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Quiescence is a cellular state characterised by reversible cell-cycle arrest and 

diminished biosynthetic activity that protects against environmental insults, 

replicative exhaustion and proliferation-induced mutations1. Entry into and exit 

from this state controls development, maintenance and repair of tissues plus, in the 

adult central nervous system, generation of new neurons and thus cognition and 

mood2-4. Cancer stem cells too can undergo quiescence, which confers them 

resistance to current therapies5,6. Despite clinical relevance, quiescence is poorly 

understood and is defined functionally given lack of molecular markers. Decrease 

of the most resource-intensive cellular process of protein synthesis is a feature of 

quiescence, controlled across species and cell types by inhibition of the Target of 

Rapamycin (TOR) pathway1,7. Here, we combine Drosophila genetics and a 

mammalian model to show that altered nucleocytoplasmic partitioning and nuclear 

accumulation of polyadenylated RNAs are novel evolutionarily conserved hallmarks 

of quiescence regulation. Furthermore, nuclear accumulation of messenger RNA 

(mRNA) in quiescent NSCs (qNSCs) largely predicts protein downregulation, 

accounting for uncoupling between transcriptome and proteome in quiescence. 

These mechanisms provide a previously unappreciated regulatory layer to reducing 

protein synthesis in quiescent cells, whilst priming them for reactivation in response 

to appropriate cues.  

 

NSCs give rise to various neuronal and glial cell types in the central nervous system 

(CNS), mostly during development but also during adult stages in many species, 

including humans8-12. In adult mammals, NSCs are mostly quiescent13,14 and their exit 

from quiescence (reactivation) is controlled by cell-extrinsic and -intrinsic mechanisms 

in response to physiological and behavioural stimuli including physical exercise, novel 

environments, social interactions, and diet4. Across cell types, a variety of intercellular 
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signals, receptors and downstream pathways converge on the TOR pathway for 

quiescence regulation in eukaryotic cells1. We and others have shown that in NSCs from 

fruitflies to mammals, the TOR pathway integrates aminoacid availability and the 

nutritionally-regulated Insulin / Insulin Growth Factor signalling pathway towards the 

quiescence/activation decision via downstream effectors such as forkhead-box FoxO 

transcription factors and ribosomal protein S6 kinase, which control cell-cycle and 

protein translation15-20.  

Quiescence is heterogeneous, consisting of a continuum of states between near-active 

(“shallow”) and profound quiescence (dormancy), with depth defined by reactivation 

speed21-23. A bistable molecular network converts graded cues into ON or OFF S-phase 

entry23,24. In the fruitfly Drosophila melanogaster, the cell-cycle stage at which divisions 

pause also contributes to heterogeneity of qNSCs, arrested in either G1 or G225.  

Drosophila NSCs are a powerful model with which to study fundamental molecular and 

cellular mechanisms of stem cell properties, including quiescence26. Out of ~100 pairs of 

central brain NSCs plus hundreds in the ventral nerve cord, all but five pairs undergo 

quiescence during a period of ~24-48 hours that intervenes between embryonic and 

postembryonic neurogenesis27,28. In addition to paused proliferation, Drosophila qNSCs 

differ from active NSCs (aNSCs) in a number of discernible ways: size (soma diameter 

~4 µm in early larvae, when quiescent and ~10-12 µm in late larvae, when active); 

morphology (presenting a cytoplasmic extension/fibre of unknown function only when 

quiescent27); expression levels of NSC markers (e.g. downregulating the cortical protein 

Miranda (Mira) and the HES family basic helix-loop-helix transcriptional repressor 

Deadpan (Dpn) below detectability in a considerable fraction of qNSCs) (Fig. 1a,d). 

Following larval hatching and feeding, qNSCs reactivate in a stereotypical spatiotemporal 

pattern15,27. As they reactivate, the qNSC soma enlarges, fibres thicken and are lost (via 
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inheritance by the first post-reactivation transit-amplifying daughter cell29), and NSC 

markers become detectable (Fig. 1d and Extended Data Fig. 1). At late larval stages, all 

NSCs are active. Together, these properties enable fast and quantitative study of the 

processes governing NSC quiescence/reactivation in Drosophila.  

The nuclear pore complex (NPC) is the evolutionarily conserved gateway for 

bidirectional transport between nucleus and cytoplasm in eukaryotic cells. The NPC is 

assembled from multiple copies of ~30 distinct nucleoporins30 grouped into several major 

classes (Supplementary Table 1). Around one third are scaffold nucleoporins, which form 

two eight-fold rotationally-symmetric doughnut-shaped structures outlining the pore 

canal30. Another third are FG-nucleoporins, containing repeated phenylalanine (F) and 

glycine (G) motifs. FG and FxFG-rich sequences promote natively unfolded 

conformations that extend either to the centre of the pore canal in “mesh” or “barrier” 

nucleoporins; or into the cytoplasm or nucleoplasm in “asymmetric” nucleoporins. FG 

nucleoporins form highly-specific low-affinity interactions with cargo complexes to be 

transported, whilst excluding unwanted ones30,31. Nucleoporins can take on diverse 

functions besides their role in nucleocytoplasmic transport, most notably transcriptional 

and microtubule regulation32-34. 

Whilst small molecules (<40 kDa) can passively diffuse across the NPC, efficient 

distribution of larger proteins between nucleus and cytoplasm depends on active 

transport. This is fuelled by hydrolysis of guanosine nucleoside triphosphate (GTP) by 

the small GTPase Ran35. In this case, evolutionarily conserved karyopherins (called 

importins or exportins, Supplementary Table 2) associate with nuclear localisation and/or 

nuclear export signals in protein cargo to facilitate their translocation across the NPC36.  

Most mRNAs are exported from the nucleus to the cytoplasm as messenger 

ribonucleoprotein complexes (mRNPs) in a manner reliant on ATP-dependent events 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.01.06.425462doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425462
http://creativecommons.org/licenses/by-nd/4.0/


5	
 

rather than Ran GTPase and karyopherins37. Following pre-messenger RNA processing, 

which typically includes 5’-capping, splicing, 3’-cleavage and polyadenylation, mature 

mRNPs associated with components of the TRanscription and Export (TREX), and 

Nuclear RNA export factor 1 / Nuclear Transport Factor 2 Like Export Factor 1 

(NXF1/NXT1) complexes are irreversibly translocated to the cytoplasm37. In addition to 

the non-discriminatory bulk mRNA export pathway, metazoans have evolved selective 

mRNA export pathways, less well characterised. These employ recruitment of RNA 

binding proteins via post-transcriptional modifications, structural and/or cis elements 

within the mRNA (named untranslated sequence elements for regulation, USER, codes; 

though some are embedded in coding sequence). USER codes promote coordinated 

export of functionally related mRNAs yet a single transcript can have multiple USER 

codes, which can synergise or compete, so some mRNAs may utilise several possible 

export pathways in accordance with export factor availability37-39. Some selective mRNA 

export mechanisms depend on specific nucleoporins or Exportin-1 (Xpo1/Crm1)37,38. 

It is emerging that levels and/or complement of nucleoporin and karyopherin complexes 

vary between cell and tissue types40-42. Here, we expand this to aNSCs versus qNSCs, 

demonstrating a previously unappreciated layer of gene expression regulation for the 

transition between active and quiescent states. 

 

Downregulation of novel Drosophila protein induces anachronic qNSCs 

In a forward-genetic ethyl methane-sulfonate screen, we recovered a Drosophila mutant 

(2V327) in which late larval NSCs, normally active, were cell-cycle arrested whilst 

displaying a fibre, features of qNSCs. This was seen in whole homozygous animals and 

homozygous clones induced in early larvae (Fig. 1b) demonstrating cell-autonomy of the 

phenotype and derivation from mitotic recombination (basis of labelled clone generation). 
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We hypothesized that the 2V327 mutation led to anachronic quiescence reentry of NSCs. 

Deficiency-mapping exposed a small genomic region responsible for the phenotype, with 

hemizygote animals recapitulating that of homozygotes (Fig. 1b and Extended Data 

Fig. 2). Amongst seven protein-coding genes within the candidate region, RNA 

interference (RNAi) for only one, CG14712, phenocopied the 2V327 mutant (Fig. 1b). 

Genomic sequencing of CG14712 exons in 2V327 heterozygous animals uncovered a 

premature STOP codon, consistent with its disruption causing the phenotype (Fig. 1c). 

We named this previously uncharacterized gene snorlax (snx). Homozygous and 

hemizygous snx2V327 animals were both lethal as undersized late larvae and quantification 

of NSC features showed comparable phenotypes (Fig. 1d). 2V327 is thus a strong loss-

of-function allele, likely a null. Appreciably fewer than the customary ~100 cells per 

central brain lobe were detectable with Dpn and Mira antibodies in snx2V327 (Fig. 1d) but 

staining for the apoptotic marker Death Caspase-1 (Dcp-1) was negative in all NSCs 

examined (Extended Data Fig. 3). Overall, the presence of a fibre accompanying cell-

cycle arrest, along with detection of fewer Dpn and Mira-positive cells, is consistent with 

late larval quiescence in snx mutant and knockdown NSCs.  

Reversibility is a defining feature of quiescence. To test reversibility of the snx loss-of-

function phenotype in NSCs, we transiently induced snxRNAi in these cells followed by a 

period of recovery, and analysed animals before (B) and after recovery (R) (Fig. 1e). Cells 

undetectable by anti-Mira or anti-Dpn before recovery re-emerged as visible with these 

markers following the recovery period, demonstrating that they had neither died nor 

differentiated. Furthermore, recovery also decreased the number of NSCs displaying 

fibres and increased the mitosis index (reported by expression of phospho-histone H3, 

PH3), indicating shift of qNSCs to aNSCs (Fig. 1e). We concluded that the NSC 

phenotype of snxRNAi was reversible and that, by all criteria, snx downregulation in NSC 

induces anachronic quiescence. 
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Specific attenuations of nucleocytoplasmic transport factors in Drosophila NSCs 

induce quiescence features 

CG14712/Snx is a putative FG nucleoporin (Fig. 1c; flybase.org), most similar to Nup98, 

which is found on both the nuclear and cytoplasmic sides of the NPC30,43 (Supplementary 

Table 1). There is a bona fide Drosophila Nup98, however, encoded by the Nup98-96 

gene (Nup98 and Nup96 are generated from a single transcript as a polypeptide precursor 

that undergoes proteolytic cleavage in various species44). We found that like for snx, 

transient knockdown in NSCs of Nup98-96 followed by recovery also induced quiescence 

as defined by reversible downregulation of Dpn, Mira and PH3 accompanied by presence 

of a fibre (Extended Data Fig. 4).  

We next wondered whether qNSC induction was specific to knockdown of Nup98-like 

factors or might result also from downregulation of other nucleoporins. We tested 

available RNAi lines against the other Drosophila nucleoporins spread across structural 

classes. NSC-specific knock-down of 17 out of 27 further nucleoporins induced features 

of quiescence (fewer Dpn, Mira and PH3-positive cells, plus fibres) with at least one 

RNAi, 12 of which with more than one (Fig. 2a). Negative RNAi outcomes could be due 

to the target having no role in quiescence regulation or to maternal contribution45, long 

protein half-life (reported for scaffold nucleoporins46) and/or ineffective RNAi (although 

some constructs that did not induce a phenotype in our assay appeared effective in other 

contexts47-49). Nonetheless, the fact that knockdown of multiple nucleoporins among all 

classes induced features of quiescence suggested that disruption of their function at the 

NPC caused the phenotype.  

To verify that nucleocytoplasmic transport perturbation underlined NSC quiescence 

induction, we knocked down active transport components. Knockdown of Ran, its 
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GTPase activating protein (RanGAP) and guanine nucleotide exchange factor (RanGEF), 

or of a small subset of karyopherins induced qNSC features (Fig. 2b). In particular, 

knockdown of Exportin-1 and -2, Importin-ß, Tnpo and Tnpo-SR led to strong 

phenotypes with at least two RNAis (Fig. 2b). Thus, specific perturbations of 

nucleocytoplasmic transport induce quiescence in Drosophila NSCs.  

 

WT and induced Drosophila qNSCs accumulate nuclear polyadenylated RNA 

Karyopherins have been shown to mediate transport of functionally-related proteins36,50. 

Examining biological process gene ontology (GO) terms of known cargo for specific 

karyopherins36,50 whose knockdown induced qNSCs (Fig. 2b) led us to hypothesise that 

messenger RNA (mRNA) processing might be altered in quiescent versus active NSCs. 

Furthermore, we noted that Nups with analogous phenotype (Fig. 2a) included those of 

the so-called mRNA export platforms30. We thus considered whether there might be 

altered distribution of polyadenylated (poly(A)) RNA between aNSCs and qNSCs.  

In situ hybridisation with an oligo(dT) probe reported visibly lower poly(A) in qNSCs 

than aNSCs, as expected from diminished transcription in quiescent cells (Fig. 3a). 

Nonetheless, we reproducibly found discrete poly(A) accumulations within nuclei of 

deeply quiescent NSCs (newly-hatched larvae), whereas in permanently active 

mushroom body NSCs nuclear poly(A) localised predominantly at the nuclear periphery 

(Fig. 3a). We quantified relative poly(A) immunofluorescence in nuclear and cytoplasmic 

compartments of NSCs in the two states and discovered that the nuclear/cytoplasmic ratio 

of poly(A) was higher in qNSCs than in the mushroom body NSCs, which never undergo 

quiescence (Fig. 3b). In case there was something particular about permanently-active 

NSCs, we determined the nuclear/cytoplasmic ratio of poly(A) in the same NSC as it 

reactivated (identifying the same cell across specimen). Therein, we found decrease in 
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relative nuclear accumulation of poly(A) as the NSC reactivated (Fig. 3b), consistent with 

aNSCs having lower nuclear/cytoplasmic ratio of poly(A) than qNSCs. We concluded 

that relative accumulation of nuclear poly(A) RNA is a trait of qNSCs in Drosophila.  

To further assess similarity between physiological quiescence and quiescence induced by 

attenuation of nucleocytoplasmic transport factors, we examined whether relative 

accumulation of nuclear poly(A) RNA also occurred in the latter. Consistent with 

quiescence reentry as opposed to quiescence maintenance, induced anachronic qNSCs 

were generally larger and more loaded with poly(A) relative to the deeply quiescent NSCs 

of newly-hatched larvae. Inspection of late larval NSCs with knockdown of either Snx or 

Nup98-96 revealed cells with very strong nuclear poly(A) signal (Fig. 3c). 

 

Nuclear accumulation of polyadenylated RNA is a hallmark of quiescence 

We reasoned that nuclear accumulation of transcripts would be an efficient way for 

quiescent cells to reduce protein synthesis whilst remaining able to quickly resume it in 

response to reactivation cues. To test if this might be a widespread mechanism of 

quiescence, we first examined primary cultures of adult mouse hippocampal NSCs, where 

quiescence is induced by addition of BMP4, mimicking a niche signal51,52. We had 

previously determined that these cells become quiescent after 3 days in BMP452 and used 

this timepoint as the quiescent condition unless otherwise specified. Synchronicity of 

quiescence induction in culture permitted determination of relative levels of nuclear and 

cytoplasmic poly(A) across many cells in an equivalent state. We found that both nuclear 

and cytoplasmic poly(A) signals decreased in qNSCs compared to aNSCs, but that 

cytoplasmic levels consistently decreased more, resulting in increased 

nuclear/cytoplasmic ratio (Fig. 4a,b). Importantly, inspection of adult hippocampal NSCs 

in vivo also showed increased nuclear/cytoplasmic poly(A) ratio in quiescent versus 
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active cells (Fig. 4c,d). Separation between the two conditions was less marked in tissue 

as there is continuity between the two states and no means of determining how long each 

cell had been quiescent or active for at the time of fixation. Notwithstanding, the extent 

of relative poly(A) RNA accumulation was remarkably similar to that found in vitro. 

Surveying of human blood marrow haematopoietic stem and progenitor cells returned the 

same finding (Extended Data Fig. 5). We concluded that nuclear accumulation of poly(A) 

RNA is an evolutionarily-conserved hallmark of quiescence across species and cell types.  

 

Downregulation of Nup98-96 in mouse NSCs induces quiescence features 

To enquire into evolutionary conservation of the mechanism we found underpinning 

nuclear accumulation of poly(A) in quiescence in Drosophila NSCs, we knocked down 

Nup98-96 in mouse hippocampal NSC cultures. After confirming that Nup98 levels 

decreased in response to short-hairpin RNA (shRNA), we determined the proportion of 

cells positive for the proliferation antigen Ki67 and measured accumulation of nuclear 

poly(A). Nup98-96 knockdown samples had a reduced percentage of Ki67+ cells and 

accumulated nuclear poly(A) RNA in the absence of cell death as reported by cleaved 

Caspase 3 (Fig. 4f). This was observed with two independent shRNAs and the effect was 

reversible (Extended Data Fig. 6). We concluded that, like in Drosophila NSCs, 

attenuation of Nup98-96 in mouse NSCs induced quiescence. 

 

Most nucleocytoplasmic transport factors are downregulated in qNSCs  

Whilst downregulation of nucleocytoplasmic transport components through experimental 

manipulation can induce NSC quiescence, we wondered whether this occurred 

physiologically. To determine whether nucleocytoplasmic transport factors are 

endogenously downregulated in qNSCs, we took advantage of the mouse NSC 
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monoculture system to compare global proteome expression between aNSCs and qNSCs, 

not reported before. Protein extracts from adult mouse hippocampal NSCs were prepared 

on different days post-BMP4 addition (0 days being the active condition), having 

ascertained that longer exposure to BMP4 corresponded to deeper quiescence (Extended 

Data Fig. 7), and longitudinal proteome profiling was carried out by tandem mass tag 

(TMT) spectrometry53. Principal component analysis (PCA) showed that BMP4 exposure 

length accounted for the majority of protein changes already within 3 days (Fig. 5a), our 

standard quiescent condition. 5,771 proteins were reliably identified and quantified in all 

fractions, with over four-fifths changing considerably in either direction and nearly as 

many upregulated as downregulated over 21 days of BMP4 exposure (Fig. 5b and 

Supplementary Table 3). Validating the data, proteins whose levels are known to be 

altered in qNSCs behaved as expected52,54 (Fig. 5c). Furthermore, the negative regulators 

of the TOR pathway Tuberous sclerosis proteins 1 and 2 (Tsc1 and Tsc2) were 

upregulated, and proteins involved in DNA replication and cell-cycle progression were 

well represented amongst those downregulated in qNSCs relative to aNSCs 

(Supplementary Table 3).  

Biological processes GO term analysis revealed the most downregulated categories of 

proteins in qNSCs as (m)RNA processing and metabolism, as well as DNA organisation 

and metabolism (Fig. 5d, Supplementary Table 4). Consistent with the hypothesis that 

poly(A) RNAs accumulated in the nucleus due to reduced availability of 

nucleocytoplasmic transport factors, we detected lowering levels of most of these as 

NSCs transitioned from an active state into deep quiescence; none were upregulated 

(Fig. 5e, Supplementary Table 3). Specifically, three-quarters of nucleoporins (23, 

containing members of all structural classes), were detected in our proteome-wide 

investigation, with 19 (representing all structural classes) consistently decreased in 

qNSCs, and 4 expressed at comparable levels across conditions (Fig. 5e, Supplementary 
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Table 3). Employing independent methods (Western blots or immunocytochemistry), we 

confirmed significant downregulation of a few Nucleoporins after 3 days of BMP4 

(Extended Data Fig. 8). This data suggests altered nucleoporin stoichiometry in qNSCs 

versus aNSCs although it remains unclear how it changes specifically at the NPC. 

Regarding active nucleocytoplasmic transport regulators, we detected 26, with levels of 

all but three decreasing as NSCs shifted into quiescence (Fig. 5e, Supplementary 

Table 3). In all, multiple nucleocytoplasmic protein transport factors are downregulated 

in qNSCs relative to aNSCs.  

 

Most known mRNA export pathway and splicing factors are also downregulated in 

qNSCs 

mRNA export from the nucleus is coupled to pre-mRNA processing, including a 

checkpoint for completed splicing31,35,37,55. Furthermore, and in line with proteomic 

downregulation of (m)RNA processing and metabolism components, we considered the 

possibility that the effect of altered nucleocytoplasmic transport on nuclear accumulation 

of poly(A) RNA in qNSCs might be due to limitation of mRNA export pathway 

components, upregulation of nuclear retention factors and/or incomplete splicing37,39.  

A few nucleoporins such as Nup96, Gle1, Nup155 and Tpr play key roles in mRNA 

export37,39; the latter two were detected and both downregulated (Supplementary Table 3). 

We detected 38 mRNA export factors37,39 of which 37 were downregulated in qNSCs 

(Fig. 5e, Supplementary Table 3). Concerning nuclear retention factors, only few are 

known39, and those picked up in our proteome analysis were downregulated in qNSCs, 

suggesting they are not responsible for the observed nuclear retention of poly(A) RNA 

(Supplementary Table 3). Regarding splicing factors, we detected 228  of which 204 were 
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consistently downregulated as NSCs transitioned from active into deeper quiescence; 

intriguingly, 12 were consistently upregulated (Fig. 5e, Supplementary Table 3). 

 

Altered nucleocytoplasmic transcript bias uncouples proteome and transcriptome 

in qNSCs 

To determine the identity and splicing status of nuclear-accumulated transcripts in 

qNSCs, we fractionated adult mouse hippocampal aNSC and qNSC cultures into nuclear 

and cytoplasmic compartments and performed RNA-seq on each (fracRNA-seq). We 

prepared samples from two quiescence depths, corresponding to 3 and 10 days BMP4 

exposure (qNSC-3d and qNSC-10d). Transcripts corresponding to a total of 30,265 genes 

were detected, of which 19,979 (66 %) were protein-coding (Supplementary Table 5); 

about 95.5 % of reads mapped to protein-coding genes (Gene Expression Omnibus 

GSE162047). PCA showed progressive divergence of BMP4-treated NSCs from aNSCs 

as a function of time and further clustering of samples according to subcellular 

compartment (Fig. 6a).  

For transcripts pertaining to each gene, and irrespectively of levels or splicing, we 

determined the proportion of exonic reads found in nuclear versus cytoplasm from paired 

extracts for each sample. For each gene we ascribed a bias score Z = log2 [number of 

nuclear reads / number of cytoplasmic reads], with Z > 0 indicating bias towards the 

nucleus and Z < 0 bias towards the cytoplasm (Fig. 6b, Supplementary Table 5). 

Validating the data, transcripts predicted to be biased towards nuclear or cytoplasmic 

compartments56 behaved as expected in all conditions and samples: Nuclear Paraspeckle 

Assembly Transcript 1, Metastasis Associated Lung Adenocarcinoma Transcript 1 and 

Plasmacytoma Variant Translocation 1 with a positive Z, indicating nuclear bias; 
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Ribosomal protein small subunit S14, Glyceraldehyde-3-phosphate dehydrogenase and 

Rn7s1 with a negative Z, indicating cytoplasmic bias.  

In aNSCs, transcripts from 12,096 genes were significantly biased to either subcellular 

fraction, 5,637 (47 %) of which were nuclear-biased (3,026 with Z > 2 i.e., more than 4-

fold bias). In qNSCs-3d, products of 12,812 genes were significantly biased, 6,601 (52 %) 

of which were nuclear-biased (3,470 with Z > 2). In qNSCs-10d, products of 12,227 genes 

were significantly biased, 7,653 (63 %) of which were nuclear-biased (4,106 with Z > 2).  

In a second step, we selected those genes whose products were detected in all conditions 

and performed pairwise comparisons between individual genes across conditions. 

Significant changes comprised genes whose products swapped bias in subcellular 

compartment as well as those whose Z scores changed significantly even if retaining the 

same compartment bias. Transcripts corresponding to 388 genes changed significantly 

between aNSCs and qNSCs-3d, of which 247 (64 %) became more nuclear-biased (20 

more than 4-fold); 2,584 changed significantly between aNSCs and qNSCs-10d, of which 

2,409 (93 %) became more nuclear-biased (311 more than 4-fold); and 590 changed 

significantly between qNSCs-3d and qNSCs-10d, of which 571 (97 %) became more 

nuclear-biased (128 by more than 4-fold) (Fig. 6b, Supplementary Table 5). Transcripts 

of 2,173 genes (86 % of which were protein-coding) changed subcellular bias score 

significantly and consistently (in the same direction between aNSCs and qNSCs-3d, then 

again between qNSCs-3d and qNSCs-10d) upon quiescence induction. Of these, 

transcripts of 1,616 genes (74 %; of which 92 % were protein-coding), became 

increasingly nuclear with quiescence. In summary, transcripts for most genes had no 

significant subcellular bias in any of the conditions nor, if they had, did the direction or 

magnitude of their bias change significantly between active and quiescent states. 

Notwithstanding, transcripts of more than 2,000 genes, mostly protein-coding, did change 
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subcellular bias significantly, three-quarters of which becoming increasingly nuclear as 

NSCs shifted from active into deeper quiescence.  

Concordant with proteomic downregulation, biological processes GO term analysis 

revealed the most nuclear-biased categories of transcripts in qNSCs as (m)RNA 

processing and RNP biogenesis, as well as DNA organisation and metabolism (Fig. 6c, 

Supplementary Table 6). Cytoplasmic-biased transcripts in qNSCs were enriched in actin 

cytoskeleton organisation GO terms, consistent with our observations of increased 

morphological complexity upon quiescence induction (Extended Data Fig. 9 and seen in 

flies by fibre extension) and enriched “cell adhesion” GO term in proteomics. Moreover, 

we observed ~80 % concordance between increased nuclear- and cytoplasmic-bias of 

transcripts and respective protein down- or upregulation in qNSCs (Fig. 6d). This reveals 

a major impact of subcellular partitioning of transcripts on directionality of protein levels 

in qNSCs, explaining our observation that transcriptome and proteome become 

uncoupled in qNSCs (Fig. 6e). We conclude that altered nucleocytoplasmic distribution 

of transcripts in qNSCs contributes greatly to regulation of protein expression. 

 

Nuclear-biased transcripts are generally more completely processed in qNSCs than 

in aNSCs 

To assess whether transcript nuclear-bias during quiescence could be globally accounted 

for by decreased splicing, we analysed intron retention (IR). For each intron of transcripts 

found in each subcellular fraction we ascribed an IR score = [number of intronic reads / 

(number of intronic reads + number of spliced reads)], with 0 < IR < 1. The majority of 

significant IR changes were observed in nuclear fractions as might be expected, with 

those in cytoplasmic fractions an order of magnitude lower (Extended Data Fig. 10a, 

Supplementary Table 7). In nuclear fractions, 3,362 introns corresponding to 1,708 genes 
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showed significant IR changes between at least two conditions (Fig. 7a, Supplementary 

Table 7). Of these, 1,110 (65 %) genes corresponded to transcripts that became 

increasingly nuclear in qNSCs, 302 (18 %) to ones that became increasingly cytoplasmic, 

and 296 (17 %) to ones that showed no consistent subcellular change (Fig. 7b pie charts, 

Supplementary Table 7). For the most part, the various introns of a transcript showed the 

same directionality of IR as NSCs shifted from active into deeper quiescence (Extended 

Data Fig. 10c, Supplementary Table 7) and the vast majority of significant IR changes in 

the nucleus consisted of IR decrease.  

In agreement with the categories of transcripts that became increasingly nuclear as 

quiescence deepened, biological process GO terms for the 934 genes encoding nuclear-

biased transcripts with decreased IR in nuclear fractions pertained to (m)RNA processing 

and chromatin regulation; and those for the 98 nuclear-biased transcripts with increased 

IR pertained mostly to mitosis, followed by (m)RNA processing (Fig. 7b right, 

Supplementary Table 8). In summary, despite a small and potentially meaningful 

category of genes where increased IR positively correlates nuclear-biased transcripts, 

most transcripts that become more nuclear during NSC quiescence are not retained in the 

nucleus due to increased IR and are in fact more completely spliced. 

A recent study reported widespread IR in various quiescent cell types57 but did not report 

on qNSCs nor did we find this in our study. It is possible that different cell types adopt 

distinct molecular strategies towards the same goal of selective nuclear-bias of 

transcripts. Indeed, we report increased nuclear-to-cytoplasmic ratio of poly(A) RNA in 

a few quiescent cell types relative to active counterparts, across three different organisms. 

Nuclear retention of mRNAs has been observed in reaction to stress or changing cellular 

conditions, such as differentiation, viral infection or oncogenic transformation. Nuclear 
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retention protects mRNAs from viral nucleases and cytoplasmic decay pathways whilst 

release allows rapid cellular responses39. 

Studies in human fibroblasts and zebrafish NSCs have reported Exportin-1-dependent 

changes in microRNA biogenesis and localisation in quiescence, including accumulation 

of microRNA-9 and Argonaute proteins (components of RNA silencing complexes) in 

qNSC nuclei55,59. In Drosophila, a transient low-level nuclear pulse of the homeobox 

transcription factor Prospero (Pros) induces Drosophila NSC quiescence60 (its localisation 

matching that of its adaptor Mira, shown in Extended Data Fig. 1). RanGEF/Rcc1/Bj1 

has been implicated in excluding Pros from aNSC nuclei to allow their self-renewal61 and 

its downregulation might therefore enable quiescence-inducing nuclear Pros. The work 

here presented shows these to be glimpses into larger-scale nucleocytoplasmic transport 

alterations that control quiescence. We show that downregulation of various nucleoporins 

or active nucleocytoplasmic transport factors induce NSC quiescence; and that many of 

these proteins are downregulated in response to a quiescence signal. Furthermore, as 

expected from altered nucleocytoplasmic transport, we identify cargo that are 

differentially partitioned between nucleus and cytoplasm in active versus quiescent 

NSCs. Specifically, we demonstrate nuclear-bias of hundreds of transcripts presumed to 

orchestrate a finely-tuned temporal sequence of events in the regulation of quiescence. 

Nuclear-biased mRNAs with decreased IR mostly encode (m)RNA processing regulator 

whereas those with increased IR mostly encode cell-cycle and mitotic regulators. These 

mechanisms add nuance to downregulation of protein synthesis during quiescence, via 

sequential deployment of factors during quiescence entry and, presumably the reciprocal 

during quiescence exit. Gene products relying differentially on transcription, splicing 

and/or cytoplasmic translocation will need more or less time for deployment and the first 

will likely promote readiness of others to follow. Both towards quiescence entry and exit, 
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the post-transcriptional mechanisms described likely interplay with the transcriptional in 

a series of positive-feedback loops whereby initially small changes in protein or 

cytoplasmic transcripts are amplified, underlying the continuum of states between deep 

quiescence and active cells. In fact, the same components may in some cases regulate 

quiescence at multiple levels and even different mechanisms. Analyses of Drosophila 

mutants for the nucleoporin Mtor/Tpr (whose RNAis did not induce quiescence in this 

study) implicated it in NSC quiescence regulation via transcriptional effects of the so-

called spindle matrix complex62.  

The course of transcription, transcript processing, export and degradation results in a 

steady-state that determines nucleocytoplasmic partitioning of transcripts. Our analyses 

reveal that most NSC mRNAs are equilibrated between the two subcellular compartments 

but that transcripts for a few hundred genes become more nuclear (and more completely 

spliced) in qNSCs. The fact that subcellular compartmentalisation of most transcripts was 

not significantly altered between aNSCs and qNSCs argues against general disruption of 

splicing or mRNA export. It is possible that nuclear-biased transcripts benefit especially 

from the few splicing factors that exhibit higher protein levels during quiescence 

(Fig. 5e). Another possibility is that overall decrease in splicing is commensurate with 

decrease in transcriptional rate during quiescence, and that decrease in IR results from 

longer residence of nuclear-biased transcripts in the nucleus allowing sustained 

interactions with splicing factors towards completion. Since the bulk mRNA export 

pathway is non-discriminatory and that its canonical components were only modestly 

downregulated in quiescence, it is plausible that qNSCs selectively regulate (a) 

discriminatory mRNA nuclear retention and/or export pathway(s) of a few hundred 

transcripts. Selective mRNA export pathways coordinate export of functionally related 

mRNAs37,39, which we see among nuclear-biased transcripts. However, neither are all 
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components of selective pathways currently known nor is the complement of mRNAs 

exported by each known pathway identified37. Future work will uncover (the) 

mechanism(s) for nuclear-bias of transcripts in qNSCs (Fig. 7c).  

Taken together, our results establish several novel features of NSC quiescence regulation, 

at least some of which may prove generalisable to other quiescent cell types. First, aNSCs 

and qNSCs express different concentrations and stoichiometry of nucleoporins, 

karyopherins and mRNA export factors; second, perturbation of specific components of 

the nucleocytoplasmic transport machinery is sufficient to induce quiescence; third, 

induction of qNSCs by physiological cues or via nucleoporin downregulation causes 

nuclear accumulation of a susbtantial fraction of polyadenylated transcripts and the 

magnitude of this effect increases with quiescence depth; fourth, nuclear or cytoplasmic 

biases of transcripts largely predicts down- and upregulation of encoded proteins, 

respectively, evidencing impact of mRNA nuclear accumulation on the proteome of 

qNSCs and explaining our finding of uncoupled proteome and transcriptome in qNSCs; 

fifth, most nuclear-biased mRNAs are completely spliced and encode (m)RNA 

processing regulators whereas the minority with increased intron-retention mostly encode 

cell-cycle and mitotic regulators; this suggests sequential deployment of types of factors 

during quiescence entry and, presumably the reciprocal during quiescence exit.  

The study of quiescence at both fundamental and clinical levels has been hampered by 

lack of positive markers. By showing that quiescence uncouples the proteome from the 

transcriptome, our study sheds light on why markers of quiescence may not have emerged 

from transcriptomic studies, and opens new avenues to identify them. Our findings also 

unveil likely mechanisms underlying graded states of stem cell quiescence and the rapid 

return of quiescent cells into the cycling pool upon receiving appropriate cues. 
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Methods 

Drosophila melanogaster genetics. Flies were mutagenised and screened as 

published63,64. MARCM clones65 were induced as described64 using y,w,hs-FLP1.22;tub-

GAL4,UAS-NLS::GFP::6xmyc;FRT82B,tubP-GAL80LL3/(TM6B) (gift from G. Struhl). 

RNAi was performed in conjunction with UAS-Dcr266 and stocks were obtained from the 

Transgenic RNAi Project at Harvard Medical School, Vienna Drosophila Resource 

Centre (VDRC), the Japanese National Institute of Genetics (NIG) and Bloomington 

Drosophila Resource Center (BDRC); deficiency67,68 and balancer stocks, UAS-
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mCD8::GFP, UAS-Dcr2 and w; tub-GAL80ts were also obtained from the BDRC. The 

following additional strains were used: grh-GAL418 and UAS-mira::3xGFP64 to visualise 

a subset of NSCs; NP3537-GAL478 (NIG) for pan-NSC RNAi. 

Rearing and staging of Drosophila. For larval genotyping, lethal chromosomes were re‐

established over balancer chromosomes marked by Dfd‐YFP. For larval staging 

experiments, crosses were performed in cages with grape juice plates (25 % (v/v) grape 

juice, 1.25 % (w/v) sucrose, 2.5 % (w/v) agar) supplemented with live yeast paste. Larvae 

hatched within 2 h at 25°C were transferred to our standard cornmeal food (8 % (w/v) 

glucose, 2 % (w/v) cornmeal, 5 % (w/v) baker's yeast, 0.8 % (w/v) agar in water) and 

placed at the desired temperature. Early larvae were newly-hatched and late larvae were 

at wandering stage. Data from males or females of the same genotype were pooled 

without distinction. 

Tissue/cell collection, and cell culture. Drosophila or mouse tissue/cells were prepared 

and cultured as published52,63,70. Differences were that for mouse cells the medium for 

aNSCs was additionally supplemented with 20 ng/ml recombinant murine Epidermal 

Growth Factor (PeproTech 315-09) and qNSC induction was performed with 50 ng/ml 

BMP4 (R&D Systems 5020-BP-010). qNSCs cultures were never passaged. Nestin-GFP 

mice71 (n = 3) were used for in vivo NSC analysis. Umbilical cord blood derived HSCs 

were extracted and processed as previous published72. Immunophentoypic HSCs were 

defined as Lin-/CD34+/CD38-/CD45RA-/CD90+/CD49f+, where Lin is Human Lineage 

Cocktail 1 (CD3, CD14, CD16, CD19, CD20, CD56); sorted by an Aria cytometer (BD 

Biosciences). For all flow cytometry, cells were initially identified based on forward and 

side scatters. Dead cells were excluded based on staining with 4’,6-diamidino-2-

phenylindole (DAPI). 
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EdU labelling, oligo(dT) fluorescent in situ hybridisation (FISH) and 

Immunofluorescence. Tissue/cells were incubated in 10 mM EdU (ThermoFisher 

C10340) in medium (Drosophila CNSs for 2 h in Schneider’s Insect Medium; mouse 

NSCs for 6 h in aNSC or qNSC media described above). Samples were processed for 

EdU detection according to the manufacturer's instructions (ThermoFisher Click‐iT EdU 

Imaging Kit). For combined EdU and other stains these were performed before EdU 

colour reaction. For FISH of Drosophila tissue or mouse cultured cells, samples fixed as 

usual were permeabilised in cold Methanol for 10 min, rehydrated in 70 % Ethanol for at 

least 10 min followed by 1 M Tris-hydroxymethyl-aminomethane (Tris) buffer (pH 8.0) 

for 5 min. For FISH of mouse tissue, 40 µm coronal sections first underwent heat-

mediated antigen retrieval at 95 °C for 10 min in 10 mM Saline-Sodium Citrate buffer 

(SSC) (pH 6.0). For all samples, hybridisation was performed with 1 ng/µl Cy3-Oligo-

dT(50) (Genelink, 26-4322-02) in 2x SSC containing 1 mg/ml yeast tRNA, 0.005 % 

Bovine Serum Albumin, 10 % Dextran Sulfate  and 25 % deionised Formamide; for at 

least 2 h at 37 ºC in a humidified chamber. Samples were washed once in 4x SSC and 

twice in 2x SSC. For combined FISH and immunofluorescence, FISH was performed 

before primary antibody incubation in 2x SSC, 0.1 % TritonX-100 (with 5 % donkey 

serum for mouse tissue, all other samples, no serum) and subsequent steps in 2x SSC. 

When performing immunofluorescence alone or with EdU, this was performed as 

published19,52,63,70 with additional primary antibodies: rabbit anti-Dcp-1 (Cell Signalling 

95785), rabbit anti-cleaved Caspase-3 (Cell Signalling Technology 9664), rabbit anti-

Nup98 (Cell Signalling Technology 2598), rabbit anti-Nup214 (Abbex abx129466), 

rabbit anti-Nup54 (Novus NBP1-85899), mouse anti-Nup133 (Novus H00055746-M02), 

rabbit anti-Nup43 (Novus NBP1-88792), rabbit anti-Ndc1 (Novus NBP1-

91603). Antibodies used for fluorescence-activated cell sorting were: anti-Human 

Lineage Cocktail (BD Biosciences 340546), anti-CD34 (BD Biosciences 8G12), anti-
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CD38 (eBioscience HB7), anti-CD45 (Biolegend HI30), hCD45RA (eBioscience 

HI100), anti-CD90 (BD Biosciences 5E10), anti-CD49f (BD Biosciences GoH3).  

Imaging and image analyses. Fluorescence samples were scanned with Zeiss 510 or 

800, or Leica SP5 or SP8 scanning confocal microscopes. Optical section steps ranged 

from 0.1 to 2 μm with picture size of 1,024 × 1,024 pixels. Images were processed and 

arranged using Fiji/ImageJ, Adobe Illustrator, Adobe Photoshop CS5, and/or PowerPoint 

software. Drosophila cell counts were carried out with ImageJ Cell Counter plugin; when 

qNSC fibres were observed 10 brain lobes were quantified per genotype, when not 

observed it was 4 lobes (a single lobe per animal). Cell culture images were acquired from 

3 random fields from each of 3 coverslips; their counts, image masking, projecting and 

reformatting were performed with CellProfiler scripts. Poly(dT) intensity per area was 

determined for nucleus or cytoplasm from SUM projections when the whole cell could 

be imaged, or from single optical sections of mouse hippocampus (where dense cell 

packing and sectioning precluded imaging entire cells). No data points were excluded. 

Graphpad Prism software was used for statistics and graphs. 

Lentivirus preparation and titration. Lentiviruses were produced in 293FT using 

standard procedures and titratred as published73. To deplete Nup98, NSCs were grown 

for 24 h, infected with 2.5 M.O.I. Nup98 shRNA lentivirus and fixed 0 or 2 d post-

infection. To reversibly induce shRNA-mediated knockdown, the medium was 

supplemented with 1 !g/ml Doxycycline hyclate (Sigma D9891) daily; reversed by 

washing three times with basal medium. 

Protein extraction, Western blots and proteomics. Cells were washed with ice-cold 

PBS and scraped. Protein lysates were prepared as published52 and concentration 

determined using Pierce BCA Protein Assay kit (ThermoFischer Scientific 23225). 

Western blots were performed and quantified as published52. Antibodies used were all 
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from Novus: rabbit anti-Nup50 (NBP2-19610), rabbit anti-Nup210 (NB100-93336), 

rabbit anti-Nup93 (NBP1-81546), rabbit anti-Nup62 (NBP1-31381), rabbit anti-Nup35 

(NB100-93322), rabbit anti-Nup188 (NBP1-28717), mouse anti-Nup358 (NB100-

74480), rabbit anti-Pom121 (NBP2-19890). Proteomic analyses were performed on 50 µg 

total protein per timepoint. Samples were Acetone-precipitated overnight followed by 

Trypsin digestion using the PreOmics iST-NHS sample preparation kit74, labelled using 

0.2 mg TMT 10-plex Isobaric Label Reagents (Thermo Scientific) and checked to ensure 

>99 % labelling efficiency. Equal volumes of all ten labelled samples were mixed to 

produce a single mixed sample which was subject to high pH (HpH) reversed-phase 

peptide fractionation (Pierce). Nine HpH fractions were each analysed on a 145 min 

U3000 HPLC method. Samples were loaded in 2 % Acetonitrile, 0.05 % Trifluoroacetic 

acid onto a C18 trap column, then transferred onto an EasySpray 50 cm × 75 µm column. 

Peptides were separated by elution using the following conditions: 15 min 3-9 % mobile 

phase A (0.1 % Formic acid, 5 % Dimethyl Sulfoxide (DMSO)), 90 min 9-30 %, 15 min 

30-50 %, 5 min 99 % and ending with 15 min at 3 %. Mobile phase B was 80 % 

Acetonitrile, 5 % DMSO, 0.1 % Formic acid. An SPS-MS3 method on an Orbitrap Fusion 

Tribrid mass spectrometer (Thermo Fisher Scientific) acquired data with settings: MS1 

orbitrap, resolution 120 K, scan range 375-1500 m/z, maximum injection time 50 ms, 

AGC target 4E5, normalized AGC target 100 %, microscans 1, RF lens 30 %, profile 

data, MIPS mode peptide, charge states 2-6 included, dynamic exclusion 60 s +/- 10 ppm. 

MS2 ion trap, quadrupole isolation mode, 1.2 isolation window, CID activation, 35 % 

collision energy, activation time 10 ms, activation Q 0.25, turbo scan rate, maximum 

injection time 50 ms, AGC target 1E4, normalised AGC target 100 %, microscans 1, 

centroid data, filter precursor selection range MSn 400-1200 m/z. MS3 orbitrap scan 

event 1 for charge state 2, quadrupole isolation mode, 1.3 isolation window, Multi-notch 

Isolation True, MS2 Isolation Window (m/z) 2, number of Notches 5, activation type 
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HCD, collision energy 65 %, orbitrap resolution 50K, scan range 100-500 m/z, maximum 

injection time 105 ms, AGC target 1E5, normalized AGC target 200 %, microscans 1, 

centroid data. MS3 orbitrap scan event 2 for charge state 3 as above but with number of 

Notches 10. MS3 orbitrap scan event 3 for charge states 4-6 as above but with number of 

Notches 10. Raw data were analysed in MaxQuant75 (v1.6.12.0) against a SwissProt Mus 

musculus protein database containing 17,482 protein entries (downloaded May 2020). 

TMT10plex quantification was selected (modification at Lysine and peptide N-terminal 

amino groups) along with variable modification of Methionine oxidation and N-terminal 

acetylation. A fixed Cysteine modification of +113.084 Da (specific to the iST-NHS kit) 

was added. Further data analyses were performed in Perseus76 (v1.4.0.2). Common 

contaminants and proteins identified from decoy sequences were removed. Protein 

intensities were log2 transformed, median normalised within each sample and then 

normalised to Day 0. GO terms were simplified using REVIGO77 with allowed similarity 

of 0.7. 

Cell proliferation analysis by flow cytometry. Fixed samples were analysed with a BD 

LSRFortessaTM Flow Cytometer using 488 nm excitation (505 LP, 530/30) for zsGreen, 

355 nm (-, 450/50) for DAPI, and 639 nm (-, 670/14) for AlexaFlour 647-labelled EdU. 

Results were analysed with FlowJo software. 

Cell fractionation, nuclei acid extraction, sequencing and analyses. Drosophila 

genomic DNA was extracted according to standard methods and the identity of the 

genetic lesion determined by sequencing exons of heterozygous FRT82B/FRT82B, 2V327 

animals. This sequencing was outsourced to Eurofins Genomics using primers designed 

with A Plasmid Editor software. Mouse cell nucleocytoplasmic fractionation and RNA 

isolation was performed with the PARIS kit (ThermoFisher AM1921) according to the 

manufacturer’s instructions plus an additional ethanol precipitation step and rehydrated 
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in nuclease-free water. Fractionation quality was verified by quantitative reverse-

transcriptase polymerase chain reaction as published78. Subsequent steps for next 

generation sequencing were performed as published52 and sequencing was performed 

with 75 bp single-end reads with a depth of 50 million reads per sample. Raw reads were 

quality and adapter trimmed using cutadapt-1.9.1 software79 then aligned and quantified 

using RSEM-1.3.0/STAR-2.5.280,81 against the mouse genome GRCm38 and annotation 

release 89, both from Ensembl. Differential gene expression analysis was performed in 

R-3.6.1 (R Core Team, 2019) using the DESeq2 package82 (version 1.24.0). 

Normalisation and variance-stabilising transformation was applied on raw counts before 

performing PCA and Euclidean distance-based clustering. Significantly differential genes 

were always selected using a 0.05 false-discovery rate threshold. Size factors in DESeq2 

were calculated based on the summed cytoplasmic and nuclear counts for each paired 

sample set to reconcile technical differences between samples whilst count differences 

between subcellular compartments within the same paired sample set were maintained 

for all genes. We performed pairwise comparisons between subcellular compartments on 

each day (within day comparison) and between the subcellular distribution across days 

(between days) using the following formula: ~ days_in_BMP + subcellular_compartment 

+ days_in_BMP:subcellular_compartment + days_in_BMP:pair_within_day. 

Additionally, we performed a likelihood ratio test in DESeq2 to identify the genes that 

changed subcellular distribution across time (reduced design formula in DESeq2: ~ 

days_in_BMP + subcellular_compartment + days_in_BMP:pair_within_day). Z-scores 

of protein-coding genes (from fracRNA-seq data) was correlated to respective protein 

expression (proteomic data) in R-3.6.1 (R Core Team, 2019) using dplyr package (version 

1.0.6). Scatterplots were prepared using ggplot2 (version 3.2.1) to visualise IR as one 

intron per gene, selecting the one with the biggest absolute change in IR value. Violin 

plots were prepared using ggplot2 (version 3.2.1) using the log2 fold changes for all genes 
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after pairwise comparisons between days. Gene set enrichment analyses were performed 

using ClusterProfiler (version 3.12.083) using the enrichGO() function for enrichment of 

biological process gene ontology terms. 

 

Data Availability  

FracRNA-seq data is deposited in the Gene Expression Omnibus data repository and 

available under GSE162047.  

 

Code Availability  

Code is available upon request. 
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noticeably more poly(A) RNA than deeply quiescent NSCs (0-4 h after larval hatching,
ALH). Following the same qNSC over time (across specimen) (Extended Data Fig. 1), 
revealed gradual increase of poly(A) RNA as reactivation progressed. Arrowheads 
point at poly(A) RNA accumulations within the nucleus. b, Quantifications from 
individual cells such as those depicted in a. Histograms represent mean and error bars 
s.e.m. of values normalised to MB average. Mann-Whitney test, ***p≤0.0005. 
c, Nuclear accumulation of poly(A) RNA seen in some NSCs with Snx or Nup98-96 
knockdown, particularly in deeply quiescent NSCs as reported by nuclear Mira. Images
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Transcripts for 1,708 genes show significant IR change in nuclear fractions
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Extended Data Fig. 1 | Sequence of events during Drosophila qNSC reactivation. 
a, Top row: timecourse of Mira::GFP localisation in a NSC reproducibly identified 
across specimen and used as model (ALH, after larval hatching; note that precise 
timings vary between NSCs). Deeply quiescent NSCs present nuclear Mira, a cell-
- ody of ≤ m and a long thin asal fi re ≤ 0.  m at the ne , i.e., un tion ith 
cell body). As NSCs emerge from deep quiescence, Mira localises not only to the 
nucleus but also to the cell cortex, decorating the fi re  the fi re thi ens and eventually 
Mira is excluded from the nucleus. NSCs arrested in  su h as this model, start 
e pressing the mitoti  mar er phos-pho-histone H3 (PH3) without incorporating the 

-phase mar er 5-ethynyl- -deo y-uridine d . Bottom row (different timeline): 
-arrested s in orporate d  prior to enterting mitosis and becoming PH3-

-positive. ell- y le re-engagement mar ers are seen and mitosis completed whilst 
NSCs still harbour a fibre. Fibres are lost via inheritance by the firstborn post-reactiva-
tion basal daughter, a transit-amplifying progenitor named ganglion mother cell (GMC) 
in Drosophila. mages are ma imum intensity pro e tions of a few optical sections; 
s ale ars  5 m. b, Schematic representation of these events colour-coded as per a.
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Extended Data Fig. 2 | Deficiency mapping defined a small genomic interval
responsible for the 2V327 phenotype. Phenotype in FRT82B MARCM clones
revealed the 2V327 genomic lesion to be located on chromosome arm 3R.
Assuming lethality of the mutation, complementation tests with DrosDel and
Exelixis deficiencies (Df) uncovering 3R exposed a small candidate region
between cytological locations 86-87 (grey). Regions uncovered by each Df are
indicated by the gap in the line under each Df name.
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Extended Data Fig. 3 | Mutant or RNAi snx NSCs do not express detectable 
levels of cleaved Drosophila Death Caspase-1. Shown is a low magnification 
of a whole late larval Drosophila brain lobe (left) and a high magnification of 
one/few NSCs (right) of the genotypes indicated. Scale bars: 15 µm.

snx2V327/Df



mCherry
RNAi  18°C

Nup98-96R
NAi  18°C

mCherry
RNAi  B

Nup98-96R
NAi B

Nup98-96R
NAi  R

mCherry
RNAi  B

Nup98-96R
NAi  B

Nup98-96R
NAi  R

mCherry
RNAi  31°C

Nup98-96R
NAi  31°C

0

50

100

48h 72h

18 °C 
25 °C 
31 °C 

D
pn

+  c
el

ls
 p

er
 b

ra
in

 lo
be

    48     72     >96 h ALH

* ****

B

B R

R

Extended Data Fig. 4 | Downregulation of Drosophila Nup98-96 induces anachronical qNSCs. 
Experimental design (schematised) and quantifications as per Fig. 1d,e. Histograms represent mean
and error bars s.e.m. Student’s t-test was performed to compare number of Dpn+ cells in the conditions 
indicated; *p<0.05. ****p<0.001. 

DpnCortical 
Mira

PH3

Fiber



aHSC qHSC
0.0

0.5

1.0

1.5

2.0

2.5 *

Extended Data Fig. 5 | Quiescent haematopoietic stem cells accumulate nuclear
poly(A) RNA relative to active counterparts. a, Adult bone marrow derived
CD34+CD38- haematopoietic stem and progenitor cells (HSPCs) sorted from a bone
marrow aspirate of a healthy donor. Active HSPCs (aHSPCs) were distinguished
from quiescent HSPCs (qHSPCs) by presence/absence of Ki67 (filled and open
arrowheads, respectively). Significant anticorrelation was observed between Ki67
mean intensity and nucleocytoplasmic ratio of poly(A) RNA (Pearson’s product
moment correlation, correlation coefficient -0.19, p=0.0001; not shown). b, High
magnification of aHSPC and qHSPC (arrowheads in low-magnification). Images are
SUM intensity projections of Z-stack; scale bars: 10 µm. c, Quantifications from
individual cells such as those depicted in a. Histograms represent mean and error bars
s.e.m. of values normalised to aHSPC average. Mann-Whitney test, *p<0.05.
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Extended Data Fig 6 | The effect of Nup98 downregulation on the cell cycle is reversible. a, Quantification of Nup98 levels in individual 
nuclei of cells expressing shRNAs after 3 d Doxycycline (Dox) induction. Histograms represent mean and error bars s.e.m. of values normal-
ised to average of controls (shRNA targetting Renilla Luciferase, Luc). Mann-Whitney test, ****p<0.0001. b, Distribution of transduced cells
(reported by zsGreen) according to DNA content as determined by flow cytometry after either 3 d Dox or 3 d Dox followed by 3 d washout.
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Extended Data Fig. 7 | Longer exposure to BMP4 induces deeper quiescence in adult mouse hippocampal NSC cultures.
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qNSCs that had been exposed to BMP4 for 3 d reactivated faster than those exposed to BMP4 for 10 d. Histograms represent 
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Extended Data Fig. 10 | Nuclear-biased transcripts show increased intron retention in the cyto-
plasmic but not nuclear fraction of qNSCs. a,b depict data from cytoplasmic fractions. a. Plot of
Z-score and IR-score differences between aNSCs and qNSCs per gene (single intron with largest IR
difference plotted per gene). b. Large pie chart: breakdown of cytoplasmic fraction genes according
to Z-score bias in qNSCs relative to aNSCs; small pie charts: breakdown of (un)biased genes accor-
ding to direction of differential IR. c. The various introns of a transcript generally showed the same
directionality of IR as NSCs shifted from active into deeper quiescence. Sequencing coverage tracks
of three nuclear-biased transcripts in nuclear fractions for indicated conditions. Differential IR events 
(decreased in qNSCs) are highlighted by black boxes. 
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