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 24 
Abstract 25 

Understanding the genetic architecture of the stress response and its ability to evolve in 26 

response to different stressors requires an integrative approach. Here we quantify gene 27 

expression changes in response to two stressors associated with global climate change 28 

and habitat loss—heat shock and mutation accumulation. We measure expression 29 

levels for two Heat Shock Proteins (HSP90 and HSP60)—members of an important 30 

family of conserved molecular chaperones that have been shown to play numerous 31 

roles in the cell. While HSP90 assists with protein folding, stabilization, and degradation 32 

throughout the cell, HSP60 primarily localizes to the mitochondria and mediates de 33 

novo folding and stress-induced refolding of proteins. We perform these assays in 34 

Daphnia magna originally collected from multiple genotypes and populations along a 35 

latitudinal gradient, which differ in their annual mean, maximum, and range of 36 

temperatures. We find significant differences in overall expression between loci (10-37 

fold), in response to thermal stress (~6x increase) and with mutation accumulation (~4x 38 

increase). Importantly, stressors interact synergistically to increase gene expression 39 

levels when more than one is applied (increasing, on average, >20x). While there is no 40 

evidence for differences among the three populations assayed, individual genotypes 41 

vary considerably in HSP90 expression. Overall, our results support previous proposals 42 

that HSP90 may act as an important buffer against not only heat, but also mutation, and 43 

expands this hypothesis to include another member of the gene family acting in a 44 

different domain of the cell. 45 

Keywords: stress response, HSP60, HSP90, waterfleas, Cladocera  46 
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Introduction 47 

        Members of the heat shock protein (HSP) gene family perform an array of 48 

essential functions including: acting as molecular chaperones, facilitating the immune 49 

response, regulating apoptosis, and signaling protein degradation (Höhfeld et al., 2001; 50 

Queitsch et al., 2002; Czarnecka et al., 2006; Javid et al., 2007). The HSP family was 51 

first discovered (Ritossa, 1962) and described in Drosophila melanogaster (Tissiéres et 52 

al., 1974), but has since been the object of intense study across kingdoms and domains 53 

(Gupta 1995, Carra et al. 2017). Although HSPs have long been known to act as 54 

molecular chaperones aiding in both de novo folding and refolding of proteins (Feder & 55 

Hofmann, 1999), they also interact with proteins in numerous other contexts (e.g., to 56 

facilitate ligand binding or assembly of multiprotein complexes). Interestingly, HSP 57 

expression, and the general heat shock response (HSR), is mounted not only in 58 

response to heat, but also to a variety of other stressors (e.g., heavy metals, oxidative 59 

stress, cytotoxic agents, and mutation; Neuhaus-Steinmetz et al., 1997; Kim et al., 60 

2014; Liu et al., 2015, Queitsch et al., 2002).  61 

Here, we assess the influence of both thermal stress and mutation accumulation 62 

on expression levels of two heat shock proteins (Heat Shock Protein 90 (HSP90) and 63 

60 (HSP60)), as well as assessing variation among genotypes and populations in this 64 

response. HSP90 is a 90 kDa chaperonin, known as ‘central modulator’ or a ‘hub of 65 

hubs’ due to its role in signaling pathways and protein-protein interactions (Schopf et al. 66 

2017, Zabinsky et al., 2019b), that stabilizes a large clientele of intracellular proteins 67 

and signaling proteins. HSP60 is a 60 kDa chaperonin primarily localized to the 68 

mitochondria (Cheng et al., 1989). It is involved in the de novo folding and refolding of 69 
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imported proteins in the mitochondria (Martin et al., 1992). HSP60 has also been found 70 

in the cytosol where it can participate in either promoting or inhibiting apoptosis 71 

(Chandra et al., 2007).   72 

 Understanding how organisms respond to thermal stress is an area of urgent 73 

biological interest given the current projections of anthropogenically-induced climate 74 

change. Variation in HSP expression in response to thermal stress has been 75 

demonstrated in a variety of systems (e.g., Tomanek and Somero 2002, reviewed in 76 

Feder & Hofmann, 1999). Intraspecific variation in expression profiles within and among 77 

populations has not been as widely explored (but see review by Favatier et al. 1997). 78 

Among populations, genes thought to respond to heat have been examined in the 79 

genus Fundulus and individuals vary in their response depending on whether they 80 

originated from the Northern or Southern hemisphere, where water temperatures differ 81 

(Picard & Schulte, 2004). In addition, the activation of the HSR has been linked to the 82 

acclimation of an individual to a given thermal environment, which might explain 83 

differences between populations and individuals within a population (Buckley & 84 

Hofmann, 2002). While intraspecific variation is posited to be important for resilience to 85 

global climate change (Des Roches et al., 2018, 2020), long term thermal tolerance may 86 

be attributed to changes in gene expression rather than sequence differences in 87 

protein-coding regions (e.g., in corals; Palumbi et al., 2014) raising the question of how 88 

acclimation facilitates microevolutionary change (Pauwels et al., 2007, Gienapp et al., 89 

2008).   90 

The role of HSPs as buffers against mutation was initially proposed over 20 91 

years ago (Rutherford and Lindquist, 1998) and has been demonstrated in both animal 92 
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and plant systems (Queitsch et al., 2002). Because missense mutations can promote 93 

protein misfolding and HSPs aid in correct folding, HSP90 has gained a reputation as a 94 

“capacitor for mutation” by providing an additional barrier between genotype and 95 

phenotype (Jarosz & Lindquist, 2010). The idea is that buffering against protein 96 

misfolding stores variation that can then be ‘released’ if the cellular pool of HSP90 97 

becomes depleted (Jarosz et al., 2010), as has been demonstrated by mutant lines, 98 

knockouts/knockdowns of HSP90, pharmacological interference, and among natural 99 

populations that vary in their HSP90 expression (Rohner et al., 2013, Hummel et al., 100 

2017, Mason et al., 2018). A mutation accumulation experiment with hypermutator 101 

strains of yeast revealed an enrichment of HSP90 expression (Zabinsky et al., 2019a), 102 

underscoring the need for a deeper understanding of the impact of mutation and of 103 

intraspecific variation in patterns of HSP expression. There is evidence that 104 

upregulation of the bacterial homolog to HSP60, GroEL, can buffer mutations in a 105 

similar capacity to HSP90 (Sabater-Muñoz et al., 2015), however it is still unknown if 106 

HSP60 buffers mutations in mitochondrial proteins. 107 

We quantify HSP90 and HSP60 expression changes in response to heat shock 108 

and mutation accumulation (MA) among different genotypes and populations of Daphnia 109 

magna. Daphnia (Cladocera) have served as an ecological, evolutionary, and 110 

ecotoxicological model for well over a century (Schaack, 2008, Shaw et al., 2008, 111 

Yampolsky et al., 2014), and genomic resources are now available as well (e.g., 112 

Colbourne et al., 2011, Orsini et al., 2016, and Lee et al., 2019). Previously, the 113 

Daphnia system has been used to demonstrate differences in gene expression, protein 114 

production, and evidence for microevolutionary change at HSP genes in the lab in 115 
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response to environmental change (Pauwels et al. 2007, Mikulski et al., 2009, 2011, 116 

Becker et al., 2018). We predict both heat shock and mutation accumulation will 117 

increase HSP expression for both genes if they both act as mutational capacitors, but 118 

also that the interaction of the two stressors might have a synergistic effect on 119 

expression levels, compared to one stress alone. Furthermore, we predicted baseline 120 

expression levels and/or the response to stress might differ among populations, but not 121 

among genotypes, given the regional differences between Finland, Germany, and 122 

Israel. Our experimental design allows us to measure HSP expression levels along 123 

multiple axes of comparison, and thus quantify responses to extrinsic and intrinsic 124 

stress (heat shock and mutation accumulation) as well as natural variation in basal and 125 

stress-induced HSP expression (e.g., among genotypes or populations). Assessing the 126 

levels of gene expression variation for HSPs along multiple treatment axes is an 127 

important first step towards elucidating the possible role of HSPs as cellular buffers or 128 

mutational capacitors and has implications for understanding the evolution of stress 129 

responses across lineages and over time. 130 

  131 
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Materials and Methods 132 

Study System and Experimental Design  133 

Daphnia magna are aquatic microcrustaceans (Order: Cladocera) with a cosmopolitan 134 

distribution that can reproduce quickly, with or without sex. The individuals used in this 135 

study were derived from genotypes originally collected in Finland, Germany, and Israel 136 

(provided by D. Ebert in 2014), from populations selected because of the distinctive 137 

environmental regimes they experience (including temperature, periods of dry down, 138 

and census population sizes; Lange et al. 2015) along a latitudinal gradient (see 139 

Supplemental Table S1a). In this experiment, we assayed one genotype from Finland 140 

(FC), one genotype from Germany (GA), and three genotypes from a single population 141 

in Israel (IA, IB, and IC; Figure 1). For the genotype from Germany (GC) and one of the 142 

genotypes from Israel (IA), both descendants of the originally collected genotypes 143 

(referred to as ‘control lines’ hereon) and descendants of five mutation accumulation 144 

(MA) lines initiated from each of these clones in 2013 (average number of generations 145 

of mutation accumulation = 24; see Ho et al. 2019 for MA details) were assayed (Table 146 

S1b). This design allowed us to assess gene expression differences between genes, 147 

with and without heat shock, among populations (Finland, Germany, and Israel), among 148 

genotypes within a population (within Israel), and between lineages with and without 149 

mutation accumulation (Figure 1). Individuals were reared concurrently for 15 days in 150 

June and July 2019 in Percival environmental chambers under strictly controlled 151 

laboratory conditions to assess levels of heat shock protein (HSP60 and HSP90) 152 

expression. Although we set up 4 biological replicates for each lineage/condition 153 

combination, in some cases individuals did not survive until the end of the experimental 154 
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period. In most cases, we were able to perform the RNA extractions and downstream 155 

molecular analyses on 2-3 biological replicated for each lineage/condition assayed. 156 

 157 

Heat Shock Exposure   158 

To assess the effect of heat on HSP gene expression, replicate fourth generation D. 159 

magna from the same clutch were raised in pairs in 40 mL of ADaM in 50 mL plastic 160 

conical tubes at 18 ˚C. Two pairs of individuals per line were raised for each treatment 161 

(heat shock and non-heat shock control). After 15 days of growth and regular feeding, 162 

each individual was transferred to a 1.7 mL microcentrifuge tube. For each line, half of 163 

the individuals were placed in a 30 ˚C Corning LSE Digital Dry Bath inside of an 18 ˚C 164 

Percival incubator (heat shock), and the other half were placed in a Corning LSE Digital 165 

Dry Bath that was turned off and equilibrated to ambient temperature inside of the same 166 

18 ˚C Percival incubator (no heat shock). Individuals were treated for 2 hours. After 2 167 

hours, the media was removed and replaced with 300 µL 1X DNA/RNA Shield from the 168 

Zymo Research Quick-RNA Miniprep Kit. Samples were frozen immediately in liquid 169 

nitrogen and stored at -20 °C.  170 

 171 

RNA Extraction and Reverse Transcription                  172 

RNA was extracted from each sample independently using the Zymo Research Quick-173 

RNA Miniprep kit according to the manufacturer’s protocol. Briefly, one D. magna 174 

individual in 1X DNA/RNA Shield was mixed with 300 µL RNA Lysis Buffer and ground 175 

with a microcentrifuge pestle. All centrifugations were done at 10,000 ´ g for 30 176 

seconds unless specified with a Labnet Spectafuge 24D. After centrifugation through a 177 
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DNA specific filter for 1 min, the flow-through was mixed with 600 µL ethanol, 178 

transferred to an RNA specific filter, and centrifuged. The bound RNA was then washed 179 

with 400 µL of RNA Wash Buffer and treated with a solution of 75 µL DNA Digestion 180 

Buffer and 5 µL DNase I for 15 min in order to destroy any remaining DNA. The 181 

digestion was centrifuged, and the remaining RNA was washed once with 400 µL RNA 182 

Prep Buffer and once with 700 µL RNA Wash Buffer. The final wash was done with 400 183 

µL RNA Wash Buffer, and it was centrifuged for 2 min in order to remove any latent 184 

buffer. RNA was then eluted into a nuclease-free microcentrifuge tube with 50 µL 185 

DNase/RNase free water and stored at -20 ˚C. Concentration of RNA was measured 186 

using the Invitrogen Qubit RNA BR Assay with a Qubit 3.0 (Life Technologies). For each 187 

sample, 100 ng of total RNA per individual was reverse transcribed with random primers 188 

in a 20 µL reaction using the Promega GoTaq 2-Step RT-qPCR System according to 189 

the manufacturer’s protocol. cDNA was then stored at -20 ˚C.  190 

 191 

Quantitative PCR        192 

An RNA sequence for HSP60 was obtained from Steinberg et al. (2010) and the 193 

sequence for HSP90 from Kotov et al. (2006). Sequences were aligned to whole 194 

genome sequences of control lines from each population in this study using blastn (see 195 

Supplemental Data File A for alignments). Candidate control genes (succinate 196 

dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ubiquitin 197 

conjugating protein (UBC) for qPCR were selected from Heckmann et al. (2006). 198 

Primers were designed using Primer3 to generate amplicons between 70 bp and 200 bp 199 

(Supplemental Table S0). After qPCR, the stability of each control gene was checked 200 
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using RefFinder (Xie et al., 2012). Though UBC expression was previously observed to 201 

be somewhat responsive to heat in different D. magna populations (Jansen et al., 202 

2017), we found it to be the most stable across treatments in our populations, so it was 203 

used as the control gene for this study. Primer efficiencies were assessed by serial 204 

dilution. Both target genes and UBC were found to have efficiencies of 100% 205 

(Supplemental Figure 1). Any primer pairs with estimated efficiencies slightly over 100% 206 

were assumed to have true efficiencies of 100%. Primer functionality and specificity 207 

were verified through end-point PCR using Qiagen Taq PCR Master Mix. Products were 208 

analyzed by gel electrophoresis. Amplicon lengths are as follows: HSP90 is 138 bp, 209 

HSP60 is 74 bp, and UBC is 90 bp. 210 

 211 

qPCR was performed using the Promega GoTaq 2-Step RT-qPCR System according to 212 

the manufacturer’s protocol. Each 10 µL reaction included 5 µL GoTaq qPCR Master 213 

Mix, 2 µL each of 1 µM forward and reverse primers, and 1 µL of cDNA. Cycling 214 

conditions (CFX Connect, Bio-Rad) were 2 min at 95 ˚C for polymerase activation 215 

followed by 40 cycles of 15 sec of denaturation at 95 ˚C with 1 min at 55 ˚C of annealing 216 

and extension. Lastly, a melt curve from 55 ˚C to 95 ˚C was added at the end to verify 217 

no off-target amplification. Samples and genes were organized through the sample 218 

maximization method such that each plate only amplified one gene, but each plate had 219 

all samples (2-3 biological replicates per line and treatment). Three technical replicate 220 

reactions were performed on separate plates. Because each sample was represented in 221 

every plate, plates served as technical replicates (Derveaux et al., 2010).  222 

 223 
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Data Analysis         224 

In order to determine if any technical replicates were outliers, the mean of each sample 225 

x gene combination was calculated. Only replicates < 1 standard deviation from the 226 

mean (-1 < Z-score < 1) were included in the analysis. The relative quantity (RQ) of 227 

experimental genes (HSP90, HSP60) originally present in the sample was calculated 228 

using the mean Cq of the remaining replicates and the efficiency of the primer pair (E), 229 

normalized by the RQ of the reference gene (UBC) as described by Rieu and Powers 230 

(2009) to estimate normalized relative quantities (NRQ). NRQ values were log 231 

transformed prior to statistical analysis to correct for heterogeneity of variance (Rieu 232 

and Powers, 2009). The raw data can be found in Tables S6 and Table S7 for HSP90 233 

and HSP60, respectively. Transformed data (using a log2(NRQ) transformation) are in 234 

Table S8 and Table S9, for HSP90 and HSP60, respectively.  235 

 236 

We tested our log-transformed dataset for normality and homogeneity of variances. 237 

Using the Levene’s test, the data for HSP90 (F13,70 = 1.56, p = 0.117) and HSP60 (F13,70 238 

= 1.08, p = 0.388) suggest that there is homogeneity of variances. Through a Shapiro-239 

Wilks test on the residuals of a multiple linear regression model including all data for 240 

both genes independently, HSP60 did not depart significantly from normality (W = 241 

0.974, p = 0.0877) while HSP90 expression levels were found to have high non-242 

normality (W = 0.811, p < 0.0001). As the data were already log2 transformed, there 243 

was no further transformation that improved the normality of the dataset. Q-Q plots of 244 

expression levels of both genes show a higher than predicted number of cases at both 245 

ends of the model (Supplemental Figure 2). However, because there is no non-246 
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parametric equivalent of a multi-way ANOVA, and ANOVA is robust to departures from 247 

normality (Knief and Forstmeier, 2020) such as those in this dataset, differences in 248 

means were tested using ANOVAs. 249 

All ANOVAs were performed in RStudio. The full model tested the effects of gene 250 

(HSP60, HSP90), heat shock, mutation accumulation, population of origin, and 251 

genotype, and all interactions, on expression level using a 5-Way ANOVA (Model A in R 252 

code and Table S2). To test for mutation accumulation effects specific to HSP90 and 253 

HSP60, a model was made for each gene with all samples including both mutation 254 

accumulation lines and control lines with all populations using a 4-Way ANOVA (Models 255 

B and C respectively in R code and Tables S3 and S4). To test for population effects, in 256 

addition to Model A, two additional models, D and E, were made that included only 257 

control lines from each population (with all genotypes from Israel) for each gene using a 258 

2-Way ANOVA (Tables S3 and S4). Lastly, two 2-Way ANOVA models were made 259 

using only Israel control lines for each gene to test if genotype has an effect on HSP90 260 

or HSP60 expression (Models F and G in R code and Table S5). All models can be 261 

found in the supplemental tables and R code. 262 

 263 

Results 264 

Our assay of gene expression levels for HSP60 and HSP90 allowed us to test for the 265 

effect of heat stress (30oC vs. 18oC), mutation accumulation (5 MA lines compared to 266 

control lines from both Israel and Germany), population effects (Israel, German, 267 

Finland) and genotype effects (three genotypes nested within the Israel population) in 268 

D. magna (Figure 1). Overall, HSP90 was expressed approximately 10-fold higher than 269 
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HSP60 (F = 163.7, df = 1, p << 0.001; Table 1, Table S2, and Figure 2). This difference 270 

in expression was observed under both unstressed and heat shocked conditions (Figure 271 

2).  272 

 273 

Generally, heat shock increases the mean expression levels of both genes (F = 102.1, 274 

df = 1, p < 0.001; Table 1 and Figure 2), although the specific fold-change depends on 275 

the gene and population-of-origin (~6x increase, on average but in some cases as much 276 

as a 15x increase). Similarly, we observed higher expression levels for both genes in 277 

mutation accumulation lines relative to control lines (F = 15.7, df = 1, p < 0.0001; Table 278 

1 and Figure 2), although the size of the increases were not as large as with heat shock 279 

(on average, 3.8x increase; Table 2). Individually, the effect of mutation accumulation 280 

was significant for HSP60 (F = 42.9, df = 1, p < 0.0001; Table 1 and Table S4), but not 281 

for HSP90 (F = 0.8, df = 1, p = 0.381; Table 1 and Table S3), though HSP90 expression 282 

levels were elevated in lines where mutations had accumulated, regardless of 283 

temperature (Table 2). There is evidence for a synergistic effect of heat and mutation 284 

accumulation, with much higher expression with the combination of both stresses (on 285 

average, 23x increase) than under either stress individually (Figure 2 and Table 2). Both 286 

factors, heat shock and mutation accumulation, tend to not only increase the mean 287 

expression levels, but also the variance in gene expression levels of both genes (Figure 288 

2).   289 

 290 

In terms of intraspecific variation in gene expression, levels did not vary based on which 291 

population the genotypes originated from (Finland, Germany, and Israel; F = 1.26, df = 292 
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2, p = 0.29; Table 1), although there was one interaction effect observed (population x 293 

gene x heat shock; Table 1). This was driven by the fact that there was an effect of heat 294 

shock in all three populations for HSP90, but only for two of the three populations for 295 

HSP60 (not Finland; see Table S2 for post-hoc pairwise contrasts). Surprisingly, there is 296 

a genotype effect for HSP90 expression levels (comparing genotypes IA, IB, and IC 297 

from Israel, excluding all MA lines; F = 6.4, df = 2, p = 0.01; Tables 1 and 2 and Figure 298 

3), but no significant genotype effect was observed in HSP60 (F = 3.1 df = 2, p = 0.08; 299 

Table S5).   300 

 301 

Discussion 302 

The HSP genes are members of a large and diverse family and play a variety of 303 

important roles in responding to extrinsic and intrinsic sources of stress (Neuhaus-304 

Steinmetz et al., 1997; Kim et al., 2014; Liu et al., 2015). Here, we performed a 305 

controlled laboratory experiment to compare the expression profiles of HSP90 and 306 

HSP60 with and without heat stress and mutation accumulation, and compare 307 

expression levels and changes among populations and genotypes collected along a 308 

latitudinal gradient. While HSP90 has long been referred to as a mutational “capacitor” 309 

because of its major role in protein folding and the large number of proteins it interacts 310 

with (Schopf et al., 2017), the role of HSP60 in the stress response is less well 311 

understood given its localization primarily to the mitochondria (Magnoni et al., 2014). 312 

Recent studies have reported the highest direct estimates of spontaneous mutation 313 

rates in animals from mutation accumulation experiments with D. magna (Ho et al., 314 

2019, Ho et al., 2020). Their importance as an ecological and environmental model 315 
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system make an understanding of their stress response and their ability to buffer the 316 

phenotypic effects of mutation of particular interest (Latta et al. 2015). 317 

Overall, we find that HSP90 is expressed ~10x more than HSP60 in D. magna 318 

(Table 1 and Figure 2). This corroborates previous work that shows HSP90 constitutes 319 

approximately 1-2% of the total protein content of eukaryotic cells (Borkovich et al., 320 

1989) and, in yeast, is known to interact with up to 20% of proteins (Taipale et al., 321 

2010). As expected, we found both genes have a robust heat shock response in terms 322 

of HSP 90 and HSP60 expression increases (Table 1 and Figure 2). Heat shock 323 

destabilizes folded proteins, and elevated HSP expression protect against exposure of 324 

hydrophobic segments, aggregation, and misfolding (Kimura et al., 1993, Vabulas et al., 325 

2010). It is known that HSP60 is upregulated in response to heat (Martin et al., 1992) 326 

and oxidative stress in D. melanogaster (Singh et al., 2009), but a multi-faceted, rapid 327 

HSR may be especially important for aquatic animals living in shallow water because 328 

they can experience major temperature fluctuations (Feder and Hoffman, 1999). We 329 

also observed an increase in gene expression in mutation accumulation lines relative to 330 

controls, especially in HSP60 (Table 1). That this response is especially acute in HSP60 331 

may be related to the higher mutation rates observed in the mtDNA genome, relative to 332 

the nuclear genome, in animals (although mtDNA mutation rates are notoriously difficult 333 

to accurately measure [Schaack et al., 2020]). The greater upregulation of HSP60 in 334 

response to mutation accumulation underscores the importance of examining the 335 

potential of other HSPs (in addition to HSP90) as potential mutational capacitors 336 

(Rutherford and Lindquist, 1998).  337 
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In addition to looking at the effects of heat shock and mutation, we were also 338 

interested in differences within and among populations in both their baseline levels of 339 

expression and their response to stress. Surprisingly, there are no significant 340 

differences in gene expression at either locus among populations (Table 1), despite the 341 

major abiotic differences between these locales in mean annual temperatures 342 

(approximately 2, 10, and 21 degrees C in Finland, Germany, and Israel, respectively; 343 

Rohde and Hausfather 2020). It could be that the evolution of HSRs depend more on 344 

maximum temperatures or temperature fluctuations, which exhibit a much smaller range 345 

of only ~10 and 7 degrees, respectively (Table S1; Hofmann and Somero, 1996; 346 

Gehring and Wehner; 1995; Cambronero et al., 2018). However, given that the 347 

genotypes used in this study have extremely high identity in the coding regions of these 348 

loci (>99% of sites are identical [418/422] for HSP60 and 735/741 for HSP90; 349 

Supplemental Data Files), differences in gene expression are more likely due to 350 

variation at promoter regions or other loci in the genome which may serve to regulate 351 

HSP expression. While our predictions about population differences did not bear out, 352 

there is a difference in expression among genotypes within a population (IA, IB, and IC 353 

genotypes from Israel) for HSP90 and a non-significant trend for HSP60. Interestingly, 354 

the genotype with the highest levels of heat-induced gene expression (Figure 3) is also 355 

the genotype with the highest mtDNA base substitution mutation rate among those from 356 

Israel (Ho et al. 2020), further supporting the notion that HSP expression could provide 357 

a buffer against high mutation rates. 358 

Our study provides strong evidence for the synergistic effects of multiple stresses 359 

on HSP expression. In all cases where a given genotype was assayed with and without 360 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.05.425442doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.05.425442
http://creativecommons.org/licenses/by/4.0/


17 

heat shock and mutation accumulation, the combination of the two stressors resulted in 361 

an increase in the expression levels that was an order of magnitude greater than the 362 

increase observed when only one stress is applied (Table 2).  Furthermore, the variance 363 

was greater in the cases where two stressors were applied (Figure 2). This has 364 

important implications for Daphnia, and other species, as global climate change does 365 

not only lead to different mean and maximum temperatures and temperature 366 

fluctuations. Changing climate can alter exposure to UV or other atmospheric 367 

mutagens, and can also reduce the availability of freshwater aquatic habitats caused by 368 

drought or sea level rise.  Reduced habitat availability will likely reduce effective 369 

population sizes for species like D. magna, and thus a further increase in their already 370 

high mutation rates (reviewed in Lynch et al. 2016; Ho et al., 2020). If HSPs can buffer 371 

against not only thermal stress but the accumulation of mutations, they could enable the 372 

evolution of higher mutation rates. While spontaneous mutations are known, to be, on 373 

average deleterious, beneficial mutations do occur. Ultimately, increases in genetic 374 

variation provide the evolutionary escape hatch or opportunity for rapid adaptation 375 

(Swings et al., 2017) necessary to tolerate or thrive in increasingly stressful 376 

environments. 377 

  378 
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 379 
Figures and Tables 380 
 381 

 382 
Figure 1. Experimental design showing all 15 genotypes assayed (rectangles on left) in 383 
triplicate to quantify HSP60 and HSP90 expression levels. Genotypes include descendants of 384 
original isolates from Finland, Germany, and three genotypes from Israel (solid border) and 385 
individuals from mutation accumulation lines derived from two of these genotypes (dashed 386 
borders). Assays were performed on individuals raised in a common laboratory environment 387 
exposed to one of two environmental conditions (no heat shock [No HS; gray background] or 388 
heat shock [HS; yellow background]). The five axes of comparison made possible using this 389 
design are summarized in the circles on the right. 390 
 391 

 392 
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 393 
Figure 2. Gene expression for HSP90 (top) and HSP60 (bottom) in genotypes from three 394 
populations (Finland, Germany, and Israel) from individuals from mutation accumulation 395 
(unshaded) versus control lines (shaded) that were (yellow) and were not heat shocked (gray). 396 
Horizontal lines represent medians, boxes indicate quartiles and vertical lines illustrate the 397 
maximum value of 1.5 x IQR + the 75th percentile and the minimum value of the 25th percentile 398 
- 1.5 x IQR of the variance. Note: One outlier in Germany MA (HSP90 mRNA Expression = 399 
12.64) was excluded from the graph of HSP90 expression to better visualize differences in 400 
medians; however, it is included in the ANOVA results in Table 1.  401 
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 402 

 403 
Figure 3.  Gene expression levels for HSP90 (top) and HSP60 (bottom) with exposure to heat 404 
shock (yellow) and without heat shock (gray) for three genotypes from Israel (data for ANOVAs 405 
appears in Table S5). Horizontal lines represent medians, boxes indicate quartiles and vertical 406 
lines illustrate the maximum value of 1.5 x IQR + the 75th percentile and the minimum value of 407 
the 25th percentile - 1.5 x IQR of the variance.  408 
 409 
  410 
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Table 1.  Analysis of variance (ANOVA) for gene expression based on transcript abundance for 411 
HSP60 and HSP90 assayed in Daphnia magna originally collected from three populations (in 412 
Finland, Germany, and Israel), subject to mutation accumulation, and raised with and without 413 
heat shock.  For complete ANOVA tables of all data partitions, see Supplemental Tables S2-S5; 414 
for the raw data used in this analysis, see Supplemental Tables S6 and S7. 415 

  416 
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Table 2.  Estimated mean expression levels for HSP60 and HSP90 assayed in Daphnia magna 417 
originally collected from three locations (Finland, Germany, and Israel), subject to mutation 418 
accumulation, and raised with and without heat shock.  For Germany and Finland, one genotype 419 
each was sampled (GC and FC, respectively).  For Israel, three individual genotypes were 420 
assayed (IA, IB, and IC).  For complete ANOVA tables of all data partitions, see Supplemental 421 
Tables S2-S5; for the data used in this analysis, see Supplemental Tables S6 and S7. 422 

 423 
  424 
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Supplemental Figures 713 

 714 

 715 
Supplemental Figure 1: Amplification Curves of Dilution Series for qPCR Primers. 716 
Each standard curve was made by using the standard qPCR reaction mix and 717 
thermocycler program with two replicates of a dilution series of 1, 1/4, 1/16, and 1/64 of 718 
the original cDNA concentration. A) Standard amplification curve of HSP90 with an 719 
efficiency = 100.3%, B) standard amplification curve of HSP60 with efficiency = 102.6%, 720 
C) standard amplification curve of UBC with efficiency = 101.8%. 721 
 722 
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 723 
Supplemental Figure 2. Q-Q plots of HSP90 mRNA expression levels (A) and 724 
HSP60 mRNA expression levels (B). Q-Q plots were made from residuals of a 725 
multiple linear regression model using all samples for both genes independently.  726 
 727 
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