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ABSTRACT 16 

Immunohistochemistry (IHC) assays play a central role in evaluating biomarker expression in tissue 17 

sections for diagnostic and research applications. Manual scoring of IHC images, which is the current 18 

standard of practice, is known to have several shortcomings in terms of reproducibility and scalability to 19 

large scale studies. Here, by using a digital image analysis-based approach, we introduce a new metric 20 

called the pixelwise H-score (pix H-score) that quantifies biomarker expression from whole-slide scanned 21 

IHC images. The pix H-score is an unsupervised algorithm that only requires the specification of intensity 22 

thresholds for the biomarker and the nuclear-counterstain channels. We present the detailed 23 

implementation of the pix H-score in two different whole-slide image analysis software packages 24 

Visiopharm and HALO. We consider three biomarkers P-cadherin, PD-L1, and 5T4, and show how the pix 25 

H-score exhibits tight concordance to multiple orthogonal measurements of biomarker abundance such 26 

as the biomarker mRNA transcript and the pathologist H-score. We also compare the pix H-score to 27 

existing automated image analysis algorithms and demonstrate that the pix H-score provides either 28 

comparable or significantly better performance over these methodologies. We also present results of an 29 

empirical resampling approach to assess the performance of the pix H-score in estimating biomarker 30 

abundance from select regions within the tumor tissue relative to the whole tumor resection. We 31 

anticipate that the new metric will be broadly applicable to quantify biomarker expression from a wide 32 

variety of IHC images. Moreover, these results underscore the benefit of digital image analysis-based 33 

approaches which offer an objective, reproducible, and highly scalable strategy to quantitatively analyze 34 

IHC images.  35 

 36 

 37 
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INTRODUCTION 39 

Immunohistochemistry (IHC) is a core technology that is used to evaluate the spatial distribution and 40 

abundance of biomarkers at the protein level in tissue samples. In oncology clinical diagnosis and research 41 

applications, IHC assays play a central role in tumor characterization and biomarker assessment. Typically, 42 

IHC images are qualitatively evaluated by a trained expert, such as a pathologist, and in some cases this is 43 

complemented by a semi-quantitative score [1]. However, visual quantitative scoring of IHC images is not 44 

routinely performed due to several shortcomings. On the one hand, visual quantitative scoring is time 45 

consuming and is often not feasible to perform on a routine basis especially for large studies. On the other 46 

hand, visual quantitative scores are subjective and often have a limited dynamic range due to their 47 

categorical nature (e.g. manual scores of 0, 1+, 2+, and 3+). Consequently, they may not have the 48 

granularity to adequately capture biomarker expression from an IHC slide [2, 3]. The subjectivity of the 49 

scoring process, in turn, can manifest as poor inter- and intra-observer concordance, and this has been 50 

the subject of numerous studies [4-8]. While concordance in visual quantitative scoring can be improved 51 

by the development of standardized scoring guidelines and extensive training [9, 10], the labor-intensive 52 

aspect and the limited dynamic range still remain as major impediments to the widespread use of visual 53 

quantitative scoring of IHC images.  54 

Digital image analysis (DIA) based tools overcome some of these limitations of visual quantitative scoring 55 

by enabling fast, objective, and highly reproducible quantification of biomarkers from whole-slide IHC 56 

images [1, 11]. DIA endpoints are typically continuous variables (e.g. cell density and % positive cells) and 57 

offer adequate dynamic range to represent biomarker expression in the IHC image. One of the widely 58 

used endpoints to quantify biomarker expression is the H-score [2, 12]. In the H-score algorithm (Figure 59 

1A) individual cells and their sub-cellular compartments (i.e. nucleus, cytoplasm, and cell membrane) are 60 

first detected, and based on the relative expression of the biomarker of interest in one or more sub-61 
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cellular compartments the cells are classified as either positive or negative. The positive cells are further 62 

classified into high (3+), medium (2+), or low (1+) based on the biomarker signal intensity. The H-score is 63 

given by the ratio of the weighted sum of the number of positive cells to the total number of detected 64 

cells. The H-score captures both the intensity and the proportion of the biomarker of interest from the 65 

IHC image and comprises values between 0 and 300, thereby offering a dynamic range to quantify 66 

biomarker abundance.  A different scoring method developed to quantify estrogen and progesterone 67 

receptors in breast cancers, the Allred score [2, 12], assigns separate categorical scores for the intensity 68 

(0-3) and the proportion (0-5) of the biomarkers in immunolabeled specimens, and the final score is the 69 

sum of these two scores. Compared to the H-score, the Allred score has a limited dynamic range (0-8) and 70 

is not extensively used for purposes other than ER/PR quantification in breast cancer. From a digital image 71 

analysis standpoint, both the H-score and the Allred score require the detection of individual cells, and 72 

this requires robust nucleus and cell segmentation algorithms for individual nucleus detection and 73 

delineation of individual cell boundaries.  74 

Another scoring methodology, the average threshold method (ATM), adopts a pixelwise approach for 75 

quantifying biomarker abundance [13]. The ATM score does not require the detection of individual nuclei 76 

or cells and is solely based on the pixel intensities of the DAB chromogen in the spectrally deconvolved 77 

image. Consequently, the calculation of the ATM score is relatively straightforward but at the expense of 78 

decreased dynamic range as compared to the H-score.   79 

The AQUA score [14] also makes use of a pixelwise strategy for quantifying biomarker expression. Here, 80 

the tissue is fluorescently labeled for the biomarker of interest along with a nuclear stain and a cell 81 

membrane marker. This in turn allows the generation of pixel masks pertaining to different subcellular 82 

compartments (e.g., cell membrane, nucleus, or cytosolic mask). The AQUA score is then calculated by 83 

taking the total fluorescence signal of the biomarker of interest for a given subcellular mask (e.g. the cell-84 
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membrane mask) and normalizing it by the total area of the mask [14]. The advantage of the AQUA score 85 

is that it offers a broad dynamic range. However, the calculation of the AQUA score requires the 86 

development of a fluorescence-based multiplex assay which can be time consuming and technically 87 

challenging. Moreover, the use of fluorescence readout masks anatomic and morphological information 88 

(e.g. necrotic regions, stroma, etc.) that are readily detectable from a brightfield IHC image.  89 

In this manuscript, three different scoring methods are compared, which are illustrated in Figure 1.  We 90 

introduce a new DIA method, the pixelwise H-score (pix H-score), for quantifying biomarker abundance 91 

from brightfield IHC images by making use of individual pixel intensities in DAB and hematoxylin channels 92 

and leveraging weighted intensity averages. Our motivation behind developing the pix H-score is to create 93 

a simple, yet robust metric to accurately quantify biomarker expression without relying on the detection 94 

and delineation of individual cells and their sub-cellular compartments. The latter makes the 95 

implementation of the pix H-score to be relatively straightforward. The pix H-score can be thought of as 96 

an equivalent of the traditional H-score that is applied to pixels rather than to cells. The pix H-score takes 97 

values between 0 and 300 thereby providing a dynamic range similar to that of the H-score.  98 

We evaluated the performance of pix H-score using IHC images of three different membrane biomarkers 99 

P-cadherin, PD-L1, and 5T4. For comparison, we also calculated the ATM score and the DIA H-score for 100 

these images, where the latter is a DIA implementation of the traditional H-score. Using the pathologist 101 

H-score and biomarker mRNA transcript level (measured using qRT-PCR or  NanoString analysis of mRNA 102 

in adjacent serial sections) as orthogonal measurements of biomarker abundance, we demonstrate that 103 

the pix H-score is either comparable or superior to other DIA endpoints in quantifying biomarker 104 

abundance in IHC images. We present the detailed implementation of the pix H-score in two commercial, 105 

whole-slide, image analysis software packages, Visiopharm and HALO. We also present an empirical 106 

resampling approach to quantitatively assess the ability of the pix H-score to estimate biomarker 107 
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abundance when it is calculated from select regions within the tumor resection when compared to the 108 

whole slide pix H-score. We anticipate that the new metric will have broad applicability and pave the way 109 

towards establishing an objective, reproducible strategy to quantify biomarker abundance in IHC images.   110 
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MATERIALS AND METHODS 111 

Previously-developed IHC assays for P-cadherin, PD-L1, and 5T4  were used to immunolabel three cohorts 112 

of human tumors.  Serial sections from these cohorts were also evaluated for target mRNA via NanoString 113 

(P-cadherin and PD-L1) or qRT-PCR (5T4).  Following H-scoring of the immunolabeled tumor sections by a 114 

pathologist, the concordance between the H-score and mRNA values was evaluated by Spearman 115 

correlation.  To automate the scoring process through digital image analysis, we implemented several DIA 116 

strategies using different software tools. Specifically, we implemented digital H-scoring using QuPath and 117 

HALO software packages, the ATM score using Visiopharm software, and the pix H-score, the new digital 118 

scoring method, using HALO and Visopharm software packages.  To assess the performance of the various 119 

DIA algorithms, we calculated the Spearman’s correlation coefficient between each DIA endpoint and two 120 

different measurements of biomarker abundance, i.e. the pathologist H-score and the target transcript 121 

level as assessed using either NanoString technology or qRT-PCR.   122 

Immunohistochemistry: All tumor samples used in this study were anonymized specimens from 123 

commercial and academic sources that collected the specimens with donor consent under Institutional 124 

Review Board-approved procedures. For PD-L1, we used twenty-four cases of routinely collected non-125 

small cell lung carcinoma surgical resections. The SP142 clone of anti-PD-L1 antibody was used as per the 126 

manufacturer-recommended protocol. For P-cadherin, we used thirty cases of routinely collected head 127 

and neck tumor resections. The P-cadherin IHC assay was developed and optimized on the Dako 128 

Autostainer system using a custom anti-P-cadherin antibody that was generated as an analyte specific 129 

reagent for use in a clinical diagnostic assay. For 5T4, we used twenty-one cases of routinely collected 130 

non-small cell lung tumor resections. The development and validation of the 5T4 IHC assay was reported 131 

previously [15]. In all three IHC assays hematoxylin was used as the nuclear counterstain and 132 

diaminobenzidine (DAB) was the chromogen that was used to detect the biomarker of interest. P-cadherin 133 
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and PD-L1 slides were scanned using a Leica Aperio AT2 whole-slide scanner at 20x magnification, whereas 134 

5T4 slides were scanned using a Hamamatsu Nanozoomer whole-slide scanner at 20x magnification.  135 

NanoString assay: Messenger RNA (mRNA) was isolated from two 4-micron FFPE slide sections using 136 

FormaPure® nucleic acid isolation kit according to manufacturer’s instructions with the addition of a DNA 137 

digestion step. NanoString technology was used to measure RNA transcript levels using the nCounter 138 

assay according to manufacturer’s recommended protocols. Custom nCounter CodeSet containing either 139 

the CDH3 probe (for P-cadherin) or the CD274 probe (for PD-L1) was used. One hundred nanograms of 140 

total RNA was hybridized to the custom panel for 16 to 20 hours at 65°C.  Samples were processed using 141 

an automated nCounter sample prep station.  Cartridges containing immobilized and aligned reporter 142 

complex were subsequently imaged and counted on an nCounter Digital Analyzer set for maximum fields 143 

of view.  Reporter counts were analyzed and normalized using NanoString nSolver Analysis 144 

Software.  Briefly, raw counts were multiplied by scaling factors proportional to the sum of counts for 145 

spiked in positive control probes to account for individual assay efficiency variation, and to the geometric 146 

average of the housekeeping gene probes to account for variability in the mRNA content. FFPE sample 147 

sets were normalized to the following housekeeping genes; for P-cadherin: FTL, GAPDH, GUSB, HMBS, 148 

HPRT1, OAZ1, PCBP1, PFN1, PPIA, PSAP and TBP; and for PD-L1: AMMECR1L, CNOT10, CNOT4, COG7, 149 

DDX50, EDC3, EIF2B4, ERCC3, FCF1, FTL, GPATCH3, GUSB, HDAC3, HPRT1, MTMR14, PPIA, SAP130, TBP, 150 

TMUB2, and ZNF143.  151 

qRT-PCR assay: The qRT-PCR reaction was performed using the TaqMan Probe-Based Gene Expression 152 

Analysis and ABI ViiA7 Real-Time PCR Systems (Life Technologies) as described previously [15]. Target 153 

gene and endogenous controls were run in quadruplicate for each probe set on prefabricated TaqMan 154 

low density array cards. For each tumor sample 1000 ng of cDNA was diluted to 55 uL with nuclease-free 155 

water and 55 uL of TaqMan gene expression master mix was added (Life Technologies, cat # 4352042). A 156 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.425539doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425539
http://creativecommons.org/licenses/by/4.0/


9 
 

total of 100 uL of sample was added to each of the 8 ports on a single card, after which the plate was 157 

sealed and centrifuged two times in Sorvall/Heraeus buckets based on manufacturer’s directions. TaqMan 158 

array cards were then sealed and loaded into the ABI ViiA7 thermal cycler and run. Default thermal cycling 159 

conditions were as follows; the RT-PCR reaction was run on the thermal cycler in three stages; 2 minutes 160 

at 50°C, 10 minutes at 90°C and 40 cycles of 15 seconds at 90°C followed by 1 minute at 60°C. 161 

ExpressionSuite Software v1.0.3 (Life Technologies) was used to generate automated threshold values for 162 

signal amplification for a majority of samples. Rarely were automated thresholds adjusted manually. 163 

Amplification plots resulting in Ct values >35 were discarded, as were those plots that generated a Ct value 164 

but did not display a trend of logarithmic amplification. All Ct values were exported from the 165 

ExpressionSuite software and relative quantification calculations were performed in Microsoft Excel 2010. 166 

 167 

Digital Image analysis: IHC images of P-cadherin, PD-L1, and 5T4 were analyzed at 20x magnification using 168 

multiple software packages. The detailed implementation in each software package is described below. 169 

Briefly, the traditional cell-based H-score was implemented in HALO (Version 2.3) and QuPath (Version 170 

0.2.0-m2) and was calculated based on the cell-membrane localized biomarker signal. The ATM score was 171 

implemented in Visiopharm (Version 2017.7.3.4069) and the pix H-score was implemented in Visiopharm 172 

and HALO.  173 

HALO implementation of H-score (H-score (HALO)): The membrane algorithm (v1.4) in HALO was used to 174 

detect cells and calculate the H-score. The algorithm first deconvolves the IHC image into hematoxylin 175 

and DAB channels, then detects individual cells and their subcellular compartments, i.e. nucleus and cell 176 

membrane, in the image, and scores the cells as high, medium, and low based on the average DAB signal 177 

associated with the cell membrane. The thresholds for high, medium, and low were determined 178 

separately for each biomarker by examining the membrane-associated DAB signal across multiple images 179 

pertaining to that biomarker. A separate algorithm was implemented for each biomarker in order to 180 
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optimize the detection and segmentation of the nucleus and cell membrane specific to that biomarker. 181 

The App outputs the number of negative, high, medium and low cells, which is then used to calculate the 182 

H-score that is given by 183 

          184 

QuPath implementation of H-score (H-score (QuPath)): QuPath is an open-source software for whole-185 

slide image analysis of histopathology data [16]. A script was written in the Groovy programming language 186 

to detect cells and score them as high, medium, and low based on the average DAB signal in the cell 187 

membrane. The script first deconvolves the IHC image into hematoxylin and DAB channels. A watershed-188 

based cell and membrane detection algorithm (Analyze -> Cell Analysis -> Cell + membrane detection) was 189 

used to detect individual cells and identify their subcellular compartments, i.e. nucleus and cell 190 

membrane. The cell detection algorithm includes a pre-processing step that involves a local background 191 

subtraction by using the minimum filter.  The optional median filtering step was not used. Cells that were 192 

devoid of a nucleus (due to weak or missing hematoxylin staining) were excluded and the remaining cells 193 

were scored as high, medium, and low based on the mean DAB signal associated with the membrane 194 

compartment. The thresholds for high, medium, and low were determined separately for each biomarker. 195 

A separate script was implemented for each biomarker in order to optimize the detection and 196 

segmentation of the nucleus and cell membrane specific to that biomarker. The script outputs the total 197 

number detected cells along with the number of high, medium, and low cells, which is then used to 198 

calculate the H-score that is given in Eq. 1.  199 

ATM score: The motivation behind the ATM score is discussed elsewhere [13]. Briefly, the idea is to use 200 

all the intensity values in the DAB channel so that the final metric is independent of the choice of the 201 

thresholds. Further, the ATM score is a pixel-based metric that does not depend on the detection of 202 

H-score = 100𝑥𝑥 3∗(# 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 2∗(# 𝑜𝑜𝑜𝑜 𝑚𝑚𝑐𝑐𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + # 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑜𝑜𝑇𝑇𝑇𝑇𝑐𝑐 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛𝑐𝑐𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                   1 
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individual cells and/or its subcellular components. Assuming 8-bit resolution for the color-deconvolved 203 

biomarker channel, the ATM score is given by [13] 204 

205 

where PS(k) denotes the proportion of pixels with intensity greater than or equal to k, where k takes 206 

values from 0 to 255 (i.e. 28 grey levels). If n denotes the total number of pixels in the biomarker channel, 207 

bi denotes the biomarker intensity at the ith pixel for I = 1,..,n, and I(bi > k) denotes an indicator function, 208 

i.e. I(bi > k) = 1 if bi > k and 0 otherwise, then the term PS(k) can be written as  209 

210 

Substituting the above equation in Eq. 2, we have 211 

 212 

213 

 214 

 215 

From the above equation, we see that the ATM score is a weighted average of all the pixels in the DAB 216 

channel. The ATM score was implemented in Visiopharm software. The IHC image was color deconvolved 217 

into hematoxylin and DAB channels. Therefore, the ATM score was calculated by taking the average 218 

intensity of all DAB positive pixels and then dividing this by 256.  219 

ATM score = 1
256

∑ 𝑃𝑃𝑃𝑃(𝑘𝑘)255
𝑘𝑘=0 ,                                                      2 

𝑃𝑃𝑃𝑃(𝑘𝑘) = 1
𝑛𝑛

(# 𝑜𝑜𝑜𝑜 𝑝𝑝𝑖𝑖𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑖𝑖𝑇𝑇ℎ 𝑣𝑣𝑇𝑇𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐 𝑖𝑖𝑛𝑛𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑛𝑛 𝑇𝑇ℎ𝑇𝑇𝑛𝑛 𝑘𝑘)  =  1
𝑛𝑛
∑ 𝐼𝐼(𝑛𝑛𝑖𝑖 > 𝑘𝑘)𝑛𝑛
𝑖𝑖=1 .                                                           

 

ATM score = 1
256

∑ 𝑛𝑛−1255
𝑘𝑘=0 ∑ 𝐼𝐼(𝑛𝑛𝑖𝑖 > 𝑘𝑘)𝑛𝑛

𝑖𝑖=1  =  𝑛𝑛
−1

256
∑ ∑ 𝐼𝐼(𝑛𝑛𝑖𝑖 > 𝑘𝑘)255

𝑘𝑘=0
𝑛𝑛
𝑖𝑖=1  

 
                                                      

 
=  

𝑛𝑛−1

256
�(𝐼𝐼(𝑛𝑛𝑖𝑖 > 0)  +  𝐼𝐼(𝑛𝑛𝑖𝑖 > 1) + . . . + 𝐼𝐼(𝑛𝑛𝑖𝑖 > 𝑛𝑛𝑖𝑖  − 1) +  𝐼𝐼(𝑛𝑛𝑖𝑖 > 𝑛𝑛𝑖𝑖) + . . . . + 𝐼𝐼(𝑛𝑛𝑖𝑖 > 255)) 
𝑛𝑛

𝑖𝑖=1

 

 
                                                      

 

=  
𝑛𝑛−1

256
�(1 +  1 + . . . + 1 +  0 + . . . . + 0) 
𝑛𝑛

𝑖𝑖=1

 

                                                      

 =  
𝑛𝑛−1

256
�𝑛𝑛𝑖𝑖  =  

1
256

(𝑇𝑇𝑣𝑣𝑐𝑐𝑛𝑛𝑇𝑇𝑖𝑖𝑐𝑐 𝑣𝑣𝑇𝑇𝑐𝑐𝑚𝑚𝑐𝑐 𝑜𝑜𝑜𝑜 𝑇𝑇𝑐𝑐𝑐𝑐 𝑇𝑇ℎ𝑐𝑐 𝑝𝑝𝑖𝑖𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑛𝑛 𝑇𝑇ℎ𝑐𝑐 𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐ℎ𝑇𝑇𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐).                         
𝑛𝑛

𝑖𝑖=1
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Visiopharm implementation of pix H-score (pix H-score (VIS)): A threshold-based detection App was used 220 

to implement the pix H-score in Visiopharm. The App first deconvolves the IHC image into hematoxylin 221 

and DAB channels. The App then detects and classifies DAB positive pixels as high, medium, and low, and 222 

then detects the hematoxylin positive pixels. The thresholds for DAB and hematoxylin were separately 223 

selected for each biomarker. The App then outputs the total area of the DAB high, DAB medium, and DAB 224 

low pixels and the hematoxylin positive pixels. These values are then used to calculate the pix H-score 225 

which is given by: 226 

 227 

 228 

 229 

In Visiopharm, the intensity-based thresholding algorithm depends on the order in which the different 230 

color-deconvolved channels are specified. For instance, if a pixel contains both hematoxylin and DAB 231 

signal that are above their respective threshold values for positivity and the DAB channel is first analyzed 232 

followed by the hematoxylin channel, then that pixel will be labeled as positive only for the DAB channel. 233 

In other words, if a pixel is found to be positive for one of the color-deconvolved channels then it is 234 

excluded from any subsequent classification for the other color-deconvolved channels.  235 

HALO implementation of pix H-score (pix H-score (HALO)): The area quantification algorithm (v2.1.3) in 236 

HALO was used to calculate the pix H-score with the number of phenotypes set to 1. The algorithm 237 

deconvolves the IHC image into hematoxylin and DAB channels and can detect and classify hematoxylin 238 

and DAB positive pixels as high, medium, and low based on a user defined threshold. For the calculation 239 

of pix H-score, a single threshold was used to detect all hematoxylin positive pixels and three separate 240 

thresholds were used to detect and classify the DAB positive pixels. In HALO, these thresholds take values 241 

pix H-score = 
100

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑎𝑎𝑎𝑎𝑇𝑇 𝑇𝑇𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑖𝑖𝑝𝑝𝑎𝑎𝑇𝑇𝑝𝑝)+(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑎𝑎𝑎𝑎𝑇𝑇 𝑇𝑇𝑜𝑜 ℎ𝑎𝑎𝑒𝑒𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑒𝑒𝑇𝑇𝑖𝑖𝑛𝑛 𝑝𝑝𝑖𝑖𝑝𝑝𝑎𝑎𝑇𝑇𝑝𝑝)
 

× (3 ∗ (𝑇𝑇𝑛𝑛𝑐𝑐𝑇𝑇 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖ℎ 𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑖𝑖𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐) + 2 ∗ (𝑇𝑇𝑛𝑛𝑐𝑐𝑇𝑇 𝑜𝑜𝑜𝑜 𝑚𝑚𝑐𝑐𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑖𝑖𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐) 

+(𝑇𝑇𝑛𝑛𝑐𝑐𝑇𝑇 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑙𝑙 𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑖𝑖𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐)).                                                       3 
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between 0 and 1. In order to keep the thresholds implemented in Visiopharm and HALO identical, the 242 

threshold values used in Visiopharm, which take values between 0 – 255, were rescaled to take values 243 

between 0 and 1 and these were then used in HALO. Unlike Visiopharm, HALO keeps track of the detected 244 

pixels in the DAB and hematoxylin channels separately. Consequently, pixels that contain both DAB and 245 

hematoxylin signal that are above the thresholds will be accounted for in both the hematoxylin and DAB 246 

channels. In order to mimic the Visiopharm implementation of pix H-score, we define a third channel, 247 

which is denoted as phenotype 1 channel in HALO that pertains to pixels that are positive for hematoxylin 248 

but negative for DAB. This phenotype 1 channel will contain pixels that are analogous to the hematoxylin 249 

positive pixels detected in the Visiopharm implementation of pix H-score algorithm. The algorithm 250 

outputs the area high, medium, and low pixels in the DAB channel, the area of positive pixels in the 251 

phenotype 1 channels, which is used to as an estimate of the total area of pixels containing only the 252 

hematoxylin signal. These values are then used in Eq. 3 to calculate the pix H-score.  253 

Statistical analysis: Spearman’s rank correlation coefficient was calculated to assess the correlation 254 

between the DIA endpoint and biomarker abundance. The William’s t test was used to test for significant 255 

difference between a pair of dependent correlation coefficients [17, 18].  256 

Spatial resampling analysis: For each biomarker, an empirical resampling procedure was performed on 257 

every whole-slide IHC image. The viable tissue region was sampled by non-overlapping circular regions of 258 

radius 0.8 mm (Figure 6A).  For each region, the area of DAB high, DAB medium, DAB low, and hematoxylin 259 

positive pixels were determined using Visiopharm. The results were exported to MATLAB (Mathworks, 260 

Natick, MA) for subsequent analysis. For every IHC image, N different circular regions were randomly 261 

selected (N = 1 – 50), and a regional pix H-score was calculated using the area of DAB high pixels, DAB 262 

medium pixels, DAB low pixels, and hematoxylin positive pixels that were summed from the N circular 263 

regions. This procedure is repeated Niter times with replacement (Niter = 100 for all the biomarkers). Then 264 
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for each iteration k = 1,…,Niter, the Spearman correlation coefficient C(N,k) is computed between the 265 

regional pix H-score and the corresponding pathologist H-score. The average Spearman correlation 266 

coefficient for each value of N is computed using the formula 267 

  268 

  269 

𝐶𝐶𝑇𝑇𝑎𝑎(𝑁𝑁) =  
1

𝑁𝑁𝑖𝑖𝑇𝑇𝑎𝑎𝑎𝑎
� 𝐶𝐶(𝑁𝑁,𝑘𝑘)
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘=1

. 
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RESULTS 270 

DIA algorithms for P-cadherin quantification 271 

IHC images for P-cadherin (Figure 2A) showed strong immunoreactivity at the cell membrane and in the 272 

cytoplasm, which was consistent with prior reports [19, 20].  Spearman’s correlation analysis of the 273 

membrane H-scores of the 30 cases immunolabeled for P-cadherin, as assessed by a board-certified 274 

pathologist (see Supplementary Table 1), and  NanoString nCounter values for P-cadherin mRNA transcript 275 

from serial sections of the same cases had a correlation coefficient of 0.81, p<0.0001 (Figure 2B).   276 

When compared to the P-cadherin pathologist H-score, all P-cadherin DIA endpoints yielded positive 277 

correlations (Figures 3A-3E).  The correlation with the ATM score (Figure 3C) and pix H-score (Figures 3D 278 

and 3E) were higher than the correlations with the DIA based H-scores (Figures 3A and 3B). More 279 

specifically, the Spearman’s correlation coefficient  for HALO and QuPath DIA H-scores were 0.5 (p = 0.005) 280 

and 0.39 (p = 0.03), respectively, whereas the Spearman’s correlation coefficient  for the ATM score, the 281 

VIS pix H-score and the HALO pix H-score were 0.78 (p<0.001), 0.77 (p<0.0001) and 0.88 (p<0.0001), 282 

respectively. When compared to the P-cadherin transcript, all DIA endpoints similarly yielded positive 283 

correlations (Figures 3F-3J), with the pix H-score exhibiting the highest Spearman’s correlation coefficient 284 

(Figures 3I and 3J; ρ = 0.83 and ρ = 0.81, respectively, for VIS and HALO pix H-score; p < 0.0001) followed 285 

by the ATM score (Figure 3H; ρ = 0.62, p < 0.0001) and the DIA H-scores (Figures 3F and 3G; ρ = 0.5,  p = 286 

0.005 for HALO and ρ = 0.45, p = 0.01 for QuPath).  287 

We next investigated whether the differences in the Spearman correlation coefficients for the various DIA 288 

endpoints are statistically significant. Table 1 shows the results of our statistical analysis where we carried 289 

out pairwise comparisons of the correlation coefficients for different DIA endpoints obtained from P-290 

cadherin IHC images. Our analysis shows that the correlation coefficient between the pix H-score and 291 

either of the biomarker abundance endpoints (pathologist H-score and P-cadherin transcript) is 292 
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significantly higher than the correlation coefficient between DIA based H-scores and biomarker 293 

abundance endpoints. This suggests that for the P-cadherin dataset, the pix H-score is a better DIA metric 294 

to quantify biomarker abundance over traditional DIA based H-score. In the case of the ATM score, we 295 

observe a mixed result in that the correlation coefficient between pix H-score and P-cadherin transcript 296 

is significantly higher than the correlation coefficient between ATM score and P-cadherin transcript, 297 

whereas statistical significance is lost when we consider the pathologist H-score as the reference for 298 

biomarker abundance (Table 1). We also compared the two DIA based H-scores. We found no significant 299 

difference in the Spearman’s correlation coefficient between QuPath H-score and biomarker abundance 300 

endpoints versus HALO H-score and biomarker abundance endpoints (Table 1). Similarly, we found no 301 

significant difference in the correlation coefficients for the HALO and VIS implementations of the pix H-302 

score for P-cadherin.  303 

DIA algorithms for PD-L1 quantification 304 

IHC images for PD-L1 (Figure 2C) showed strong immunoreactivity at the cell membrane and minimal to 305 

no cytoplasmic staining, which was consistent with prior reports [19, 20].  Spearman’s correlation analysis 306 

of the membrane H-scores of the 24 cases immunolabeled for PD-L1, as assessed by a board-certified 307 

pathologist (see Supplementary Table 1), and  NanoString nCounter values for PD-L1 mRNA transcript 308 

from serial sections of the same cases had a correlation coefficient of 0.91, p<0.0001 (Figure 2D).    309 

When compared to the pathologist H-score, all DIA endpoints yielded positive correlations (Figures 4A-310 

4E).  The Spearman’s correlation coefficient for the HALO H-score, QuPath H-score, ATM score, VIS pix H-311 

score and HALO pix H-score with respect to the pathologist H-score were 0.69 (p=0.0002), 0.74 (p<0.0001), 312 

0.55 (p = 0.005), 0.76 (p < 0.0001) and 0.71 (p < 0.0001), respectively. When compared to the PD-L1 313 

transcript, all DIA endpoints similarly yielded positive correlations (Figures 4F-4J).  The Spearman’s 314 

correlation coefficient for the HALO H-score, QuPath H-score, ATM score, VIS pix H-score and HALO pix H-315 
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score with respect to PD-L1 transcript were 0.73 (p<0.0001), 0.75 (p<0.0001), 0.55 (p = 0.005), 0.79 316 

(p<0.0001) and 0.79 (p<0.0001), respectively. 317 

Statistical analysis of the Spearman’s correlation coefficients revealed that there is no significant 318 

difference in the correlation coefficient between DIA based H-scores and PD-L1 biomarker abundance 319 

endpoints versus the correlation coefficient between pix H-score and PD-L1 biomarker abundance 320 

endpoints (Table 2). This shows that the performance of pix H-score is analogous to that of the DIA based 321 

H-score which is in contrast with our observations for P-cadherin.  Also, there was no significant difference 322 

in Spearman’s correlation coefficient between HALO and QuPath implementations of the H-score, which 323 

is analogous to what we observed for P-cadherin. In addition, we observed that there was no significant 324 

difference between the HALO and Visiopharm implementations of the pix H-score for PD-L1. Spearman’s 325 

correlation coefficients between the pix H-score and PD-L1 biomarker abundance endpoints were mostly 326 

significantly higher than Spearman’s correlation coefficients between ATM score and PD-L1 biomarker 327 

abundance endpoints (Table 2).  Although both the pix H-score and the ATM score are pixel-based 328 

algorithms, the higher Spearman’s correlation coefficient for the pix H-score suggests that this algorithm 329 

is superior to the ATM score in estimating biomarker abundance for PD-L1.  330 

DIA algorithms for 5T4 quantification 331 

IHC images for 5T4 (Figure 2E) showed strong immunoreactivity at the cell membrane with limited 332 

cytoplasmic staining, which was consistent with prior reports [15].  Spearman’s correlation of the 333 

membrane H-scores of the 21 cases immunolabeled for 5T4, as assessed by a board-certified pathologist 334 

(see Supplementary Table 1), and qRT-PCR values for 5T4 mRNA transcript from serial sections of the same 335 

cases had a ρ value of 0.61, p=0.003 (Figure 2F).    336 

When compared to the pathologist H-score, all DIA endpoints yielded positive correlations (Figures 5A-337 

5E).  The Spearman’s correlation coefficient for the HALO H-score, QuPath H-score, ATM score, VIS pix H-338 
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score and HALO pix H-score with respect to the pathologist H-score were 0.75 (p<0.0001), 0.79 (p<0.0001), 339 

0.76 (p < 0.0001), 0.83 (p < 0.0001) and 0.82 (p < 0.0001), respectively. When compared to the 5T4 340 

transcript, all DIA endpoints similarly yielded positive correlations (Figures 5F-5J).  The Spearman’s 341 

correlation coefficient for the HALO H-score, Qupath H-score, ATM score, VIS pix H-score and HALO pix H-342 

score with respect to 5T4 transcript were 0.74 (p<0.0001), 0.55 (p=0.01), 0.69 (p = 0.0007), 0.76 343 

(p<0.0001) and 0.74 (p=0.0001), respectively. 344 

Statistical analysis of the Spearman’s correlation coefficients revealed that there is no significant 345 

difference in the correlation coefficient between each of the DIA based endpoints and pathologist H-score 346 

(Table 3). An analogous behavior was also observed for the correlation coefficient between each of the 347 

DIA based endpoints and 5T4 transcript except for the QuPath H-score. Specifically, the correlation 348 

between QuPath H-score and 5T4 transcript was significantly lower than the correlation between the 349 

HALO H-score or the pix H-score endpoints and 5T4 transcript (Table 3). Finally, we note that there is no 350 

significant difference in the correlation coefficient between the HALO and Visiopharm implementations 351 

of the pix H-score and either of the biomarker abundance endpoints for 5T4. These results suggest that 352 

the pix H-score algorithm has comparable performance to the other DIA algorithms to quantify biomarker 353 

abundance for 5T4.  354 

Effect of spatial sampling on pix H-score  355 

We next investigated the robustness of the pix H-score when it is calculated from select regions within 356 

the tissue section as opposed to the entire tumor resection. For this purpose, a statistical sampling 357 

procedure known as bootstrapping needs to be performed. However, technical limitations in Visiopharm 358 

and HALO software packages precluded us from implementing a formal bootstrapping procedure. 359 

Therefore, we resorted to an empirical resampling approach (see Methods for details) wherein for a given 360 

biomarker each tumor resection was divided into non-overlapping circular regions (Figure 6A). N different 361 
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circular regions (N ranging from 1 to 50) were randomly selected, and a regional pix H-score was computed 362 

from these circular regions. Then the Spearman’s correlation coefficient between the pathologist H-score 363 

and the regional pix H-score was computed for that biomarker. This procedure was repeated 100 times 364 

for all the tumor resections pertaining to that biomarker, and the average Spearman correlation 365 

coefficient from 100 iterations was then plotted as a function of the number of circular regions N.  366 

Figures 6B, 6C and 6D show the behavior of the average Spearman’s correlation coefficient for PD-L1, P-367 

cadherin and 5T4, respectively, between pathologist H-score and the regional pix H-score as a function of 368 

the number of circular regions from which the regional pix H-score was calculated. For all the biomarkers, 369 

we see that for fewer than five circular regions the average Spearman correlation coefficient between the 370 

regional pix H-score and pathologist H-score is consistently smaller than the Spearman’s correlation 371 

coefficient between the whole-slide pix H-score and pathologist H-score (shown by the red dashed line). 372 

When 10 or more circular regions are sampled the average Spearman’s correlation coefficient for the 373 

regional pix H-score starts to plateau out and reaches a steady state. In the case of PD-L1, the plateau 374 

region converges with the Spearman’s correlation coefficient between the whole-slide pix H-score and 375 

pathologist H-score (Figure 6B). In contrast, for P-cadherin 5T4 the plateau region is slightly lower than 376 

the Spearman’s correlation coefficient for the whole-slide pix H-score (Figures 6C and 6D). A similar 377 

behavior is also observed when biomarker mRNA levels are used as the reference ground truth data in 378 

the Spearman’s correlation coefficient calculation (data not shown).  379 

 380 

 381 

  382 
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DISCUSSION 383 

Robust quantification of biomarker expression in tissue sections is a critical need in many diagnostic and 384 

investigative pathology workflows. Our motivation to develop a new digital image analysis metric was 385 

driven by the need to automate the process of manual scoring by a pathologist. Digital image analysis 386 

holds the promise to offer a fast, objective, and reproducible strategy to quantify biomarker expression 387 

from histopathology images.  In this manuscript, we introduced an unsupervised algorithm, the pix H-388 

score.  With it we quantified P-cadherin, PD-L1, and 5T4 signals in immunolabeled FFPE sections of human 389 

tumors and found good correlation between the digitally-analyzed IHC signals and manual (visual) signal 390 

quantitation as performed by a board certified pathologist. As pathologist scoring is known to be 391 

susceptible to intra- and inter-observer variability, we also used biomarker mRNA level as an orthogonal 392 

measurement of biomarker abundance to validate the pix H-score. Our observation that there was good 393 

concordance between both digital and visual IHC signal quantitation and mRNA transcript abundance for 394 

each analyte not only demonstrated the robust nature of the pix H-score algorithm but also validated the 395 

pathologist scores.  396 

There are two basic approaches to quantifying biomarker expression from histology images.  One 397 

approach utilizes cell segmentation and quantifies markers per unit cell whereas a second approach 398 

avoids cell segmentation and quantifies markers per unit pixel.  In this manuscript, we compared both 399 

approaches to quantify biomarker levels from immunohistochemistry images. Unlike the H-score and the 400 

Allred score, the pix H-score is a pixel-based algorithm that does not rely on the identification of individual 401 

cells and their subcellular compartments. This reduces the computational complexity of the pix H-score 402 

and renders its implementation in two different software packages as relatively straightforward.   403 

In our case, the IHC assay for each biomarker was carried out using a different brand of instrument (PD-404 

L1 – Ventana, P-cadherin – DAKO, and 5T4 – Leica Bond RX). Similarly, the slides were scanned using 405 
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different whole-slide scanners (PD-L1 and P-cadherin - different Aperio AT2 scanners, and 5T4 – 406 

Hamamatsu NanoZoomer). These differences could introduce variations in the colorimetric composition 407 

of the IHC images that can impact downstream image analysis. Our observation that the Visiopharm and 408 

the HALO versions of pix H-score exhibited similar performance suggests that the pix H-score is a robust 409 

algorithm for estimating IHC biomarker abundance in whole-slide images. This is especially relevant due 410 

to the proprietary nature of these software packages which precludes users from understanding several 411 

technical aspects of the image analysis workflow. For instance, the specific details regarding the color 412 

deconvolution algorithm, which is a key pre-processing step, are not accessible to the user in either 413 

Visiopharm or HALO. Consequently, while implementing the pix H-score we did not know how similar the 414 

output of the color deconvolution step (i.e. hematoxylin and DAB channels) would be in the two software 415 

packages.  416 

An important question arises as to why the DIA based H-score exhibited very different performance for P-417 

cadherin but not for PD-L1.  The H-score algorithm relied on the detection of individual cells and their 418 

subcellular compartments to quantify biomarker levels. Although this task may seem relatively 419 

straightforward for a human observer, nucleus/cell-membrane detection and segmentation are 420 

challenging image processing problems especially when applied to whole-slide image analysis where there 421 

can be considerable variability in the intensity and the sub-cellular localization pattern of the biomarker 422 

of interest [21, 22].  In our case, the latter could be a contributing factor since in the P-cadherin IHC images 423 

the biomarker signal was localized to both the cell membrane and cytoplasm whereas in the PD-L1 IHC 424 

images the biomarker signal was predominantly localized to the cell membrane. Consequently, this may 425 

partly explain the reason why for P-cadherin the performance of the DIA H-score was consistently lower 426 

than that of the pix H-score whereas for PD-L1 the performance of the DIA H-score was comparable to 427 

that of the pix H-score. Not surprisingly others have also reported similar challenges in automated analysis 428 

of membrane-localized biomarker signal [23]. This may also partly explain our observation for 5T4 where 429 
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the correlation between QuPath H-score and 5T4 transcript was lower than the correlation between pix 430 

H-score and 5T4 transcript. More specifically, while 5T4 immunoreactivity is predominantly membranous, 431 

there is still detectable cytoplasmic signal in the tumor cells which can affect the quantification of the DIA 432 

based H-score.  433 

A similar question also arises for the ATM score which, unlike the H-score, is a pixel-based algorithm but 434 

also exhibited very different performance for P-cadherin but not for PD-L1 and 5T4. By definition. the ATM 435 

score is proportional to the average intensity of the biomarker in the DAB channel. This is calculated by 436 

taking all pixels in the DAB channel including pixels that are negative for the biomarker. When the 437 

averaging is performed on a whole-slide image, this can significantly dilute the contribution from pixels 438 

that are positive for the biomarker resulting in poor performance in predicting biomarker abundance from 439 

the IHC image. In contrast, the pix H-score only considers pixels with a valid biomarker signal as DAB 440 

positive pixels (based on a user defined threshold). As a result, the pix H-score can robustly estimate 441 

biomarker abundance the IHC image. This difference also explains in part the reason for the limited range 442 

of values taken by the ATM score when compared to the pix H-score. Specifically, the ATM score for P-443 

cadherin, PD-L1, and 5T4 took values in the range of 24 to 77, 8 to 33, and 11 to 49, respectively. In 444 

contrast the pix H-score for P-cadherin, PD-L1, and 5T4 took values in the range of 20 to 207, 1 to 131, 445 

and 3 to 170, respectively. The latter values are more comparable to the pathologist H-score, which for P-446 

cadherin, PD-L1, and 5T4 ranged from 17 to 298, 0 to 225, and 0 to 224, respectively.  447 

The application of deep learning methodology for nucleus and cell membrane segmentation holds 448 

significant promise as it has been shown to have improved performance over traditional algorithms [24]. 449 

However, deep learning methods are supervised approaches that require a substantial amount of training 450 

data and extensive validation. In many practical applications, generating such large training datasets is 451 

not feasible and algorithm validation can be time consuming. In this regard, the pix H-score algorithm 452 
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introduced here provides a simple yet robust strategy to quantify biomarker expression even from small 453 

datasets, as demonstrated here, and can be implemented within a very short timeframe. An interesting 454 

follow up study would be to compare the performance of the pix H-score algorithm with deep learning 455 

based, scoring approaches.  456 

We note that while our results are encouraging and show the potential for the pix H-score in scoring 457 

membrane biomarkers, the algorithm can benefit from additional validation for other biomarkers. Also, 458 

the effect of pre-analytical variables (e.g., cold ischemia time, age of unstained cut slides, etc.) on the 459 

performance of the pix H-score needs to be investigated. In addition, the effect of stain variation needs 460 

to be explored, which is known to be a notable source of variability in histopathology data. In our current 461 

work stain normalization was not necessary, likely due to the small batch size of our datasets which did 462 

not exhibit significant colorimetric variability. Although not shown here, we expect the pix H-score to also 463 

be applicable to immunofluorescence images. In conclusion, we anticipate the pix H-score to be a useful 464 

addition to the digital image analysis toolbox for a fast, reproducible and objective strategy to quantify 465 

biomarker expression from immunolabeled tissue sections.  466 
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Figure legends 535 

Figure 1: Overview of the different scoring algorithms. Panel A shows the traditional cell-based H-score, 536 

panel B shows the average threshold method (ATM) score, and panel C shows the pix H-score. 537 

Figure 2. P-cadherin, PD-L1 and 5T4 IHC datasets. Panels A, C and E show representative images at 20x 538 

magnification with varying levels of P-cadherin, PD-L1 and 5T4 expression, respectively, in tumor 539 

resections. Panels B, D and F show the plot of the pathologist H-score versus mRNA transcript level for P-540 

cadherin (n = 30 cases), PD-L1 (n = 24 cases) and 5T4 (n = 21 cases), respectively. The panels also show 541 

Spearman’s correlation coefficient along with the p-value and 95% confidence interval.  542 

Figure 3. Performance of DIA endpoints obtained from P-cadherin IHC images. Panels A through E show 543 

the plots of different DIA endpoints versus pathologist H-score for a cohort of 30 head and neck cancer 544 

resections. Panels F through J show the plots of different DIA endpoints versus P-cadherin mRNA 545 

transcript for the same 30 cases. Each panel also shows the Spearman’s correlation coefficient between 546 

the two quantities plotted in that panel along with the p-value and the 95% confidence interval.  547 

Figure 4. Performance of DIA endpoints obtained from PD-L1 IHC images. Panels A-E show plots of the 548 

different DIA endpoints as a function of the pathologist H-score, while panels F-J show the same as a 549 

function of PD-L1 mRNA transcript for a cohort of 24 lung cancer resections. All panels show the 550 

Spearman’s correlation coefficient between the two quantities plotted in that panel along with the p-551 

value and the 95% confidence interval.  552 

Figure 5. Performance of DIA endpoints obtained from 5T4 IHC images. Panels A-E show plots of the 553 

different DIA endpoints as a function of the pathologist H-score, while panels F-J show the same as a 554 

function of 5T4 mRNA transcript for a cohort of 21 lung cancer resections. All panels show the Spearman’s 555 
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correlation coefficient between the two quantities plotted in that panel along with the p-value and the 556 

95% confidence interval. 557 

Figure 6. Empirical approach to assess robustness of pix H-score to spatial sampling. Panel A shows the 558 

breakup of the tumor resection into non overlapping circular regions. Panels B, C and D show the results 559 

of the bootstrap analysis for PD-L1, P-cadherin and 5T4, respectively, where the average Spearman’s 560 

Correlation coefficient between the regional pix H-score estimate from N circular regions and pathologist 561 

H-score is plotted as a function of the number of circular regions, where N varies from 1 to 50. The red 562 

dashed line shows the Spearman’s correlation coefficient between whole-slide Pix H-score and 563 

pathologist H-score for that biomarker. Error bars indicate ± SEM.  564 
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Figure 2 568 
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