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Abstract6

Infectious disease forecasting is an emerging field and has the potential to improve public7

health through anticipatory resource allocation, situational awareness, and mitigation plan-8

ning. By way of exploring and operationalizing disease forecasting, the U.S. Centers for9

Disease Control and Prevention (CDC) has hosted FluSight since the 2013/14 flu season,10

an annual flu forecasting challenge. Since FluSight’s onset, forecasters have developed and11

improved forecasting models in an effort to provide more timely, reliable, and accurate infor-12

mation about the likely progression of the outbreak. While improving the predictive perfor-13

mance of these forecasting models is often the primary objective, it is also important for a14

forecasting model to run quickly, facilitating further model development, improvement, and15

scalability. In this vein I introduce Inferno, a fast and accurate flu forecasting model inspired16

by Dante, the top performing model in the 2018/19 FluSight challenge. When compared to17

all models that participated in FluSight 2018/19, Inferno would have placed 2nd in both the18

national and state challenges, behind only Dante. Inferno, however, runs in minutes and is19

trivially parallelizable, while Dante takes hours to run, representing a significant operational20

improvement with minimal impact to performance. A future consideration for forecasting21

competitions like FluSight will be how to encourage improvements to secondarily important22

properties of forecasting models, such as runtime, generalizability, and interpretability.23

1 Introduction24

Infectious disease outbreaks can be disruptive, deadly, and complex. By the end of November25

2020, COVID-19 had killed almost 1.5 million people globally and over 250 thousand people in26

the United States (U.S.) [6]. Each year in the U.S., seasonal influenza kills tens of thousands27

of people and hospitalizes hundreds of thousands [25]. Life saving resources, such as respira-28

tors, antivirals, vaccines, and medical professionals must be allocated to ensure locations are29
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prepared and ready for the impending outbreak.30

This is where infectious disease forecasting comes in. If forecasts can reliably anticipate31

the progression of an outbreak, we may be better prepared to confront it when it arrives.32

Infectious disease forecasting is still relatively young, but can no longer claim novelty. There33

has been a flurry of infectious disease forecasting challenges/collaborations in the last ten34

years, including the Defense Advanced Research Projects Agency’s 2014/15 Chikungunya35

challenge [5], a collection of vector-borne disease challenges hosted by the U.S. Centers for36

Disease Control and Prevention (CDC) for dengue (2015) [9], Aedes (2019) [23], and West Nile37

virus (2020) [24], the U.S. CDC COVID-19 forecasting collaboration (2020) [27], and the U.S.38

CDC’s flagship influenza forecasting challenge, FluSight, held annually since the 2013/14 flu39

season. The FluSight challenge alone has resulted in a wave of infectious disease forecasting40

model development [13, 12, 11, 14, 20, 19, 4, 3, 10, 15, 1, 28, 26].41

The organizing body of a forecasting challenge (in the case of FluSight, the U.S. CDC)42

provides immense operational and research value by determining forecasting targets of public43

health relevance through interactions with their state and local public health partners, iden-44

tifying relevant data sources and making them publicly available to forecasters, and defining45

the forecast evaluation criteria — a more challenging task than it may first appear (see [2]46

and [21]).47

For instance, the FluSight challenge asks forecasters to predict seven targets on a weekly48

basis throughout the flu season: 1 through 4-week-ahead forecasts of influenza-like illness49

(ILI), the week of flu season onset, the week the flu season will peak, and the peak value50

of ILI for the flu season. Forecasts are made for states, Health and Human Services (HHS)51

regions, and the United States. ILI data collected by the U.S. Outpatient Influenza-like Illness52

Surveillance Network (ILINet) are used for forecasting; targets are defined as summaries of ILI53

data. FluSight uses the log scoring rule to evaluate forecasts. The log scoring rule evaluates54

probabilistic forecasts, requiring forecasters to not only provide a prediction of what they think55

will happen in the future but also quantify how sure they are of that. The choice made by the56

U.S. CDC to use a log scoring rule makes clear their position that uncertainty quantification57

is of value to public health. Given a set of forecasting targets and an evaluation metric,58

forecasters develop models capable of forecasting the targets with the goal of maximizing59

their forecast evaluation score.60

While a forecasting model’s predictive performance is and should be of primary impor-61

tance, it is not exclusively important. This seems obvious upon even cursory consideration.62

For instance, all else equal, an interpretable forecasting model is better than a black box fore-63

casting model. All else equal, a generalizable forecasting model applicable to many disease64

forecasting contexts is better than a highly-tailored model to a specific disease context. All65

else equal, a forecasting model that runs quickly and is scalable is better than one that is66

slow and computationally expensive. While all of these seem obvious, none of these secondary67

factors are incorporated into FluSight’s forecast evaluation criteria; it only measures the pre-68
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dictive performance of the model. As a result, much of the forecasting research of the past69

decade has focused more on developing models that improve forecasting scores and less on70

developing models that are generalizable, interpretable, scalable, and fast.71

In this paper, I focus on improving the runtime of flu forecasting models while main-72

taining high prediction standards with the presentation of Inferno, a fast and accurate flu73

forecasting model. Inferno is a parallelizable, empirical Bayesian forecasting model inspired74

by Dante, the top performing model in FluSight 2018/19 [14]. The achieved goal of Inferno75

is to maintain the high predictive performance of Dante but substantially decrease the run-76

time. As will be discussed later, Inferno would have placed 2nd only to Dante in the 2018/1977

FluSight challenge, but runs in minutes rather than hours, constituting a significant speed-up78

in operational performance.79

In the remainder of this paper, I describe the details to Inferno (Section 2) and present80

Inferno’s forecasting performance as compared to all participating models in FluSight 2018/1981

(Section 3). I conclude the paper by raising important questions the infectious disease fore-82

casting community must grapple with in order to improve the utility for forecasting challenges83

for public health.84

2 Methods85

2.1 Dante Background86

Dante is a multiscale, probabilistic, influenza forecasting model. Dante has two sub-models: a87

state forecasting model and an aggregation model which combines state forecasts to produce88

HHS regional and United States forecasts. The state forecasting model is a statistical model89

where the expectation of ILI on a given week, state, and season is modeled as a function90

of four components: an overall trend component, a state-specific deviation component, a91

season-specific deviation component, and a state/season-specific deviation component. These92

four components are each modeled as random or reverse-random walks — flexible time series93

models that capture temporal correlation. By modeling all states and past flu seasons jointly,94

Dante achieves self-consistency and is able to borrow information across seasons and space.95

By modeling the HHS regional and United States forecasts as U.S. Census weighted averages96

of state forecasts, Dante ensures self-consistency across geographic scales. For more details97

on Dante, see [14].98

Dante is a fully Bayesian model, capturing uncertainty in all model parameters, latent99

states, and forecasts through its posterior (predictive) distribution. The fully Bayesian for-100

mulation and self-consistency of Dante comes at a computational price, however. Dante101

represents a large model that will grow each year as more historical data are added and is102

not well-positioned to scale with possible future changes/expansions to FluSight (e.g., county-103

level forecasting). Nothing is precomputed and due to its interconnected model structure, it104
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is not obvious how to break up Dante to exploit parallelization.105

Inferno was developed to addresses these computational shortcomings. Inferno is an em-106

pirical Bayesian analogue to the fully Bayesian Dante, where instead of modeling historical flu107

seasons directly, Inferno uses historical flu seasons to precompute model parameters. Inferno108

trades in self-consistency for parallelization, allowing all states, HHS regions, and the United109

States to be fit independently. In Section 2.2, I describe the Inferno forecasting model.110

2.2 Inferno111

Let yt ∈ (0, 1) for t = 1, 2, . . . , T be ILI/100 for states or state-weighted ILI/100 for HHS112

regions or the United States (collectively referred to as (w)ILI) for week of season t, where113

t = 1 corresponds to Morbidity and Mortality Weekly Report (MMWR) week 40, roughly the114

beginning of October, and T = 35 roughly corresponds to the end of May. Inferno’s generative115

model is defined as follows:116

yt|θt, α ∼ Beta(αθt, α(1− θt)) (1)

θt = logit−1(γt + δt) (2)

δ|µ,Σ ∼ GP(µ1,Σ) (3)

µ|σ2
µ ∼ N(0, σ2

µ) (4)

Σi,i = σ2
Σ (5)

Σi,j 6=i = φσ2
Σexp(−λ(i− j)2), (6)

where yt is the noisy but observable measurement of ILI/100 on week t, θt is the true but117

unobservable value of ILI/100 on week t, δ = (δ1, δ2, . . . , δT )′ is a T × 1 vector, 1 is a T × 1118

vector of 1s, Σ is a T ×T positive semi-definite matrix, GP(µ,Σ) is a Gaussian process (GP)119

with mean µ and covariance Σ, the scalar parameters α, σ2
µ, σ2

Σ, λ are all greater than 0,120

and φ ∈ [0, 1]. In this paper, bold quantities represent vectors or matrices, while non-bold121

quantities represent scalars. The Beta distribution of Equation 1 requires yt ∈ (0, 1). Thus,122

all yt below a low threshold l are set equal to l and all yt above 1− l are set to 1− l. For this123

work, l = 0.0005.124

Inferno takes an empirical Bayesian approach, where unknown parameters are estimated125

from historical training data. The following outlines a six step procedure to estimate the126

unknown parameters α, γ = (γ1, γ2, . . . , γT )′, σ2
µ, σ2

Σ, λ, and φ and to use Markov chain127

Monte Carlo (MCMC) to sample and forecast from Inferno’s posterior predictive distribution.128

2.2.1 Step 1: Estimate θs,t129

For a given geographical unit (e.g., state, region country), let ys,t by (w)ILI for training season130

s ∈ 1, 2, . . . , S and week of season t. Fit β̂s,t as a 3-week moving average:131
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β̂s,1 =
1

2
(ys,1 + ys,2) (7)

β̂s,t 6=1,T =
1

3
(ys,t−1 + ys,t + ys,t+1) (8)

β̂s,T =
1

2
(ys,T−1 + ys,T ). (9)

Figure 1 shows the moving average fit to ILI in Illinois. By construction, the moving average132

captures the shape of the ILI curve. The moving average, however, can miss sharp changes133

in ILI caused by differences in reporting practices over holidays. For instance, we see that134

the moving average most often underestimates ILI the week of Christmas (t = 13, or MMWR135

week 52).136
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Figure 1: ILI (grey points) and β̂s,t (black line) for the historical seasons for Illinois. ILI for

the week of Thanksgiving (t = 8) and Christmas (t = 13) are highlighted in brown and green,

respectively. β̂s,t typically underestimates the sharp uptick in ILI observed on Christmas and

to a lesser extent Thanksgiving, which is likely a result of changes in reporting and care-seeking

behavior over the holidays.

To capture the systematic sharp changes in ILI that are common across training seasons,137

Inferno computes the quantity τt:138

τ̂t =
1

S

S∑
s=1

(ys,t − β̂s,t). (10)

Figure 2 plots τt for all states. τt captures the holiday effects in ILI, with a small but consistent139

positive τt on the week of Thanksgiving (t = 8, or MMWR week 47) and a larger positive140

effect the week of Christmas.141

Finally, the quantity θs,t captures both the ILI profile (β̂s,t) and the holiday effects (τ̂t):142
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Figure 2: The quantity τ̂t for all states. τ̂t the week of Thanksgiving (brown) and Christmas

(green) are systematically positive, likely as a result of systematic changes to reporting and care-

seeking behavior over the holidays.

θ̂s,t =


l if β̂s,t + τ̂t < l

1− l if β̂s,t + τ̂t > 1− l

β̂s,t + τ̂t otherwise.

(11)

Figure 3 shows how θ̂s,t tracks the profile of the ILI season, like β̂s,t, but better tracks ILI143

on the holidays, especially Christmas.
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Figure 3: ILI (grey points) and θ̂s,t (black line) for the historical seasons for Illinois. ILI for

the week of Thanksgiving (t = 8) and Christmas (t = 13) are highlighted in brown and green,

respectively. θ̂s,t better matches ILI data on the holidays than β̂s,t (Figure 1) by accounting for

the systematic reporting and care-seeking changes over the holidays, as accounted for by τ̂t.
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2.2.2 Step 2: Estimate α145

Inferno estimates θ̂s,t in order to facilitate the estimation of the other unknown quantities146

of Inferno’s generative model. The expectation and the variance of Inferno’s data model147

(Equation 1) are,148

E(yt|θt, α) = θt (12)

Var(yt|θt, α) =
θt(1− θt)

1 + α
. (13)

The parameter α controls the variance of the data model, capturing the week-to-week vari-149

ability in the ILI data. The larger α is, the smaller the variance reflecting less week-to-week150

noise in the ILI data. The smaller α is, the larger the variance reflecting more week-to-week151

noise in the ILI data. We estimate α > 0 as the maximum likelihood estimate (MLE) of152

Inferno’s data model by minimizing the negative log likelihood:153

α̂ = argmin
α

S∑
s=1

T∑
t=1

−log(Beta(ys,t|θ̂s,t, α)), (14)

where log(x) is the natural log of x,154

Beta(ys,t|θ̂s,t, α) =
ya−1
s,t (1− ys,t)b−1

B(a, b)
(15)

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(16)

a = αθ̂s,t (17)

b = α(1− θ̂s,t), (18)

and Γ() is the gamma function.155

The top of Figure 4 shows α̂ for all states, territories, and cities (collectively referred to as156

states). States like the U.S. Virgin Islands, North Dakota, and Puerto Rico have the smallest157

α̂s, reflecting they have the largest week-to-week noise in their ILI data, while states like158

California, Illinois, and New York City have the largest α̂s, reflecting they have the smallest159

week-to-week noise in their ILI data. The bottom of Figure 4 shows the 95% prediction160

interval for Beta(α̂θ̂s,t, α̂(1 − θ̂s,t)) for North Dakota, Nevada, and Illinois, illustrating the161

different levels of week-to-week noise in ILI data across states.162

2.2.3 Step 3: Estimate γt163

Seasonal flu has a typical shape to it in the United States. ILI starts at low levels early in the164

season, rises to a peak between December and March, and reverts to low levels by the end165

of May. The role of γ is to capture this typical seasonal flu profile. Inferno computes γt as166

follows:167
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Figure 4: (Top) α̂ for all states based on training data from 2010/2011 through 2017/18. (Bottom)

ILI (grey points), θ̂s,t (black line) and 95% prediction interval for Beta(α̂θ̂s,t, α̂(1− θ̂s,t)) (ribbon)

for North Dakota, Nevada, and Illinois in 2016/17. α̂ captures the week-to-week noise in ILI data

that systematically varies from state-to-state, where North Dakota has more week-to-week noise

than Illinois.

γ̂t =
1

S

S∑
s=1

logit(θ̂s,t), (19)

where logit(p) = log(p/(1− p)).168

Figure 5 shows γ̂ for North Dakota, Nevada, and Illinois. We see for all states, γ̂ captures169

the typical profile of seasonal flu on the logit scale, with low levels at the beginning of the flu170

season, ramping up to a peak in the middle, then reverting back to low levels by the end.171

2.2.4 Step 4: Estimate σ2
µ172

Equation 2 is the mean of Inferno’s data model. While γ captures the typical profile of seasonal173

flu, δ captures season-specific deviations from γ. Inferno models δ with a Gaussian process174

(GP), a stochastic process where any finite collection of random variables has a multivariate175

normal distribution. That is,176
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Figure 5: γ̂ (colored line) and logit(θ̂s) (grey lines) for North Dakota, Nevada, and Illinois. γ̂

captures the typical profile of seasonal flu specific to each state on the logit scale.

GP(δ|µ1,Σ) = (2π)−T/2|Σ|−1/2exp

(
− 1

2
(δ − µ1)′Σ−1(δ − µ1)

)
, (20)

where 1 is a T × 1 vector of ones, Σ is a T × T positive semi-definite matrix, |Σ| is the177

determinant of Σ, and Σ−1 is the inverse of Σ. The model for the mean of the GP µ is178

µ ∼ N(0, σ2
µ). (21)

Step 4 describes how to estimate σ2
µ.179

First compute the following quantities:180

δ̂s,t = logit(θ̂s,t)− γ̂t (22)

µ̂s =
1

T

T∑
t=1

δ̂s,t. (23)

The top of Figure 6 shows δ̂s and µ̂s for North Dakota, Nevada and Illinois. The quantity µ̂s181

captures how far, on average, δ̂s deviates from 0.182

The quantity σ̂2
µ is computed as the unbiased sample variance of µ̂:183

σ̂2
µ =

1

S − 1

S∑
s=1

(
µ̂s −

1

S

S∑
s=1

µ̂s

)2

. (24)

The bottom of Figure 6 shows σ̂2
µ for all states. Some states, like North Dakota, have appre-184

ciable average season-to-season variation while other states, like Illinois, have smaller average185

season-to-season deviations from their typical seasonal flu profiles.186

2.2.5 Step 5: Estimate σ2
Σ, λ, φ187

Step 5 estimates the covariance parameters in Σ. The covariance matrix captures different188

characteristics of δ. Recall Equations 5 and 6:189
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Figure 6: (Top) δ̂s (colored lines) and µ̂s (grey tick marks) for North Dakota, Nevada, and Illinois.

North Dakota exhibits more season-to-season variability in µ̂s than Illinois, as can be seen in the

spread of µ̂s. (Bottom) σ̂2
µ for all states. Considerable variation in σ̂2

µ across states is observed.

Σi,i = σ2
Σ

Σi,j 6=i = φσ2
Σexp(−λ(i− j)2).

The parameter σ2
Σ is the marginal variance for the GP. It captures how far δ − µ1 typically190

deviates from 0. The top of Figure 7 plots δ̂s − µ̂s1 for North Dakota, Nevada, and Illinois.191

North Dakota exhibits more variability than Illinois as can be seen with its wider range of192

values. Inferno estimates σ2
Σ as193

σ̂2
Σ =

1

ST − 1

S∑
s=1

T∑
t=1

(δ̂s,t − µ̂s)2. (25)

The remaining parameters of Σ are φ and λ. They collectively capture two different194

characteristics of δ. The parameter φ captures the smoothness of δ. For instance, δ̂s for195

Illinois in Figure 6 are much smoother than δ̂s for North Dakota. The parameter φ captures196

this feature, with φ close to 1 resulting in smoother δs. The second characteristic of δ captured197

by φ and λ is the correlation between entries of δ. For instance, the correlation between δi198
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Figure 7: (Top row) The estimated times series from training data for the quantities δ̂s − µ̂s1.

(Bottom row) Realizations drawn from GP(0, Σ̂). Good visual agreement is seen between the

simulated δs − µs1 and the δ̂s − µ̂s1 calculated from training data, suggesting the Gaussian

process is able to capture heterogenous discrepancy characteristics across states.

and δi+1 is199

Cor(δi, δi+1) =
Cov(δi, δi+1)√

Var(δi)
√

Var(δi+1)
=
σ2

Σφexp(−λ(i− (i+ 1))2)

σ2
Σ

= φexp(−λ). (26)

Inferno estimates φ and λ by minimizing the negative log likelihood:200

λ̂, φ̂ = argmin
λ,φ

S∑
s=1

−log

(
GP(δ̂s|µ̂s, σ̂2

Σ, λ, φ)

)
. (27)

Figure 8 plots the covariance parameter estimates for all states. North Dakota has larger201

marginal variance (larger σ̂2
Σ), less smoothness (smaller φ̂), and lower correlation (smaller202

φ̂exp(−λ̂)) than Illinois.203

The bottom of Figure 7 shows realizations drawn from GP(0, Σ̂). The fitted GP does a204

good job capturing the different characteristics of the empirical quantities δ̂s−µ̂s1, suggesting205

the GP is a defensible generative model for δ.206

2.2.6 Step 6: Sample Forecasts from Inferno207

The sixth and final step of Inferno is to replace parameters with their estimates and sample208

from the posterior predictive distribution. Specifically, the generative model with parameters209
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Figure 8: Estimated GP covariance parameter estimates for all states. Parameter estimates for

North Dakota, Nevada, and Illinois are highlighted in red, orange, and yellow, respectively. North

Dakota has larger marginal variance (larger σ̂2
Σ), less smoothness (smaller φ̂), and lower correlation

(smaller Cor(δi, δi+1)) than Illinois.

replaced by their estimates is210

yt|θt ∼ Beta(α̂θt, α̂(1− θt)) (28)

θt = logit−1(γ̂t + δt) (29)

δ|µ ∼ GP(µ1, Σ̂) (30)

µ ∼ N(0, σ̂2
µ) (31)

Σ̂i,i = σ̂2
Σ (32)

Σ̂i,j 6=i = φ̂σ̂2
Σexp(−λ̂(i− j)2). (33)

Inferno forecasts the entire flu season by sampling from the posterior predictive distribution211

given the first t weeks of ILI observations:212

[ỹ|y1:t] =

∫
[ỹ,θ|y1:t]dθ =

∫
[ỹ|θ][θ|y1:t]dθ, (34)

where [X|Y ] is the conditional distribution of X given Y and ỹ is assumed to be independent213

of y, given θ where θ generically represents all parameters and latent states of Inferno. The214

posterior predictive distribution of Equation 34 is not known in closed form. Markov chain215

Monte Carlo (MCMC) sampling is used to draw from the posterior predictive distribution.216

The probabilistic programming language JAGS (Just Another Gibbs Sampler) [16] is used to217

execute the MCMC sampling. JAGS is called with functions from the rjags package [17] in218
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the programming language R [18]. The results are J draws from the posterior predictive dis-219

tribution of Equation 34. For this paper, forecasts are based on J = 25, 000 draws, discarding220

the first 12,500 draws as burn-in and thinning the remaining 12,500 draws by two, resulting221

in forecasts based on 6,250 MCMC draws. The JAGS code that implements Inferno can be222

found in Appendix A.223

Figure 9 shows the forecasts for North Dakota, Nevada, and Illinois throughout the 2018/19224

flu season. The posterior predictive mean and the 95% posterior prediction interval are shown225

as summaries of the forecasts.226
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Figure 9: Inferno forecasts for the 2018/19 flu season for North Dakota, Nevada, and Illinois

(columns) made t = 5, 10, 15, 20, 25, 30 weeks into the flu season based on summaries of draws

from the posterior predictive distribution [ỹ|y1:t] of Equation 34 (rows). Posterior mean (black

line) and 95% prediction intervals (ribbons) are displayed, along with y1:t (grey points).
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3 Results227

Inferno is compared to all models that participated in the U.S. CDC’s 2018/19 National and228

Regional FluSight challenge as well as the State challenge. Forecasting follows the guidelines229

outlined by the CDC FluSight challenge; see [22] for details. The forecasts and the evaluation230

procedure is briefly described below.231

Forecasts are made for four short-term targets (1, 2, 3, and 4-week-ahead) and three232

seasonal targets (the peak week, the peak percentage, and the onset week — onset is not233

forecasted for the State challenge). All forecast targets are binned and a probability is assigned234

to each bin such that the sum of all probabilities over all bins for a target equals 1. Say bin235

b is the bin containing the correct target and pb ∈ [0, 1] is the probability assigned to the236

correct bin. The log score is then max(−10, log(pb)). When b is the bin of the correct target,237

the evaluation criteria is called the single-bin log score; single-bin log score is the scoring238

criteria used starting with the 2019/20 FluSight challenge and is a proper score. When b239

is the set of bins containing the correct target plus/minus a set of predefined neighboring240

bins, the evaluation criteria is called the multi-bin log score; multi-bin log score is the scoring241

criteria used in the 2018/19 FluSight challenge. The multi-bin log score is an improper scoring242

rule [21]. Multi-bin skill and single-bin skill are derived by exponentiating the multi-bin and243

single-bin log scores, respectively.244

ILI data is subject to weekly revisions. As a result, it is important to use the ILI estimates245

that were available at the time to make faithful comparisons to models that participated in246

the real-time FluSight challenges. Data available at historical dates are made available by the247

Carnegie Mellon University Delphi group’s API [7] and were used to produce the results in248

this section.249

Figure 10 and Table 1 show the multi- and single-bin skills for Inferno and all models that250

participated in the 2018/19 FluSight challenges. Inferno would have placed 2nd only to Dante251

in the 2018/19 FluSight National and Regional as well as State challenges. FluSight 2018/19252

used multi-bin skill as the forecast evaluation. Starting with FluSight 2019/20, single-bin253

skill will be used. While single-bin and multi-bin skills are correlated, as can be seen in254

Figure 10, the relationship is not perfect. Models can rise or fall in the relative ranking255

depending on which evaluation metric is used for scoring, highlighting that the evaluation256

metric the forecasting challenge organizing body selects is of consequence. Inferno and Dante257

both perform better under the multi-bin skill evaluation than single-bin skill, but are both top258

4 models by either evaluation metric. Most importantly, the drop in predictive performance259

from Dante to Inferno is small.260

The small drop in predictive performance from Dante to Inferno is offset by Inferno’s261

significant improvement in runtime and preparation for future scalability to more granular262

forecasting geographies. Figure 11 shows the runtime comparison between Dante and Inferno263

at different stages of the flu season. Dante takes between 90 and 105 minutes to produce264

25,000 MCMC samples throughout the 2018/19 flu season. Inferno takes between 30 seconds265
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Figure 10: Results for the 2018/19 FluSight National and Regional challenge (top row) and State

challenge (bottom row) for Inferno (red point), Dante (blue point) and all other models that

participated in the 2018/19 FluSight challenges (grey points). The 2018/19 FluSight challenge

evaluated models using multi-bin skill (x-axis), but starting with the FluSight 2019/20 challenge,

will be using single-bin skill (y-axis). Skill scores are presented overall (left column), but also

by seasonal targets (middle column) and short-term targets (right column). Inferno is a leading

forecasting model overall, excelling in short-term forecasting, with good but not leading seasonal

forecasting performance.

and 2 minutes to produce the same number of MCMC samples. The runtimes in Figure 11 are266

not directly comparable, as Inferno’s runtimes are for only one of the 64 geographies (53 states,267

10 HHS regions, and the United States), while Dante’s runtimes are for all 64 geographies. If268

Inferno ran sequentially over all geographies, it would take roughly 30 minutes at the beginning269

of the season and 130 minutes at the end of the season, resulting in no computational gains over270

Dante by the end of the flu season. However, Inferno is trivially parallelizable. With cluster271

computing, all 64 geographies of Inferno could be computed simultaneously in two minutes272

or less. The significant advantage Inferno has over Dante is its scalability via parallelization.273

Thus, while Inferno’s predictive performance is comparable to but slightly worse than Dante’s,274

its significantly improved runtime and scalability make it a more attractive alternative for both275

the present and the future.276
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Table 1: The rank by challenge and target for Inferno and Dante as measured by single-bin and

multi-bin skill. Inferno would have placed 2nd in both the National and Regional and the State

challenges as measured by multi-bin skill, only finishing behind Dante. Inferno would have placed

4th (National and Regional) and 3rd (State) were the forecasts evaluated with single-bin skill.

For both challenges and both evaluation metrics, Inferno achieved better short-term than seasonal

performance.

2018/19 FluSight Multi-bin Rank Single-bin Rank

Challenge Target Inferno Dante Inferno Dante

National and Regional

Overall 2 1 4 1

1 wk ahead 1 2 1 2

2 wk ahead 1 2 2 1

3 wk ahead 1 2 2 1

4 wk ahead 2 1 2 1

Season peak percentage 5 1 5 3

Season peak week 11 8 11 8

Season onset 5 1 7 1

State

Overall 2 1 3 2

1 wk ahead 3 1 3 1

2 wk ahead 2 1 2 1

3 wk ahead 1 2 2 1

4 wk ahead 1 2 1 2

Season peak percentage 3 2 5 2

Season peak week 3 1 3 1

4 Discussion277

In this paper, I argued that while predictive performance is the most important measure278

of a forecasting model, it is not singularly important. Other factors like interpretability,279

generalizability, scalability, and runtime are also important. Developing a model with leading280

predictive performance but drastically improved runtime was the motivation behind Inferno.281

I laid out a six step procedure to estimate the parameters of Inferno from historical ILI data,282

greatly reducing the MCMC computations as executed by the probabilistic programming283

language JAGS. Furthermore, by forecasting each geography separately, Inferno can take284

advantage of parallelization, both improving forecast runtimes in the present while being285

scalable and well-positioned for the more spatially granular future of flu forecasting (e.g.,286

county-level forecasting).287
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Figure 11: The average wall-clock runtime for a geography (e.g., a state) of Inferno (red) and

actual wall-clock runtime for Dante (blue) to get 25,000 MCMC samples. Runtime increases as

the size of the conditioning data increases for both Dante and Inferno. Inferno runs in 30 seconds

early in the season (t=5) and takes approximately 2 minutes by the end of the flu season (t=30).

In contrast, Dante takes approximately 90 minutes to run at the beginning of the flu season and

105 minutes by the end as a result of it conditioning on a much larger set of data.

Inferno’s predictive performance was comparable to but worse than Dante’s. This may be288

for a couple different reasons, both of which are addressable. Firstly, Dante explicitly models289

backfill; previous work has shown that accounting for and modeling backfill can result in290

improved predictive performance [4, 11]. Similar modeling can be incorporated into Inferno at291

little additional computational cost. Secondly, Dante achieves self-consistency in its forecasts292

by modeling and forecasting all nested geographical units jointly. This self-consistency comes293

at a computational cost. The price Inferno pays to achieve significant computational speed-294

ups is the loss of self-consistency. There has been some recent work that takes independently295

generated probabilistic forecasts and, using principles of coherence, produces self-consistent296

forecasts that have improved predictive performance [8]. The combination of backfill modeling297

and coherence exploitation may result in equal or even better predictive performance at298

minimal computational cost.299

Inferno’s development was motivated by the desire to build a forecasting model that main-300

tains world-leading predictive performance while improving forecasting model properties not301

directly evaluated by FluSight. It is relatively straightforward to list characteristics we desire302

in an infectious disease forecasting model that extend well beyond predictive performance.303

For instance, we want forecasting models to304

• reliably and accurately forecast public health relevant targets with actionable lead times305

• quantify their forecast uncertainties306
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• incorporate public health interventions, facilitating “what-if” scenario assessments307

• be transferrable between disease contexts and geographies308

• run at all spatial scales309

• be nimble and adaptable to ever-changing forecast settings310

• run quickly, facilitating fast development and testing.311

No forecasting model in existence today does all of these things well, but developing such a312

model should be the goal.313

Forecasting challenges have proven to be highly effective organizing tools to help focus314

forecasters around a common goal, providing real value to public health responses. The sin-315

gular goal of forecasters to maximize their predictive score is both a blessing and a curse.316

The predictive score helps generate competition which drives innovation and improvement.317

It also puts up blinders to all other characteristics we want forecasting models to have. A big318

question the forecasting community must address going forward is how forecasting challenges319

can be modified to expand their definition of what a “good” forecasting model is. That is,320

should forecasting challenges explicitly incorporate aspects of forecasting model generalizabil-321

ity, interpretability, utility, scalability, and speed and if so, how? Or are forecasting challenges322

not meant to assess forecasting models holistically but rather only assess one specific aspect323

of those models — their predictive performance?324
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Appendix A330

The following inputs are supplied to the JAGS model that implements Inferno:331

• T is 35, the number of weeks of the flu season.332

• y is a 35 × 1 vector where y[t] is the observed (w)ILI value for week t if it has been333

observed or NA if it has not. If y[t] is less than 0.0005 or greater than 0.9995, y[t] is334

set equal to 0.0005 or 0.9995, respectively.335

• alpha is α̂, computed from Equation 14.336

• gamma is a 35 × 1 vector where gamma[t] is γ̂t, computed from Equation 19.337

• invCholUpper is the inverse of the upper triangular Cholesky decomposition of Σ̂−1,338

where Σ̂ is computed from Equation 32 and 33.339

• sigma_mu is the square root of σ̂2
µ, computed from Equation 24.340

The JAGS code implementing Inferno is as follows:341

model{342

for(t in 1:T){343

## draw from posterior predictive distribution344

ypred[t] ~ dbeta(alpha*theta[t], alpha*(1-theta[t]))345

## data model346

y[t] ~ dbeta(alpha*theta[t], alpha*(1-theta[t]))347

## compute theta348

theta[t] <- ilogit(gamma[t] + delta[t])349

}350

## discrepancy GP model351

delta[1:T] <- mu + invCholUpper %*% Z[1:T]352

## sample standard normals353

for(t in 1:T){354

Z[t] ~ dnorm(0,1)355

}356

## discrepancy mean model357

mu ~ dnorm(0,pow(sigma_mu,-2))358

}359
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