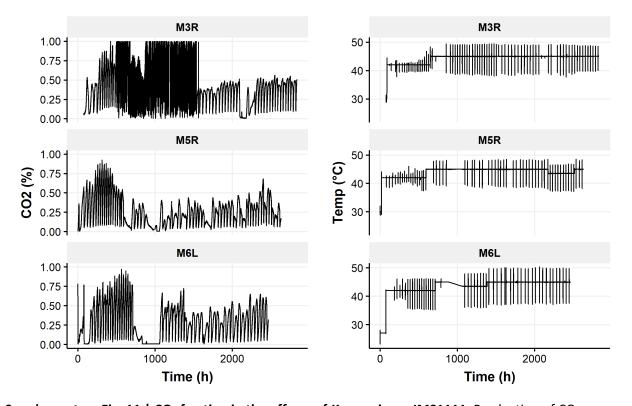
- 968 *marxianus* strains after 23 h staining.
- 969 Flow cytometry data of Fig. 4 with prolonged staining after pulse-addition of NBD-cholesterol to the
- 970 shake-flask cultures for 23 h. Bar charts of the median and pooled standard deviation of the NBD-
- 971 cholesterol fluorescence intensity of PI-negative cells with pooled variance from the biological replicate
- 972 cultures. See legend Fig. 4 for experimental details.

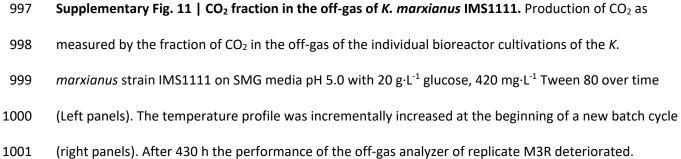

973 Supplementary Fig. 8 | Flow cytometry gating strategy of both K. marxianus (left panel) and S.

974 *cerevisiae* (right panel) samples. Gates were set per one species for all samples independent of NBDC


975 staining. Density of events were calculated by FlowJo software and represented in pseudo-color (blue

976 low density, red high-density). The gate between PI-negative and PI-positive was inside the "Cells"


977 gated-population.



978 Supplementary Fig. 9 | Cross-validation of oxygen-limited and anaerobic growth of K. marxianus 979 **IMX2323.** Strains were grown in shake-flask cultures in an oxygen-limited (a) and strict anaerobic 980 environment (b). To perform cross-validation between the two parallel running experiments, 1.5 mL 981 aliquot of each culture was sealed and transferred quickly between anaerobic chambers and used to 982 inoculate two shake-flask cultures, represented with crossed-arrows (\Im). The cultures from the strain NBRC1777 (3) in the third transfer (C3) in the strict anaerobic environment (b) were hence inoculated 983 984 from an aliquot of the cultures of NBRC1777 (C2) grown in oxygen-limited environment (a). This resulted 985 in a serial transfer of 26.7 times dilution from transfer C2 to C3. Aerobic grown pre-cultures were used 986 to inoculate the first anaerobic culture on SMG-urea containing 50 g·L⁻¹ glucose and Tween 80. Data 987 depicted are of each replicate culture (points) and the mean (dotted line) from independent biological 988 duplicate cultures, serial transfers cultures are represented with the number of respective transfer (C1-989 3).

Supplementary Fig. 10 | Sterol-independent anaerobic growth of *S. cerevisiae* IMX585 (reference),
IMX1438 (*TtSTC1*), *K. marxianus* NBRC1777 (reference) and IMX2323 (*TtSTC1*). Aerobic grown precultures were used to inoculate shake-flask cultures with SMG-urea containing 50 g·L⁻¹ glucose and
Tween 80 in a strict anaerobic environment at an OD₆₀₀ of 0.1 for all strains, and both at OD₆₀₀ of 0.1 and
0.6 for NBRC1777 and IMX2323. Data depicted are of each replicate culture (points) and the mean
(dotted line) from independent biological duplicate cultures, serial transfers cultures are represented
with the number of respective transfer (C1-2).

1002	Supplementary Table 1 Mutations identified by whole-genome sequencing in comparison to the
1003	reference K. marxianus strain IMX2323. Overview of mutations detected in the strains after selected for
1004	strict anaerobic growth IMS1111, IMS1131, IMS1132, IMS1133 compared to the TtSTC1 engineered
1005	strain (IMX2323). Resequencing of IMS1111 after 4 transfers in strict anaerobic conditions is for clarity
1006	referred with the strain name IMS1115. Overview of mutations of the bioreactor populations after
1007	prolonged selection for anaerobic growth at elevated temperatures, represented by the bioreactor
1008	replicates (M3R, M5R, and M6L). Mutations in coding regions are annotated as synonymous (SYN), non-
1009	synonymous (NSY), insertion or deletions. Mutations in non-coding regions are reported with the
1010	identifier of the neighboring gene, directionality and strand (+/-). For K. marxianus genes, corresponding
1011	S. cerevisiae orthologs with the S288C identifier are listed if applicable. QD refers to quality by depth
1012	calculated by GATK and genotyping overviews are given per strain using the GATK fields GT: 1/1 for
1013	homozygous alternative, 1/0 for heterozygous, AD: allelic depth (number of reads per reference and
1014	alternative alleles called), DP: approximate read depth at the corresponding genomic position, and GQ:
1015	genotype quality. NA indicates variants were not called in that position in the corresponding strain.

Chro mos ome	Po siti on	Descri ption	Туре	Kmar ID	S28 8cSy stID	G e n e	Q D	IM X2 32 3	IMS11 11	IMS 113 1	IMS1 132	IMS 113 3	IMS11 15	M3R	M5R	M6L
Mutati	Mutation spectra of IMX2323 derived single isolates after selection for strict anaerobic growth															
3	89 78 44 59	Asp- 747- Asp codon:	CDS:(S YN) CDS:IN	TPUv 2_00 2092 TPUv	YDR 283 C Tran	G cn 2	3 2 2	NA	1/1:0, 120:1 20:99 1/1:0,	NA	NA 1/1:0	NA 1/1:	1/1:0, 105:1 05:99 1/1:0,	1/1:0 ,99:9 9:99 1/1:0	1/1:0, 110:1 10:99 1/1:0,	1/1:0, 118:1 18:99 1/1:0,
8	15 6	TCA	SERTI ON[1]	2_00 4766	spos on		7	NA	7:7:21	NA	,15:1 5:45	0,9: 9:27	9:9:27	,12:1 2:36	7:7:21	7:7:21
8	55 04 50	Trp- 350- STP	CDS:(N ON)	TPUv 2_00 4999	YAL 040 C	Cl n 3	2 3	NA	1/1:0, 119:1 19:99	NA	NA	NA	1/1:0, 143:1 43:99	1/1:0 ,89:8 9:99	1/1:0, 117:1 17:99	1/1:1, 98:99: 99
4	45 97 50	TPUv2 _0026 39-T1	p3UTR :+	TPUv 2_00 2639	YGR 156 W	Pt i1	3 5	NA	NA	1/1: 0,9: 9:29	1/1:0 ,9:11 :54	1/1: 0,9: 9:38	1/1:0, 4:6:24	1/1:0 ,10:1 0:35	1/1:0, 7:7:26	NA
5	17 74 29	TPUv2 _0031 61-T1	p5UTR :-	TPUv 2_00 3161	YBR 283 C	Ss h 1	2 7	NA	NA	1/1: 0,9: 9:27	NA	NA	0/1:1, 7:8:21	NA	NA	NA
5	90 94 77	UTP22	p5UTR :+	TPUv 2_00 3518	YGR 090 W	U tp 2 2	3 5	NA	1/1:1, 11:12: 34	NA	NA	1/1: 1,8: 9:24	1/1:0, 11:11: 36	NA	NA	NA

Mutations in whole populations after selection for anaerobic growth at elevated temperatures

| 3 | 13
52
43
0 | codon:
AAT | CDS:D
ELETIO
N[-3] | TPUv
2_00
2327 | YLR L
352 g
W 1 | 2 | NA | 0/1:39
,65:10
7:99 |
|---|---------------------|---------------|--------------------------|----------------------|-----------------------|--------|----|----|----|----|----|----|----|----|--------------------------|
| 8 | 63
57
79 | codon:
CAG | CDS:IN
SERTI
ON[9] | TPUv
2_00
5049 | No
similarity | 2
6 | NA | 0/1:25
,49:74
:99 |