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Abstract  25	
Coronary artery endothelial cells (CAEC) exert an important role in the development of 26	

cardiovascular disease. Dysfunction of CAEC is associated with cardiovascular disease in 27	
subjects with type 2 diabetes mellitus (T2DM). However, comprehensive studies of the effects 28	

that a diabetic environment exerts on this cellular type scarce. The present study characterized 29	

the molecular perturbations occurring on cultured bovine CAEC subjected to a prolonged diabetic 30	
environment (high glucose [HG] and high insulin [HI]). Changes at the metabolite and peptide 31	

level were assessed by untargeted metabolomics and chemoinformatics, and the results were 32	

integrated with proteomics data using published SWATH-based proteomics on the same in vitro 33	

model. Our findings were consistent with reports on other endothelial cell types, but also identified 34	

novel signatures of DNA/RNA, aminoacid, peptide, and lipid metabolism in cells under a diabetic 35	
environment. Manual data inspection revealed disturbances on tryptophan catabolism and 36	

biosynthesis of phenylalanine-based, glutathione-based, and proline-based peptide metabolites. 37	
Fluorescence microscopy detected an increase in binucleation in cells under treatment that also 38	
occurred when human CAEC were used. This multi-omics study identified particular molecular 39	

perturbations in an induced diabetic environment that could help unravel the mechanisms 40	
underlying the development of cardiovascular disease in subjects with T2DM.    41	
 42	
 43	

Keywords: SWATH-Proteomics; Metabolomics; Type 2 Diabetes Mellitus; Endothelial cells; 44	
Feature-Based Molecular Networking 45	
 46	
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1. Introduction 49	
Damage to coronary artery endothelial cells (CAEC) leads to coronary endothelial dysfunction, 50	

which is associated with the development of cardiac pathologies in subjects with and without 51	
coronary atherosclerosis (1). Subjects with type 2 diabetes mellitus (T2DM) are particularly at 52	

increased risk of myocardial infarction (2) and coronary endothelial dysfunction has been 53	

implicated in the prognosis (3). A high-glucose (HG) environment —hallmark of T2DM— leads to 54	
nitric oxide signaling, cell cycle (4), apoptosis (5), angiogenesis (6), and DNA structure impairment 55	

(7). However, given the intrinsic heterogeneity of the endothelium, the molecular perturbations 56	

caused by HG vary accordingly with the type of studied endothelial cells (8, 9). For instance, 57	

human microvascular endothelial cells showed increased gene expression of endothelial nitric 58	

oxide synthase, superoxide dismutase 1, glutathione peroxidase 1, thioredoxin reductase 1 and 59	
2 compared to the regulation observed in human umbilical vein endothelial cells (HUVEC) when 60	

cultured in HG for 24 h. Furthermore, the response of endothelial cells to HG is influenced by the 61	
duration of exposure (10, 11) as demonstrated in bovine aortic and human microvascular 62	
endothelial cells where cell proliferation and apoptosis were higher at <48 h compared to 8 weeks 63	

of exposure (10). In another example of time-dependent response, increased apoptosis (derived 64	
from DNA fragmentation) and tumor necrosis factor alpha protein levels were reported in human 65	
coronary artery endothelial cells (HCAEC) after only 24 h of incubation with HG (5). Hence, the 66	
molecular response to HG cannot be generalized among endothelial cell types. Previously we 67	

reported impaired mitochondrial function/structure and nitric oxide signaling in HG treated HCAEC 68	
for 48 h (12). However, a 72 h study documented an increased in pro-inflammatory cytokines (13) 69	
and oxidative stress in HCAEC (14). The long-term (>72 h) effect of HG in CAEC has not been 70	

as extensively documented compared to other endothelial cell types. Characterizing the effect of 71	
HG on CAEC may allow us to identify key signaling pathways (or specific biomolecules) 72	

associated with the development of endothelial dysfunction and cardiac pathologies.  73	

Here, liquid chromatography coupled to mass spectrometry (LC-MS2)-based untargeted 74	
metabolomics and SWATH-based quantitative proteomics data, as well as bio- and chemo-75	

informatics were used to characterize the molecular perturbations occurring in Bovine Coronary 76	

Artery Endothelial Cells (BCAEC) under a prolonged diabetic environment.  77	
 78	

2. Methods 79	

2.1 Chemical and reagents 80	
Recombinant human insulin was purchased from Sigma Aldrich (St. Louis, MO, USA). Antibiotic-81	

antimitotic solution, trypsin-EDTA solution 0.25%, Hank’s Balanced Salt Solution (HBSS) without 82	
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phenol red, Dulbecco’s Modified Eagle’s Media (DMEM) with glutamine, Fetal Bovine Serum 83	
(FBS), Hoechst 33258, Pentahydrate (bis-Benzimide)-FluoroPure™, and methanol-free 84	

formaldehyde (16% solution) were obtained from Thermo Fisher Scientific (Waltham, MA, USA). 85	
Methanol, Acetonitrile, and water were Optima™ LC-MS Grade and obtained from Fisher 86	

Scientific (Hampton, NH, USA). Ethanol LiChrosolv® Grade was obtained from Merck KGaA 87	

(Darmstadt, Germany). Rabbit anti-Von Willebrand factor (vWf) antibody and goat anti-rabbit IgG 88	
conjugated to Alexa Fluor 488 were obtained from Abcam (Cambridge, MA, USA).   89	

 90	

2.2 Cell culture  91	

BCAEC were purchased from Cell applications, Inc. (San Diego, CA, USA) and grown as 92	

previously described (15). In brief, cells were grown with DMEM (5.5 mmol/L glucose, 93	
supplemented with 10% FBS and 1% antibiotic-antimitotic solution) at 37 oC in an incubator with 94	

a humidified atmosphere of 5 % CO2. Before experiments, cells were switched to DMEM with 1% 95	
FBS for 12 h to maintain the cells under a quiescent state. The model to simulate diabetes is 96	
described in (15) (Figure 1). Endothelial cells were cultured for 12 days to determine the chronic 97	

molecular perturbations caused by simulated diabetes and to avoid the early (within 48 h) cell 98	
proliferation effects caused by HG (10, 16). In brief, cells were first treated with 100 nmol/L insulin 99	
(high-insulin, HI) in normal glucose (NG, 5.5 mmol/L in DMEM) for 3 days (17) and then 100	
maintained in high-glucose (HG, 20 mmol/L in DMEM) and constant HI for 9 days. This sequential 101	

scheme tried to mimic the pathophysiological conditions that occur in T2DM patients, wherein 102	
hyperinsulinemia precedes hyperglycemia (18). Cells were used at passages between 6 to 12. 103	
The control group did not receive HI nor HG treatment. For selected experiments (binucleation 104	

analysis), HCAEC (55 years old Caucasian male, history of T2DM for >5 years) were purchased 105	
from Cell Applications, Inc. and subjected to the same conditions as BCAEC but using MesoEndo 106	

Growth Medium (Cell Applications, Inc.) to induce proliferation. For simulated diabetes, HCAEC 107	

were treated with HI and HG as with BCAEC but, MesoEndo Growht Medium was used instead.  108	
For consistency, the group that underwent simulated diabetes (HG + HI) will be referred to as the 109	

“experimental group”. All experiments were carried out in triplicate. 110	

 111	
2.3 Immunofluorescence 112	

As previously described (15), 100,000 cells per well were seeded onto 12-well plates (Corning® 113	

CellBIND®) and exposed to simulated diabetes. Thereafter, BCAEC and HCAEC were washed 114	
with PBS to remove dead cells and debris. Cells were fixed, permeabilized, and blocked as 115	

described before (19). Cells were then incubated with a polyclonal antibody against the vWf 116	
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(1:400, 3% BSA in PBS) overnight at 4oC and thereafter washed 3x with PBS. Alexa Fluor 488-117	
labeled anti-rabbit (1:400 in PBS) was then used as a secondary antibody for 1 h at RT and 118	

washed 3x with PBS. As a negative control, cells were incubated only with secondary antibody to 119	
assess for non-specific binding. Cell nuclei were stained with Hoechst 33258 (2 µg/ml in HBSS) 120	

for 30 min and washed 3x with PBS. Fluorescent images were taken in at least three random 121	

fields per condition using an EVOS® FLoid® Cell Imaging Station with a fixed 20x air objective. 122	
Image analysis was performed through ImageJ software (version 2.0.0).  123	

 124	

2.4 Metabolite extraction  125	

Cells were seeded at 300,000 cells per well in 6-well plates (Corning® CellBIND®) and treated as 126	

above. After HG and HI conditions, metabolites were extracted following a published  protocol for 127	
adherent cells with some modifications (20) (Figure 1). In brief, after washing the cells 3 x with 128	

PBS, 500 µL of a cold mixture of methanol: ethanol (50:50, v:v) were added to each well, covered 129	
with aluminum foil, and incubated at -800C for 4 h. Cells were then scrapped using a lifter (Fisher 130	
Scientific, Hampton, NH, USA), and the supernatant was transferred to Eppendorf tubes before 131	

centrifugation  for 10 min at 14,000 rpm at 40C. The supernatant was transferred to another tube 132	
and dried down by SpeedVac™ System (Thermo Fisher Scientific, Waltham, MA, USA). Samples 133	
were reconstituted in water/acetonitrile 95:5 v/v with 0.1% formic, centrifuged at 14,000 rpm for 134	
10 min at 4o C. The particle free supernatant was recovered for further LC-MS2 analysis.  135	

 136	
2.5 LC-MS2 data acquisition for metabolomics 137	

Metabolites were loaded into an Eksigent nanoLCâ 400 system (AB Sciex, Foster City, CA, USA) 138	

with a HALO Phenyl-Hexyl column (0.5 x 50 mm, 2.7 µm, 90 Å pore size, Eksigent AB Sciex, 139	

Foster City, CA, USA) for data acquisition using the LC-MS parameters previously described with 140	

some modifications	 (21). In brief, the separation of metabolites was performed using gradient 141	

elution with 0.1% formic acid in water (A) and 0.1% formic acid in ACN (B) as mobile phases at a 142	

constant flow rate of 5 µL/min. The gradient started with 5% B for 1 min followed by a stepped 143	

increase to 100%, B over 26 min and held constant for 4 min. Solvent composition was returned 144	
to 5% B for 0.1 min. Column re-equilibration was carried out with 5% mobile phase B for 4 minutes. 145	

Potential carryover was minimized with a blank run (1 µL buffer A) between sample experimental 146	

samples. The eluate from the LC was delivered directly to the TurboV source of a TripleTOF 147	

5600+ mass spectrometer (AB Sciex, Foster City, CA, USA) using electrospray ionization (ESI) 148	
under positive mode. ESI source conditions were set as follows: IonSpray Voltage Floating, 5500 149	

V; Source temperature, 350°C; Curtain gas, 20 psi; Ion source gases 1 and 2 were set to 40 and 150	
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45 psi; Declustering potential, 100 V. Data was acquired using information-dependent acquisition 151	
(IDA) with high sensitivity mode selected, automatically switching between full-scan MS and 152	

MS/MS. The accumulation time for TOF MS was 0.25 s/spectra over the m/z range 100-1500 Da 153	
and for MS/MS scan was 0.05 s/spectra over the m/z 50-1500 Da. The IDA settings were as 154	

follows charge state +1 to +2, intensity 125 cps, exclude isotopes within 6 Da, mass tolerance 50 155	

mDa, and a maximum number of candidate ions 20. Under IDA settings, the ‘‘exclude former 156	
target ions’’ was set as 15 s after two occurrences and ‘‘dynamic background subtract’’ was 157	

selected. Manufacturer rolling collision energy (CE) option was used based on the size and 158	

charge of the precursor ion using formula CE=m/z x 0.0575 + 9. The instrument was automatically 159	

calibrated by the batch mode using appropriate positive TOF MS and MS/MS calibration solutions 160	

before sample injection and after injection of two samples (<3.5 working hours) to ensure a mass 161	
accuracy of <5 ppm for both MS and MS/MS data. Instrument performance was monitored during 162	

data acquisition by including QC samples (pooled samples of equal volume) every 4 experimental 163	
samples. Data acquisition of experimental samples was also randomized. 164	
 165	

2.6 Metabolomics data processing 166	
Mass detection, chromatogram building and deconvolution, isotopic assignment, feature 167	
alignment, and gap-filling (to detect features missed during the initial alignment) from LC-MS2 168	

datasets was performed using XCMS (https://xcmsonline.scripps.edu) (22) and MZmine (23) 169	

software. The XCMS pipeline was used for normalization of feature area and statistical analysis. 170	

To identify or annotate the metabolites at the chemical structure and class level, the MS2-171	

containing features extracted with MZmine were further analyzed using the Global Natural 172	

Products Social Molecular Networking (GNPS) (24), Network Annotation Propagation (NAP) (25) 173	

and MS2LDA (26) in silico annotation tools, and Classyfire automated chemical classification (27), 174	

as previously described	(21) with some modifications. The confidences of such annotations are 175	

level 2 (probable structure by library spectrum match) and level 3 (tentative candidates) in 176	

agreement with the Metabolomics Standards Initiative (MSI) classification (28). Molecular 177	

networking, NAP, and Classyfire outputs were integrated using the MolNetEnhancer	workflow 178	
(29). Molecular networks were visualized using Cytoscape version 3.8.2 (30). In addition, 179	

chemical substructures (co-occurring fragments and neutral losses referred to as “mass2motifs” 180	

[M2M]) were recognized using the MS2LDA web pipeline (http://www.ms2lda.org) to further 181	

annotate metabolites (level 3, MSI). The detailed processing parameters for XCMS and MZmine 182	

pipelines are found in the supporting information.  183	
 184	
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2.7 Peptidomics data processing 185	
For peptide identification, raw .wiff and .wiff.scan files (same files used for MZmine and XCMS) 186	

from the experimental and control groups were analyzed separately using ProteinPilot software 187	
version 4.2 (Ab Sciex, Foster City, CA, USA) with the Paragon algorithm. MS1 and MS2 data were 188	

searched against the Bos taurus SwissProt sequence database (6006 reviewed 189	

proteins+common protein contaminants, February 2019 release). The parameters input was: 190	
sample type, identification; digestion, none; Cys alkylation, none; instrument, TripleTOF 5600; 191	

special factors, none; species, Bos taurus; ID focus, biological modifications, and amino acid 192	

substitutions; search effort, thorough ID. False discovery rate analysis was also performed. All 193	

peptides were exported and those with a >90% confidence were linked to the corresponding 194	

feature extracted by the XCMS algorithm using their accurate mass and retention time 195	
information. For peptide quantification, we employed the normalized feature abundances (MS1 196	

level) generated by XCMS. A significance threshold of p<0.05 (Welch’s t test) was utilized.  197	
 198	
2.8 Proteomics data reprocessing 199	

The SWATH-based proteomics data (identifier PXD013643), hosted in ProteomeXchange 200	
consortium via PRIDE (31), was reanalyzed with some modifications. The parameters used to 201	
build the spectral library remained the same (15), while the parameter for peptides per protein 202	
was set to 100 in the software SWATH® Acquisition MicroApp 2.0 in PeakView® version 1.2 (AB 203	

Sciex, Foster City, CA, USA). The obtained protein peak areas were exported to Markerview™ 204	
version 1.3 (AB Sciex, Foster City, CA, USA) for further data refinement, including assignment of 205	
IDs to files and removal of reversed and common contaminants. Peak areas were exported in a 206	

.tsv file,  and normalized with NormalyzerDE online version 1.3.4 (32). The NormalyzerDE pipeline 207	
comprises 8 different normalization methods (Log2, variance stabilizing normalization, total 208	

intensity, median, mean, quantile, CycLoess, and robust linear regression). The results of 209	

qualitative (MA plots, scatter plots, box plots, density plots) and quantitative (pooled intragroup 210	
coefficient of variation [PCV], median absolute deviation [PMAD], estimate of variance [PEV]) 211	

parameters were compared between the normalization methods to select the most appropriate.  212	

 213	
2.9 Bioinformatic analysis of proteomics data 214	

Proteins that passed the significance threshold were first converted to their corresponding Entrez 215	

Gene (GeneID) using https://www.uniprot.org/uploadlists/   and then transformed to their human 216	
equivalents using the ortholog conversion feature in https://biodbnet-217	

abcc.ncifcrf.gov/db/dbOrtho.php. Bioinformatic analysis was done on OmicsNet website platform 218	
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(https://www.omicsnet.ca/) (33, 34). First, a protein-protein interaction (PPI) molecular network 219	
(first-order network containing query or seeds molecules and their immediate interacting partners) 220	

using STRING PPI database was built (35) and then pathway enrichment analysis was performed 221	
using the built-in REACTOME and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 222	

databases. To visualize modules (functional units) contained in the molecular network the 223	

WalkTrap algorithm (within OmicsNet platform) was employed. Hypergeometric test was used to 224	
compute p-values.   225	

 226	

2.10 Integrative analysis of proteomics and metabolomics data 227	

The molecular interactions between the proteins and metabolites differentially abundant between 228	

HG + HI and NG were determined in OmicsNet (32, 33). The lists of proteins (EntrezGene ID) 229	
and metabolites (HMDB ID) were loaded to build a composite network using protein-protein 230	

(STRING database selected) and metabolite-protein (KEGG database selected) interaction types. 231	
The primary network relied on the metabolite input. Pathway enrichment analysis was performed 232	
using the built-in REACTOME and KEGG databases. Hypergeometric test was used to compute 233	

p-values.   234	
 235	
2.11 Statistical analysis  236	
All experiments were performed in triplicate. Based on the accuracy (determination of real fold-237	

changes) of SWATH-based quantification (36), proteins with a fold change ≥ 1.2 or ≤ 1/1.2 and a 238	
p-value <0.05 (Welch’s t-test) were considered as differentially abundant between NG and HG + 239	
HI conditions. For the metabolomics data, features with a fold change ≥ 1.3 or ≤ 1/1.3 and a p-240	

value <0.05 (Welch’s t-test) were considered as differentially abundant. We did not apply multiple-241	
test corrections to calculate adjusted p-values, because this process could obscure proteins or 242	

metabolites with real changes (true-positives) (37). Instead, the analysis was focused on top-243	

enriched signaling pathways (adjusted p-value <0.01) that allowed us to determine a set of 244	
interacting proteins and metabolites with relevant biological information and contributes in 245	

reducing false positives. For multivariate statistical analysis and heatmap visualization, 246	

Metaboanalyst 4.0 (https://www.metaboanalyst.ca) was utilized. Principal component analysis 247	
(PCA) was used to assess for sample clustering behavior and inter-group variation. No scaling 248	

was used for PCA and heatmap analysis. Software PRISM 6.0 (GraphPad Software, San Diego, 249	

CA) was used for the creation of volcano plots and column graphs.  250	
 251	

2.12 Data availability 252	
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The raw datasets supporting the metabolomics results are available in the GNPS/MassIVE public 253	
repository (38) under the accession number MSV000084307. The specific parameters of the tools 254	

employed for metabolite annotation are available on the following links: for classical molecular 255	
networking, 256	

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=604b3d077e00430a9bc288eebf154b9b; for 257	

FBMN 258	
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=5e2839037969442e868d9df21309d561; for 259	

NAP, 260	

https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=96cda48c0df64d3398a8f9088907afb261	

5;  for MS2LDA, http://ms2lda.org/basicviz/summary/1197/ (need to log-in as a registered or guest 262	

user); for MolNetEnhancer, 263	
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=de80b9c765e042ffab7767a3101054fd.  The 264	

quantitative results generated using the XCMS platform can be accessed after logging into the 265	
following link https://xcmsonline.scripps.edu and searching for the job number 1395724. SWATH 266	
data is accessible on the ProteomeXchange with dataset identifier PXD013643.  267	

 268	
3. Results 269	

 270	
Untargeted metabolomics 271	
Overall 5571 features or potential metabolites were detected using XCMS and MZmine, wherein 272	

957 (~18%) features were commonly identified in both platforms (Figure 2A). Based on the 273	
relative quantification using XCMS, 140 and 82 features were detected with reduced and 274	
increased abundances respectively in the experimental group compared to the control group 275	

(Figure 2B). The effects of HG and HI in the experimental group are observed by PCA analysis 276	
wherein the experimental samples clustered away from the control group (Figure 2C). The 277	

consistency of the LC-MS equipment is apparent by the clustering of the QC samples (Figure 278	

2C). Further, the heatmap visualization of the top 100-modulated metabolites exhibited the 279	
different distribution patterns among groups (Figure 2D). Using the GNPS platform for automatic 280	

metabolite annotation, 106 compounds (excluding duplicates and contaminants) were putatively 281	

annotated with a level 2 confidence annotation (MS2 spectral match) (Table S1) in agreeance 282	
with the MSI classification (28). Some metabolites identified by the GNPS platform could not be 283	

quantified because they were not detected by the XCMS algorithm during feature area 284	

normalization and quantification. Moreover, GNPS Molecular Networking aligned the MS2-285	
containing features (n=1,013) based on their structural similarity, creating 118 independent 286	

networks or clusters with at least two connected nodes (Figure 3A). The use of MolNetEnhancer 287	
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workflow allowed to putatively identify chemical classes (level 3, MSI) for 56 of the 118 288	
independent networks. The top-10 most abundant annotated chemical classes and associated 289	

metabolites are shown in Figure 3A. Three-clusters from the network were further analyzed 290	
because they contained annotated metabolites by spectral matching, which facilitates the 291	

annotation of other cluster’s nodes. Cluster 1 revealed two metabolites linked to the 292	

organonitrogen compounds class with reduced abundance in the experimental group (Figure 3B). 293	
Library spectral match (level 2, MSI) suggest PC(16:0/18:1(9Z)) and PC(18:0/18:2(9Z,12Z)) as 294	

putative candidates, which was supported by MS2LDA phosphocholine-substructure recognition 295	

(Figure 3C). In cluster 2, glutathione-based metabolites (MSI level 3) were detected through 296	

fragments m/z 308.0925, 233.0575, 179.0475, and 162.0225 retrieved by the M2M_453 297	

substructure and associated with glutathione structure using mzCloud in silico predictions (Figure 298	
4A). The precursor ion at m/z 713.1472 and glutathione (annotated at level 2, MSI) were detected 299	

with increased abundance in the experimental group. MS2LDA visualization, at the M2M level, 300	
correlated with the GNPS molecular networking clustering (Figure 4B). In cluster 3, various 301	
phenylalanine-based metabolites were putatively annotated aided by MS2LDA substructure 302	

recognition (Figure 4C and 4D). Within this cluster, glutamyl-phenylalanine (annotated at level 2, 303	
MSI) and the precursor ions at m/z 297.1802 and 487.1548 presented with increased abundance 304	
in the experimental vs. control group. On the other hand, various aminoacids were annotated 305	
(level 2, MSI) by GNPS spectral matching and manual inspection of data (Table S2). Threonine, 306	

valine, proline, leucine, serine, glutamic acid, methionine, and tyrosine presented increased 307	
abundance (fold change range 1.3-1.7, p<0.05) in the experimental vs. control group. Particularly, 308	
metabolites linked to the catabolism of tryptophan via the serotonin and kynurenine pathway (39) 309	

were annotated (level 2, MSI), including melatonin, acetyl serotonin, and kynurenine (Table S1). 310	
However, only kynurenine was significantly elevated in the experimental group. The full list of 311	

annotated metabolites, differential abundances and another relevant feature information is shown 312	

in Table S2.  313	
 314	

Peptidomics 315	

Experimental and control datasets were analyzed separately to identify the peptides and their 316	
biological modifications. The complete list of peptides identified by ProteinPilot between the 317	

experimental and control groups are described in Table S3. Proline oxidation was the most 318	

frequent biological modification detected in the experimental group datasets. We identified 8 and 319	
12 peptides with a confidence of >90% in the control and experimental group, respectively. 320	

Differential abundance of 2 proline-rich peptides was observed in the experimental group 321	
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compared to the control group. An additional tripeptide was manually annotated with a LPP 322	
sequence (Table S4).  323	

 324	
Proteomics 325	

The re-analysis of the SWATH data (PXD013643 dataset) facilitated the identification of 952 326	

quantifiable proteins (717 proteins with at least 2 unique peptides, 1% false discovery rate) and 327	
no missing values among technical and biological replicates (Table S5). Sample datasets were 328	

normalized using 8 different methods to select the most appropriate based on quantitative and 329	

qualitative parameters on our dataset. Quantile normalization produced a better qualitative and 330	

quantitative profile and was selected to further process our data (Figure S1). PCA analysis of 331	

normalized data denoted a clear separation of the groups suggesting overall differences in their 332	
proteomes (Figure 5A). Differential abundance analysis revealed 32 and 33 proteins with 333	

increased and decreased abundance in the experimental group (Figure 5B). Further, the 334	
heatmap visualization of the top 50-modulated proteins exhibited the different distribution patterns 335	
among the experimental and control groups (Figure 5C). To obtain a molecular insight we 336	

performed a functional enrichment analysis using a network-based approach. First, we created a 337	
composite network comprising PPI between the modulated proteins by simulated diabetes (seed 338	
proteins) and their immediate interacting partners (highest confidence >0.9) retrieved from 339	
STRING Database (incorporated in OmicsNet platform). The principal network using the up-340	

modulated proteins consisted of 461 proteins, 709 edges and 18 seed proteins (nodes with blue 341	
shadow) and is illustrated in Figure 5D. Eight modules or clusters were generated, that may 342	
represent relevant complexes or functional units (40). The 5 most significant (adjusted p-value 343	

<0.05) REACTOME and KEGG pathways on the global network are shown in Table 1. Two 344	
modules contained multiple seed proteins and were linked to DNA/RNA and protein metabolism 345	

pathways using the WalkTrap algorithm (Figure 5D). On the other hand, the principal network 346	

using the down-modulated proteins consisted of 488 proteins, 513 edges and 18 seed proteins 347	
identified eleven modules wherein one module (with 2 seed proteins) indicated associations with 348	

mitochondrial function pathways (Figure 5E). 349	

 350	
Integration of Metabolomics and Proteomics  351	

The signaling pathways perturbed by simulated diabetes were identified by a composite network 352	

of interacting metabolites and proteins using OmicsNet built-in databases. Figure 6 illustrates the 353	
composite bi-layered metabolite-PPI network using the up-modulated molecules (under simulated 354	

diabetes) comprised of 9 metabolites (seed metabolites), 177 edges, and 166 proteins (5 seed 355	
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proteins). The 10 top-most enriched signaling pathways identified in the composite network are 356	
shown in Table 2. The two principal modules highlighted by the WalkTrap algorithm were linked 357	

to glutathione and amino acid metabolism. We noted a smaller interaction between Acyl-protein 358	
thioesterase 1 (LYPLA1) and a phosphatidylcholine metabolite when simultaneously analyzing 359	

up- and down-modulated proteins and metabolites. No significant composite network was 360	

identified using the down-modulated proteins and metabolites. 361	
 362	

Cellular morphology  363	

To better understand the effects that simulated diabetes exerts on endothelial cells the changes 364	

on cellular structure endpoints were evaluated. The endothelial nuclei morphology in the BCAEC 365	

control and experimental groups were evaluated using fluorescent-staining and image analysis. 366	
We also evaluated the presence of vWF (marker of endothelial cells) in BCAEC and HCAEC, to 367	

reveal the cellular boundary and to demonstrate their endothelial phenotype (41). We noted an 368	
increase in the percentage of binucleated BCAEC in the experimental group compared to the 369	
control group (top panel Figure 7A and 7B). A similar result with larger nuclei, was observed 370	

when using HCAEC as a human in vitro model (bottom panel Figure 7A and 7B). Finally, as 371	
expected, we observed a typical intracellular localization of vWF and a 100% positivity in 372	
endothelial cells.  373	
 374	

4. Discussion 375	
This study investigated the molecular perturbations occurring in coronary endothelium cells 376	
subjected to prolonged simulated diabetes that facilitated the identification of signaling pathways 377	

and specific molecules that could be associated with the development of cardiovascular disease. 378	
To achieve this, we employed a MS-based multi-omics approach coupled to fluorescence 379	

microscopy to detect structural changes. Endothelial cells cover the inner surface of blood vessels 380	

and are distributed across the body. Their functions include: acting as a mechanical barrier 381	
between the circulating blood and adjacent tissues as well as modulating multiple functions in 382	

distinct organs (42). These regulatory functions vary according to localization and vascular bed-383	

origin (43). HG blood levels are detrimental to endothelial cells function in T2DM leading to 384	
coronary endothelial dysfunction and development of CVD (44, 45). The molecular effects of HG 385	

on endothelial cells have been previously characterized (4, 6, 7, 10, 11); nevertheless, the 386	

endothelial cell types used in these studies are not intrinsically involved in CVD. The present study 387	
used an in vitro model involving endothelial cells that modulate the heart function, CAEC (46). 388	

Our model not only used HG (20 mmol/L) to simulate diabetes (4, 6, 7, 10, 11) but first induced 389	
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insulin resistance to mimic the pathophysiological conditions that occur in T2DM wherein 390	
hyperinsulinemia precedes hyperglycemia (18). Diabetes was simulated for up to 12 days to 391	

mimic chronic HG exposure and to prevent measuring cell proliferation known to occur in early 392	
HG (10, 16). Despite a lack of apparent increase in cell proliferation in the experimental group 393	

compared to control group after twelve days, an increase in overall protein abundance was 394	

detected by Bradford assay (data not shown) and inferred from total ion chromatogram (TIC) of 395	
MS (Figure S1A). We suggest that protein synthesis is increased as a consequence of the higher 396	

presence of bi-nucleated CAEC (with increased DNA/RNA metabolism) under HG + HI compared 397	

to that in the control cohort (Figure 7A and 7B). Previous studies have shown reduced endothelial 398	

cell proliferation (mostly in HUVEC) after long-term (7-14 days) HG exposure (4, 11, 47-53), 399	

accompanied by an increase in protein synthesis (53). This MS-based methodological pipeline 400	
that included appropriate controls during data acquisition (QC) and processing (e.g., 401	

normalization, filtering, annotation, dereplication, etc.), allowed the identification of global 402	
changes in the metabolome of CAEC under HG + HI. Specifically, increased abundance of valine, 403	
leucine, tyrosine, serine, leucine, proline, methionine, and glutamic acid in cells under HG 404	

conditions was observed; and this is consistent with reports on human aortic endothelial cells 405	
(54). Notably, several clinical studies have established a direct relationship between 406	
prevalence/incidence of T2DM and increased levels of valine, leucine and tyrosine in serum and 407	
plasma	(55-59). Our results support the role of CAEC in contributing to the elevated pool of amino 408	

acids seen in circulation under a HG environment. We speculate that increased levels of these 409	
amino acids could result from either increased production or reduced degradation as suggested 410	
in endothelial cells (immortalized cell line, EA.hy 926) that transition from a glycolytic metabolism 411	

towards lipid and amino acid oxidation when challenged by HG (60). Furthermore, evidence of 412	
increased tryptophan catabolism was identified through the kynurenine pathway. In this regard, a 413	

non-significant decrease of ~ 40% in the abundance of tryptophan was detected. However, a 414	

significant increase of ~ 450% in kynurenine (tryptophan’s main metabolite) (61) between the HG 415	
+ HI group and NG group was also observed, which is a key finding as elevated plasma levels of 416	

kynurenine are known to increase CVD risk (62, 63). This novel finding contributes to expanding 417	

the understanding of amino acid metabolism in endothelial cells under simulated diabetes. Acetyl 418	
serotonin and melatonin which are components of the serotonin pathway that degrades 419	

tryptophan (64) were also detected with only minor abundancy increases (20-30%) in the HG + 420	

HI group compared to control. Differences in glutathione (cysteine-glutamic acid-glycine, 421	
tripeptide) metabolism in CAEC were also found, suggesting an increased response to oxidative 422	

stress (65). In line with this observation, previous research reported a glutathione-dependent 423	
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reaction to ambient HG in artery-derived endothelial cells (66, 67) but the same could not be 424	
observed in vein-derived endothelial cells (68, 69). This emphasizes the different responses to 425	

HG among endothelial phenotypes. Here, novel evidence is provided of the up-regulation of 426	
glutathione-based metabolites. The composite protein network suggested an increase in 427	

glutathione metabolism supported by elevated levels of oxidized glutathione and, one of its 428	

synthetic precursors, glutamic acid. At the protein level, peroxiredoxin (PRDX2 and PRDX6) and 429	
thioredoxin (TXN2, mitochondrial) showed increased abundances in the experimental group, 430	

which are part of the cells natural enzymatic defense against oxidative stress (70). The 431	

substructure analysis of metabolomics data facilitated identifying glutamic acid- and 432	

phenylalanine-based metabolites, presumably di- or tri-peptides, including the annotated 433	

metabolite glutamyl-phenylalanine. Furthermore, the CAEC peptidome analysis suggested an 434	
increase in proline-containing peptides. This type of peptide is of particular interest because of 435	

their resistance to non-specific proteolytic degradation, body distribution and remarkable 436	
biological effects (71-74). Yet, the precise function of such phenylalanine-, glutamine-, and 437	
proline-based peptides remains to be characterized in CAEC. We can only speculate that they 438	

are the result of a compensatory mechanism to reduce glucose cellular damage. Also, increased 439	
protein abundance of core and regulatory subunits from the proteasome complex (PSMA4 and 440	
PSMD3) was found in cells under simulated diabetes. This suggests an increased protein 441	
degradation and subsequent peptide formation in response to HG. Metabolomic profiling also 442	

revealed changes in the lipidome of CAEC challenged with HG + HI, wherein a reduction in 443	
phosphatidylcholine (PC) lipids and subsequent increase in phosphocholine were noted. 444	
Changes in the phospholipidomic profile of bovine aortic endothelial cells treated with HG for 24 445	

h has also been reported in a lipidome study (75). Here, proteomics and metabolomics data were 446	
manually integrated and this allowed to determine critical roles for PAFAH1B2 and LYPLA1 in 447	

mediating the degradation of PC lipids (Figure 8). PAFAH1B2 was found to be up-regulated in 448	

this study and it is known to be associated with inflammation and higher levels of lysoPC (76). As 449	
a result, PAFAH1B2 could increase the pool of lysoPC lipids, further exacerbating inflammation 450	

in the cardiovascular system (77). On the other hand, LYPLA1 has a lysophospholipase activity 451	

that can hydrolyze a range of lysophospholipids, including LysoPC, thereby generating a fatty 452	
acid and glycerophosphocholine as products (78). Increased levels of phosphocholine (~ 460%) 453	

were detected in HG treated cells compared to control, that could be associated with the 454	

degradation of LysoPC lipids. It should be noted that the use of pathways databases such as 455	
KEGG and REACTOME possess some limitations when dealing with lipid metabolites because 456	

its chemical diversity is not well annotated/defined within the databases. For example, KEGG 457	
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provides a chemical class identifier instead of individual identity to lipids, constricting their 458	
biological importance (79). Thus, based on our manual inspection of the metabolomics-459	

proteomics data and in line with the evidence, we suggest that simulated diabetes evokes 460	
inflammation on BCAEC and that PAFAH1B2 and LYPLA1 play a role in modulating such 461	

process. 462	

Previously, we reported the multinucleation of CAEC cultured under simulated diabetes (15). This 463	
type of cell possesses ≥2 nuclei. Here, we replicated our previous findings of increased 464	

binucleation in BCAEC. The same outcome was obtained when using HCAEC as a human in vitro 465	

model (Figure 7A and 7B), validating the binucleation process in other CAEC. After refinement 466	

of LC-MS2 data and bioinformatics re-processing of published SWATH-based datasets of BCAEC 467	

under simulated diabetes (15), molecular signatures and pathways that could be linked to the 468	
binucleation process were found (Figure 8). For instance, we noted an increased abundance of 469	

proteins, under simulated diabetes, with reported nuclei localization and linked to DNA 470	
metabolism, including ribosomal proteins RPS7, RPS13, and RPL9 (80). Further, we observed 471	
an increased abundance of proteasome proteins, PSMA4 and PSMD3, which are linked to protein 472	

metabolism	 (81). Hence, we infer that the CAEC binucleation occurs as a compensatory 473	
mechanism to increase the cell capacity to metabolize the excess of ambient glucose by 474	
increasing the cell metabolic machinery (transcription/translation processes). Although an 475	
increase in cell proliferation could boost a coordinated increase of ribosomal and proteasome 476	

proteins, we do not believe this is the case here, as mentioned before. After 4-5 days of simulated 477	
diabetes, cells occupied 100% of the well's plate surface, thereby impeding to harbor more cells 478	
because endothelial cells grow as a monolayer. This is consistent with findings stating that when 479	

endothelial cells become highly confluent, they stop growing due to cell-cell contact, even in the 480	
presence of growth factors (82). In support of this, up-stream (CTGF and CD62) (83, 84) (Table 481	

S5) and down-stream proteins (FABP4) (85) (Table S5) involved in angiogenesis and proliferation 482	

were down-regulated by simulated diabetes. Importantly, there is evidence (not in endothelial 483	
cells) of cellular processes contributing to the stimulation of cellular binucleation without increases 484	

in cell proliferation, including cellular enhancement of antimicrobial defenses (86), senescence 485	

(87), and malignancy (88). Various mechanisms have been linked to the binucleation process, 486	
such as cytokinesis failure, cellular fusion, mitotic slippage, and endoreduplication (89). The 487	

elucidation of the exact molecular mechanisms leading to the binucleation process of CAEC is 488	

beyond the scope of our study.  489	
In conclusion, this study applied an integrated multi-omics and bioinformatics/chemoinformatics 490	

approach to characterize the molecular perturbations that simulated diabetes exerts on CAEC. 491	
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We confirmed several independent studies that reported alterations at protein and metabolite 492	
levels in endothelial cells of different sources than coronary vessels. Metabolomics, identified 493	

alterations in amino acid, peptide, and phospholipid metabolism. Notably, the chemoinformatic 494	
analysis identified unreported alterations of phenylalanine-, glutathione-, and proline-based 495	

peptides on coronary endothelium under simulated diabetes. Proteomics provided evidence of 496	

reduced mitochondrial mass and angiogenesis. The integration of proteomics and metabolomics 497	
identified increased glutamic acid metabolism and suggested that the antioxidant enzymes are 498	

involved in protecting the cells from oxidative stress. Fluorescence microscopy reported the 499	

appearance of non-proliferative binucleated CAEC cells as a mean to metabolize the excess of 500	

ambient glucose. Overall, our study improved the understanding of the molecular disturbances 501	

caused by simulated diabetes that could mediate CAEC dysfunction and may be relevant in the 502	
context of CVD in subjects with T2DM. 503	
 504	
  505	
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Figure legends 823	
 824	

Figure 1. Illustration of the methodology followed in this study.  825	
 826	

Figure 2. Simulated diabetes induced changes in the metabolome of bovine coronary 827	

artery endothelial cells (BCAEC). (A) Venn diagram of features identified among MZmine and 828	
XCMS software (0.01 Da and 1 min retention time, thresholds) on LC-MS2 datasets. (B) Volcano 829	

plot of all quantified metabolites displaying differences in relative abundance (> +/-30% change, 830	
<0.05 p-value cut-offs) between BCAEC cultured in control (NG) media and simulated diabetes 831	

(HG+ HI) for twelve days. Values (dots) represent the HG+HI/NG ratio for all metabolites. Red 832	

and blue dots denote downregulated and upregulated metabolites in the HG + HI group vs. NG 833	
group, respectively. (C) Principal Component Analysis (PCA) of LC-MS2 datasets. Data was log 834	
transformed without scaling. Shade areas depict the 95% confidence intervals. (C) HeatMap of 835	
the top 100 metabolites ranked by t-test. Abbreviations: NG, normal glucose; HG, high glucose; 836	

HI, high insulin; QC, quality control. 837	
 838	

Figure 3. Bovine coronary artery endothelial cells (BCAEC) metabolite molecular network. 839	
(A) Molecular classes (according to Classyfire) of the metabolome identified by the 840	
MolNetEnhancer workflow and visualized by Cytoscape version 3.8.2. Each node represents a 841	
unique feature and the color of the node denotes the associated chemical class. The thickness of 842	

the edge (connectivity) indicates the MS2 similarity (Cosine score) among features. The m/z value 843	
of the feature is shown inside the node and is proportional to the size of the node. Three selected 844	
clusters or connected features as relevant are shown. (B) Inset of cluster 1 denoting the presence 845	
of phosphocholine (PC)-containing lipids. Significant differential abundant features among 846	

simulated diabetes (HG+HI) and control (NG) groups are indicated with an asterisk (p-value 847	

<0.05). (C) Characterization of features in (B) aided by substructure recognition by MSLDA 848	
software using MS1 visualization in www.ms2lda.org. Fragment at m/z 184.0725 linked to a PC 849	

head group by mzCloud in silico prediction (www.mzCloud.org). Abbreviations: M2M, mass2motif; 850	

FC, fold change; NG, normal glucose; HG, high glucose; HI, high insulin. Chemical structures 851	
were drawn by ChemDraw Professional version 16.0.1.4. 852	

 853	
Figure 4. Peptide metabolites modulated by simulated diabetes in bovine coronary artery 854	

endothelial cells (BCAEC). (A) Cluster 2 retrieved from the main molecular network linked to 855	
glutathione and derivatives. The fragments of mass-2-motif (M2M)_453 colored in red are 856	
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characteristic of a glutathione core and the fragments are shown in red. (B) Features associated 857	
with M2M_453 using MS1 visualization in www.ms2lda.org. (C) Cluster 3 retrieved from the main 858	

molecular network linked to phenylalanine-based metabolites. A singular node at m/z 487.1548 859	
is also shown. The fragments of M2M_59 colored in red are characteristic of a phenylalanine core 860	

(Heuristic and Quantum Chemical predictions by www.mzCloud.org). (D) Features associated 861	

with M2M_59 using MS1 visualization in www.ms2lda.org. In GNPS’s clusters (A and C), the 862	
node’s color denotes the chemical class assigned to the cluster. The thickness of the edge 863	

(connectivity) indicates the cosine score (MS2 similarity). The m/z value of the feature is shown 864	

inside the node and is proportional to the size of the node. Significant differential abundant 865	

features among simulated diabetes (HG+HI) and control (NG) groups are indicated with an 866	

asterisk (p-value <0.05). In MS2LDA’s nodes (B and D), the green node represents the M2M and 867	
squares indicate individual features. Edges represent connections to M2M.  Significant differential 868	

abundant features among groups are indicated with an asterisk (p-value <0.05). Abbreviations: 869	
M2M, mass2motif; FC, fold change; NG, normal glucose; HG, high glucose; HI, high insulin. 870	
Chemical structures were drawn by ChemDraw Professional version 16.0.1.4. 871	

 872	
Figure 5. Simulated diabetes induced changes in the proteome of bovine coronary artery 873	
endothelial cells (BCAEC). (A) Principal Component Analysis (PCA) of LC-SWATH-MS2 874	
datasets. Data was log transformed without scaling. Shade areas depict the 95% confidence 875	

intervals. No scaling was used. (B) Volcano plot of all quantified proteins (Quantile normalization) 876	
displaying differences in relative abundance (> +/-20% change, <0.05 p-value cut-offs) between 877	
BCAEC cultured in control (NG) media and simulated diabetes (HG+ HI) for twelve days. Values 878	

(dots) represent the HG+HI/NG ratio for all proteins. Red and blue dots denote downregulated 879	
and upregulated proteins in the HG + HI group vs. NG group, respectively. (C) HeatMap of the 880	

top 50 metabolites ranked by t-test. Protein-Protein interactome (>0.9 confidence) using the list 881	

of proteins with increased abundance (D) and reduced abundance (E) in the HG + HI group. 882	
Colored circles denote modules or clusters which may represent relevant complexes or functional 883	

units. The input proteins are illustrated with a blue shade and the gene ID is also shown. The 884	

most representative pathway (containing more input proteins) for all modules is indicated in blue 885	
letters. Abbreviations: NG, normal glucose; HG, high glucose; HI, high insulin. 886	

 887	

Figure 6. 3D Integrative network of the proteomic and metabolomic perturbations caused 888	
by simulated diabetes in bovine coronary artery endothelial cells (BCAEC). Composite 889	

protein-metabolite network created by OmicsNet using the up-regulated proteins (red nodes) and 890	
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metabolites (magenta nodes) in the HG + HI group (simulated diabetes). Interacting proteins (<0.9 891	
confidence) were retrieved from STRING Database and are shown as gray nodes. Abbreviations: 892	

NG, normal glucose; HG, high glucose; HI, high insulin. 893	
 894	

Figure 7. Increased cellular binucleation by simulated diabetes in bovine coronary artery 895	

endothelial cells (BCAEC) and human coronary artery endothelial cells (HCAEC). (A) 896	
Representative immunofluorescence micrographs showing the localization of the von-Willebrand 897	

factor (vWf, 1:400, 3% BSA in PBS) in fixed and permeabilized cells. The nuclei were stained 898	

using the dye Hoechst 33258 (2 µg/ml in HBSS). White arrows indicate binucleated cells. (B) 899	

Quantification of binucleated cells in HCAEC and BCAEC under simulated diabetes (HG+HI) vs. 900	

control (NG) group. Fluorescence images were taken in at least three random fields per condition 901	
using an EVOS® FLoid® Cell Imaging Station with a fixed 20x air objective. Image analysis was 902	

performed by ImageJ software (version 2.0.0). Abbreviations: NG, normal glucose; HG, high 903	
glucose; HI, high insulin. 904	
 905	

Figure 8. Summary illustration of study findings. Cellular structures were created using 906	
Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 907	
Unported License; https://smart.servier.com. Chemical structures were drawn by ChemDraw 908	
Professional version 16.0.1.4. 909	

 910	
 911	
  912	
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Supporting information 913	
 914	
Table S1. List of all the putatively annotated metabolites by MS2 spectral matching against GNPS 915	
public spectral libraries. 916	
 917	
Table S2. List of putatively annotated (MS2 spectral matching) metabolites modulated by 918	
simulated diabetes. 919	
 920	
Table S3. List of all detected peptides by ProteinPilot Software using the metabolomics datasets. 921	
 922	
Table S4 Putative annotated proline-peptides altered by simulated diabetes in Bovine Coronary 923	
Artery Endothelial Cells by ProteinPilot Software and manual inspection. 924	
 925	
Table S5. List of the detected peptides and proteins in all conditions for SWATH-based 926	
quantification. 927	
 928	
Figure S1. Proteomics data normalization results using NormalyzerDE. (A) Total intensity of raw 929	
data before normalization. (B) Quantitative parameters of normalization algorithms (pooled 930	
intragroup coefficient of variation [PCV], median absolute deviation [PMAD], estimate of variance 931	
[PEV]). Qualitative parameters of normalization algorithms; (C) Box plots (D) MA plots, and (E) 932	
Density plots.  933	
 934	
Figure S2. Cellular confluence in control and experimental group. Representative 935	
micrographs of Bovine Coronary Artery Endothelial Cells (BCAEC) cultured for 9 days with 5.5 936	
mmol/L glucose (control group) and 20 mmol/L glucose+100 nmol/L insulin (simulated diabetes 937	
or experimental group). Images were taken using an EVOS® FLoid® Cell Imaging Station with a 938	
fixed 20x air objective. Abbreviations: NG, normal glucose; HG, high glucose; HI, high insulin. 939	
 940	
 941	
 942	
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Table 1. Pathway enrichment analysis of up-regulated and down-regulated proteins in HG+HI 
group 

REACTOME 
Database 

Total Hits FDR  Total Hits FDR 

Up-regulated    Down-regulated    

Metabolism of RNA 339 142 
1.26E-
100 Peptide chain elongation 178 77 

5.81E-
48 

Metabolism of 
mRNA 317 136 1.04E-97 Influenza Infection 185 78 

6.52E-
48 

Synthesis of DNA 95 75 2.37E-79 

Nonsense Mediated Decay 
Independent of the Exon 
Junction Complex 184 77 

4.04E-
47 

DNA Replication 102 77 5.67E-79 Influenza Life Cycle 180 76 
4.63E-
47 

DNA Replication 
Pre-Initiation 80 68 3.49E-76 

Eukaryotic Translation 
Elongation 186 77 

4.63E-
47 

M/G1 Transition 80 68 3.49E-76 

Nonsense Mediated Decay 
Enhanced by the Exon 
Junction Complex 203 80 

4.63E-
47 

S Phase 122 78 4.62E-71 Nonsense-Mediated Decay 203 80 
4.63E-
47 

G1/S Transition 113 75 4.37E-70 
Influenza Viral RNA 
Transcription and Replication 176 75 

5.77E-
47 

Assembly of the pre-
replicative complex 63 57 5.61E-67 Viral mRNA Translation 176 75 

5.77E-
47 

Metabolism of RNA 339 142 
1.26E-
100 

Eukaryotic Translation 
Termination 178 75 

1.42E-
46 

        
KEGG Database        
Up-regulated    Down-regulated    
Basal transcription 
factors 153 111 

2.17E-
115 Basal transcription factors 153 88 

8.15E-
73 

Mismatch repair 45 43 1.68E-53 Nucleotide excision repair 135 46 
3.62E-
24 

SNARE interactions 
in vesicular transport 124 41 2.28E-22 Renal cell carcinoma 201 46 

2.26E-
16 

Base excision repair 36 18 3.46E-13 Endometrial cancer 204 45 
1.88E-
15 

Human 
papillomavirus 
infection 155 34 1.62E-12 Peroxisome 137 35 

5.32E-
14 

Chemical 
carcinogenesis 201 36 1.50E-10 Nicotine addiction 193 41 

1.48E-
13 

Hepatocellular 
carcinoma 76 18 4.74E-07 

Ribosome biogenesis in 
eukaryotes 79 26 

2.92E-
13 

Human T-cell 
leukemia virus 1 
infection 162 26 1.49E-06 Gap junction 199 41 

3.40E-
13 

Chronic myeloid 
leukemia 97 19 3.79E-06 

Herpes simplex virus 1 
infection 225 42 

5.11E-
12 

Notch signaling 
pathway 160 25 3.79E-06 Glutamatergic synapse 231 36 

1.02E-
14 

        



 



Table 2. Integrative pathway enrichment analysis of up-regulated proteins and metabolites in 
HG+HI group 

REACTOME 
Database 

Total Hits FDR KEGG Database Total Hits FDR 

Metabolism of amino 
acids and derivatives 190 44 8.74E-39 

EGFR tyrosine kinase 
inhibitor resistance 1490 129 

1.01E-
72 

Metabolism 1490 85 1.33E-35 Glutathione metabolism 56 39 
1.63E-
54 

Glutathione 
conjugation 25 21 7.33E-33 

Alanine, aspartate and 
glutamate metabolism 36 24 

4.57E-
32 

Phase II conjugation 74 25 2.04E-25 ABC transporters 75 27 
1.09E-
26 

Amino acid synthesis 
and interconversion 
(transamination) 18 15 5.97E-23 

Cysteine and 
methionine metabolism 49 22 

3.48E-
24 

Biological oxidations 142 25 7.73E-18 Pancreatic cancer 82 23 
7.55E-
20 

tRNA Aminoacylation 42 13 5.19E-12 
Drug metabolism - 
cytochrome P450 72 21 

1.67E-
18 

Glutathione synthesis 
and recycling 10 7 3.67E-09 

Metabolism of 
xenobiotics by 
cytochrome P450 76 21 

5.18E-
18 

Sulfur amino acid 
metabolism 25 9 9.84E-09 

Drug metabolism - other 
enzymes 79 20 

2.45E-
16 

Tryptophan 
catabolism 11 6 7.51E-07 

mRNA surveillance 
pathway 73 19 

8.78E-
16 


