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2

SUMMARY9

10

Neural activity from animals is often used as a proxy for the human brain.11

However, due to distinct environmental pressures, the relevance of perceptual systems12

described in animal models can be unclear. This problem is accentuated when animal13

physiology and human behaviour are not in complete agreement, as is the case for14

binaural hearing-in-noise. As a means to bridge this gap we reverse-engineered15

artificial neural networks from binaural psychophysics. By comparing in silico16

“physiology” in neural networks with in vivo animal data, we were able to make17

inferences as to the basis of binaural perception in humans. We observed the18

emergence of highly specialized solutions to account for low frequency sound19

detection. Artificial neurons developed a sensitivity to temporal delays that increased20

hierarchically and were widely distributed in preference. Network dynamics were21

consistent with a cross-correlator, comparable to the type reported in animal22

physiology. Our results attest to the likely prominence of this neural mechanism in23

human biology. Moreover, this is a primary demonstration that deep learning can infer24

tangible neural mechanisms underlying auditory perception.25

26

27

INTRODUCTION28

29

Deep neural networks (DNNs) have been used to solve problems in many fields of30

research and are increasingly proving their worth in the field of neuroscience1. Recent DNN31

studies have effectively addressed questions of why the auditory system is organized the way32

it is (typically in the context of task optimality)2–5. However, when human auditory33

neurophysiology is itself ambiguous, or unknown, we must first question what it is, i.e. discover34

its underlying dynamics. With a few design changes, could DNNs be better leveraged to learn35

about the underlying human neurophysiology driving audition? We tested this idea by training36

a DNN configured specifically to mimic human auditory behaviour and investigated what this37

might reveal about the underlying neural mechanism(s). One potential stumbling block in38

answering this question is the black-box nature of DNNs. However, new network architectures39

that put mechanistic interpretability at their forefront (as have shown promise in the field of40

physics6,7) could help overcome this limitation.41

An ideal context in which to examine these inferential properties of DNNs is one where42

it is unclear whether non-human neurophysiology satisfactorily explain human audition.43

Binaural detection8,9, where interaural differences enhance the detectability of one sound (a44

signal) amongst another (e.g. a background noise) by up to 15 dB, represents one such45

instance. There is ongoing debate as to which of a number of theoretical frameworks best46

relate to human binaural detection10–14. For example, animal neural data lend support to a47
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theory of binaural cross-correlation15–17. Whereas, human behaviour appears to be equally48

well, if not better, described by a noise equalization and subtraction scheme12,18,19. These49

discrepancies have not been resolved with human imaging data20–23, for which resolution and50

response variability are key limitations24. Further, binaural detection is a highly specialised51

auditory function for which deficits have real-world consequences25,26. DNNs may offer the52

opportunity to bridge this gap between animal and human data, and as yet, the inner workings53

of DNNs constructed to handle binaural audio have scarcely been considered27–29.54

Here, we reverse-engineered DNNs that accounted for human-like behaviour in a55

binaural detection task. To best facilitate a mechanistic understanding, the DNN architecture56

was configured to decode inputs into low-dimensional latent representations from which57

decisions were based6,7. Not only did the DNN that best mimicked human behaviour learn to58

utilize binaural information, but it did so in a way strikingly similar to that described in animal59

physiology. The work attests to the prominence of binaural cross-correlation as a solution to60

signal detection at low frequencies, and its likely incidence in humans.61

62

63

RESULTS64

65

To augment the availability of data, we trained deep neural networks (DNNs) on data66

from a simulated binaural detection task. These data were generated by a set of equations67

recognized as effective in predicting human binaural psychophysics12,18,19,30–32. DNNs were68

trained to mimic detection of a 500 Hz pure tone amongst a broadband noise, each with69

interaural time differences (ITDs) that varied trial-to-trial. The range of ITDs was restricted to70

fall within the human physiological range, i.e. as though they came from randomly chosen71

azimuthal locations in the real-world (Fig. 1a). We found that the DNN configuration that72

optimally predicted unseen binaural detection data did so with a root mean square error73

(RMSE) of 2.5% (Extended Data Fig. 1a). The dynamics of this optimally performing DNN74

are the focus of this article (summary analytics across other DNN configurations are shown in75

Extended Data Fig. 1).76

77

Deep neural network accounts for binaural detection psychophysics.78

As expected, we found that the DNN’s detection thresholds (i.e. 69% correct79

performance) decreased as ITD difference between tone and noise increased (Fig. 1c,d). For80

example, in diotic noise (noise ITD = 0) where the tone came from the left, the detection81

thresholds were significantly enhanced by 9 dB (from a maximum of 30.8 dB to 21.8 dB, two-82

sided unpaired t-test, p 0.0001). To allow comparative assessment of the DNN and83

previously published data we tested the network on stimulus configurations typically employed84

to study binaural detection. These include tones and noise configurations where they are85

either in-phase or completely out-of-phase across the ears. In the literature these stimuli are86
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denoted as NoSo, NoSπ, NπSπ, NπSo, where N refers to the noise component, S the pure 87 

tone signal, with the successive subscripts denoting interaural phase difference (IPD) in88

radians (note that for a pure tone IPD is linearly proportional to ITD). These stimuli use ITDs89

that fall outside of the physiological range. For example, a 500 Hz pure tone with an IPD of π 90 

corresponds to an ITD of 1000 µs, larger than that produced by the head size in the simulated91

training data (maximum of 655 µs, calculated with Woodworth’s formula33). This meant the92

DNN had no prior exposure to this size of ITD and so it was unclear how it would function over93

this range. We found that when the noise signal had zero IPD, the mean detection thresholds94

predicted by the DNN for corresponding homophasic (NoSo) and antiphasic (NoSπ) tones 95 

were 30.9 dB and 20.8 dB respectively. The gain in detection, commonly called the binaural96

masking level difference (BMLD), was 10.1 dB (p 0.0001, two-sided unpaired t-test).97

Comparatively, when instead the noise signal was interaurally out of phase, the mean98

detection thresholds predicted for the corresponding homophasic (NπSπ) and antiphasic 99 

(NπSo) stimuli were 26.6 dB and 17.1 dB respectively. Their BMLD was 9.5 dB (p 0.0001,100

two-sided unpaired t-test). These BMLDs are similar to those measured in people34 and with101

estimates from psychophysical equations (10.7 dB and 10.3 dB respectively; Fig. 1e).102

103

Time delay tuning emerges early in the network.104

The DNN was able to account for key aspects of human binaural detection behaviour.105

Given this, we next sought to understand the means by which the DNN derived this behaviour,106

i.e. the mechanism(s). A common property of animal binaural systems is ITD tuning (Fig. 2a).107

We found that ITD tuning emerged hierarchically within the lower layers of the network. To108

demonstrate this we characterized “noise delay” functions in DNN nodes, i.e. their response109

to noises presented with varying ITDs as typically measured in physiology studies35. For nodes110

in the DNN’s first layer, we observed significant ITD tuning in 63 out of 100 nodes (Fig. 2b).111

The noise delay responses exhibited in these nodes were well described by a Gabor112

function15, the combination of a cosine windowed by a Gaussian (overlaid in Fig. 2d). By the113

DNN’s second layer, significant ITD tuning had emerged in all 100 nodes (Fig. 2e). Estimates114

of each nodes’ best ITD (bITD) were inferred from the Gabor fits (in order to account for nodes115

that were oscillatory in their noise delay responses, a form of phase-ambiguity noted in116

physiology36, bITD was attributed to the most central tuning peak). In both the first and second117

layers of the DNN, we observed a wide distribution of bITDs, both within the simulated head-118

range, and beyond it.119

120

Network dynamics match those of a cross-correlation mechanism.121

We went on to measure responses to stimuli commonly presented in physiology work122

to specifically probe binaural detection (i.e. NoSo, NoSπ, NπSπ, NπSo). We found that in the 123 

DNN’s second layer, node responses varied by bITD and the interaural phase of the noise124

presented (two-way ANOVA, F[98,202]=12.5 for main effect of bITD, F[1,202]=31.2 for main125
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effect of noise phase, F[98,202]=2.9 for their interaction, p 0.0001 for all, Fig. 3a). When a126

signal was presented amongst an in-phase noise (No), responses were largest for nodes with127

bITDs near 0 µs and decreased as bITDs were increasingly non-zero. Conversely, amongst128

an out-of-phase noise (Nπ), responses were lowest for nodes with bITDs near 0 µs and 129 

increased as bITDs deviated away from this. The effects of tone phase on node dynamics130

were more subtle, although these dynamics were also in accordance with a nodes’ tuning131

properties (Fig. 3b,c). Nodes tuned to smaller ITDs responded most to in-phase tones (So)132

and least to out-of-phase tones (Sπ), and vice-versa for nodes tuned to larger ITDs.  133 

These responses are commensurate with a binaural cross-correlation mechanism. The134

concept of binaural cross-correlation is predicated on the existence of coincidence detectors135

that encode temporally offset signals (similar to the dynamics already described in layers 1136

and 2)37. Computationally, a binaural cross-correlation can be calculated by summing the137

point-by-point product of two temporally offset signals. Comparative outputs from a simple138

binaural cross-correlation algorithm (namely for signals in noise passed through narrow-band139

filters centered at 500 Hz) are shown in Figure 3d-f, and were found to resemble responses140

across the DNN’s layer 2 nodes (Pearson’s r=0.36, p 0.0001). A number of physiology141

studies have reported neural responses consistent with a cross-correlation mechanism15,16,38,39142

(Fig. 3g-i).143

144

Early network ablation is detrimental to binaural detection.145

The functional importance of early layers in the DNN (i.e. the “decoder” portion of the146

network) was further interrogated by inflicting targeted damage and observing knock-on147

effects to BMLDs. We set to zero the weights of a fixed proportion of nodes in a specific layer148

of the network, i.e. ablating them. Our ablation range varied from 0% (none) to 50% (lots). We149

then observed the corresponding NoSo-NoSπ BMLDs (Extended Data Fig. 2). We found that150

ablation to nodes in the DNN’s first layer were most detrimental to BMLDs to such an extent151

that with as little as 5% ablation the DNN failed to predict a significant BMLD (criterion set at152

p<0.05 with Bonferonni correction, Student’s two-tailed t-test). When ablating the second153

layer, the DNN initially failed to predict a BMLD when 35% of nodes were ablated. Layers later154

in the network were more robust to the effects of ablation. BMLDs withstood ablations up to155

and including 50% (maximum tested) of the nodes in fourth layer, and significant BMLDs were156

not exhibited when 40% or more of the nodes in the fifth layer were ablated.157

158

Low-dimensional representations in DNN imitate neural signature of population-159

level cortical activity.160

Responses in the DNN’s second layer combine together to form the low-dimensional161

representations encoded in the DNN’s central nodes (i.e. layer 3). This bottleneck architecture162

has proven successful in extracting key conceptual variables in other fields7, and our ambition163

was for something analogous for binaural detection. In the DNN, six central nodes were164
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deemed operational (Extended Data Fig. 1b), and we found noteworthy similarities between165

these nodes and population level cortical responses in the guinea pig16 (comparable166

observations have also been reported in other animals15,39 and in the guinea pig inferior167

colliculus38). The central nodes could take the value of any real number, positive or negative168

(a necessary limitation imposed by the network architecture). Although not essential for our169

main conclusions, node responses are presented polarity-corrected to best correspond with170

noise ITD tuning in cortex (Fig. 4a,c; guinea pig auditory cortex).171

An interesting feature of binaural processing can be seen when comparing detection172

behaviour and physiological data. Similar improvements in behavioural performance can be173

attributed to completely different alterations in network dynamics. For example, BMLDs across174

NoSo-NoSπ conditions are similar to those found across NπSπ-NπSo conditions (Fig. 1e).175

However, guinea pig neural data16 suggests different neural dynamics underlie these similar176

BMLDs16. In cortical recordings, population spike counts dropped amongst an No signal, as a177

pure tone went from So to Sπ (left panel in Fig. 4b). Conversely, amongst an Nπ signal, as a 178 

pure tone transitioned from Sπ to So, population spike counts increased (right panel in Fig.179

4b). These opposing dynamics therefore represent a unique signature of processing180

The majority of layer 3 nodes displayed the same opposing dynamics in response to181

homophasic/antiphasic stimuli as observed in the guinea pig auditory cortex. Threshold182

responses in four latent nodes (n1, n3, n4 and n5, in left panels of Fig. 4d) were found to be183

significantly lower in response to NoSπ relative to NoSo (p 0.05, two-sided unpaired t-test).184

Conversely, threshold responses in the same nodes to NπSo at a threshold level were 185 

significantly higher in comparison to NπSπ (p 0.05, two-sided unpaired t-test, right panels in186

Fig. 4d). One latent node was qualitatively different to the others (node 6 of Fig. 4d), and187

seemed to encode offsets related to the interaural phase of noise (No v. Npi, p 0.0001, two-188

sided unpaired t-test).189

190

191

DISCUSSION192

193

We set out to discover the efficacy of DNNs as a means of exploring the underlying194

mechanisms involved in hearing, specifically binaural detection. To do this, we trained DNNs195

to exhibit binaural detection resembling human behaviour and then examined their internal196

dynamics as model organisms40. The application of DNNs in this way is a promising method197

in systems neuroscience1. However, the capacity for DNNs to offer mechanistic understanding198

beyond broader analogies with auditory processing2–5 has yet to be established. This work199

demonstrated not only a number of key similarities with non-human binaural systems but,200

critically, the method implies that the human auditory system may use alike mechanisms.201

Perhaps easy to overlook, the DNN was able to successfully utilize binaural202

discrepancies in auditory stimuli, as opposed to seeking an alternative strategy41 and/or failing203
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to exhibit binaural detection behaviour. ITD tuning, a well-known characteristic of binaural204

neurons and normally described in the context of sound localization35, emerged early in the205

DNN. Although this is a notable finding when considering the potential of DNN models, ITD206

tuning is axiomatic in most explanations of binaural detection10. This ambiguity was better207

clarified by second layer nodes whose dynamics, in response to tones presented in broadband208

noise, resembled a binaural cross-correlation mechanism13. This mechanism was not hard-209

coded into the network, but inferred. Latent nodes, central within the DNN’s architecture, were210

also compatible with the downstream dynamics of a cross-correlation mechanism and211

resembled guinea pig cortical neural recordings16. These results help reinforce and unite212

findings supportive of binaural cross-correlation as the mechanism underlying binaural213

detection in people, as opposed to other explanations12,18,19.214

We also experimented with a technique analogous to neural ablation42, observing215

knock-on effects to detection performance, finding that manipulations early in the system were216

most detrimental. This result is consistent with atypically small BMLDs associated with217

peripheral tumors in the human auditory system, but not central lesions43. The potential218

insights attainable with other experimental DNN techniques is an exciting prospect (e.g.219

techniques analogous to neural stimulation6 in tandem with optogenetics data). Yet,220

comparison between DNNs and neural biology come accompanied by an asterisk. We make221

no claims of creating a general-purpose implementation of the human binaural system. The222

network was not constructed with the goal of accurately mimicking neuronal biophysics or223

hierarchical complexity, but instead a trade-off was made to favor mechanistic interpretation224

and optimization performance. The inclusion of additional structural priors (e.g. hemispherity)225

and biologically inspired processes (e.g. spiking neural networks2,44) could have merit, but any226

impact on interpretability should be carefully weighed.227

228

Conclusion229

In conclusion, our results indicate that an artificial neural network seeks to implement230

a specialized binaural mechanism to explain human binaural detection. This mechanism,231

(namely, temporal delay tuning followed by a cross-correlator) corroborates observations232

made in animal physiology. The work demonstrates the potential for deep learning, in unison233

with experimental data, to clarify human auditory perception.234
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METHODS235

236

Training stimuli. Stimuli parameters were selected to maximize comparative opportunities237

with published experimental data. Pure tones were produced at a frequency of 500 Hz, and238

presented at levels between 0 and 50 dB. Pure tones were 20 ms long (10 periods) and239

produced with a sample rate of 20 kHz. Pure tones were masked by randomly distributed240

broadband noise (50-5000 Hz, limited by 6th order Butterworth bandpass filter) with an overall241

level of 60 dB. The tone and noise were gated simultaneously. Horizontal perception of space242

at low frequencies is largely based upon ITDs45. Given this, tones and noises were simulated243

with ITDs mapped from two independent angles in the azimuth between -90° (far left) and 90°244

(far right). ITDs were derived from Woodworth’s equation33, assuming a head radius of 0.0875245

m.246

247

Binaural detection rates and thresholds. The theory of equalization and cancellation12248

has wide human psychophysical support, successful in predicting BMLD data12,46 and binaural249

pitch phenomena12,30,31, underpinning other models of binaural hearing19, and proven250

psychophysically favourable relative to other prominent theories18. Detection thresholds were251

calculated from phenomenological equations derived from this theory12,32:252

dB (1)253

where and are the interaural time lags of the signal and noise, is the angular254

frequency of the pure tone signal, where and are jitter (internal255

noise) parameters, is the normalized envelope of the autocorrelation of the narrow-band256

noise output of a filter centred at the target tone frequency, and is an optimal time257

equalization parameter. The parameters were chosen according to Durlach’s original258

formulation, e.g. assumes a filter with triangular gain characteristics. Psychometric functions259

were derived under the assumption that detection thresholds represented a d’ of 1 in a yes-260

no experiment 47,48:261

(2)262

where is pure tone amplitude and the detection threshold (Equation 1).263

264

Deep neural network. We trained DNNs6,7 to predict the detection rates of tones presented265

amongst noise, with varying ITDs. Networks took 800 input values comprised of 400 samples266

from the left-ear waveform and 400 samples from the right-ear waveform. These inputs were267

passed through two 100 neuron exponential linear unit layers (ELU), referred to as the268

“decoder” portion of the network. This was followed by a layer of 10 latent Gaussian nodes269

( than the parameters varied in the generation of training stimuli) with minimal uncorrelated270

representations, constrained by a parameter β. This was followed by another two 100 neuron 271 

exponential linear unit layers, referred to as the “decision” portion of the network. All layers272
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were fully connected and feed-forward. DNNs were trained and validated (95%/5% split273

respectively) on 106 instances of a random phase tone at a random level (0-50 dB) in randomly274

generated white noise, both presented with ITDs mapped from random angles in the azimuth,275

and the corresponding detection rates (Equation 2).276

The Adam optimization algorithm was used to minimize the cost function:277

(3)278

where and are predicted and true detection rates respectively, and and are the279

standard deviation and mean of latent Gaussian nodes respectively. Batch size (number of280

training instances employed in each iterative update of network parameters) was set to 256.281

The learning rate (training hyperparameter) was set to 5×10-4 for 1000 epochs (total passes282

of entire training dataset). Ten DNNs were trained for each value of β, namely 0, 10-6, 10-5, 10-283

4, 10-3, and 10-2 (60 in total). The DNN with the least RMSE, between predicted detection rates284

and ground truth, for the validation dataset, was selected for further analysis. Central nodes285

were considered operational if the Kullback–Leibler divergence between their individual286

responses and a unit Gaussian was larger than 0.1 bits (Extended Data Fig. 1b).287

288

Network detection thresholds. For a given stimulus configuration, DNN detection289

thresholds were obtained by calculating the mean of 10 detection rates across tone levels set290

between 0 and 50 dB in 2.5 dB steps and regressing a psychometric curve (Equation 2). This291

was repeated 10 times for a given stimulus configuration. Stimuli for which detection292

thresholds were derived included:293

 random phase tones amongst randomly generated broadband noise with ITDs each294

mapped from fixed azimuthal locations,295

 and random phase tones and randomly generated broadband noise each either in or296

out of phase (i.e. NoSo, NoSπ, NπSπ, and NπSo).  297 

Detection thresholds were also derived following ablations, where a set percentage of a given298

layers nodes were randomly nullified.299

300

Node representations. Node activations were measured as a function of ITD for broadband301

noise (50-5000 Hz, 60 dB). ITDs ranged from -2000 µs to 2000 µs in steps of 100 µs. Node302

activations were also measured in response to So (in-phase) or Sπ (out-of-phase) signals 303 

masked by either No (in-phase) or Nπ (out-of-phase) broadband noise. Activations in layer 2 304 

nodes were measured in response to a tone level of 35 dB amongst a noise level of 60 dB (in305

Figure 3a, activations were displayed with +1 added to their value because the minimum value306

of the ELU activation function is -1)4. In latent Gaussian nodes (in the central layer 3), masked307

rate-level functions to NoSo, NoSπ, NπSπ, and NπSo were measured amongst pure tone 308 

levels varied between 0 and 50 dB in 2.5 dB steps and 60 dB broadband noise. For all309

response measurements, stimuli were 20 ms long with a sample rate of 20 kHz. For a given310

stimulus configuration, activations were measured in response to 5000 random generations.311
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312

Binaural cross-correlation algorithm. For comparative purposes, outputs from a313

binaural cross-correlation algorithm were calculated49. The stimuli NoSo, NoSπ, NπSπ, and 314 

NπSo were generated for a 35 dB tone and a 60 dB randomly distributed broadband noise. 315 

Stimuli were sampled at 20 kHz and were 1 s in duration. Signals were passed through316

gammatone filters centered at 500 Hz and passed through a model of neural transduction50.317

The outputs were then delayed relative to one another, and the cross-products calculated and318

summated.319

320

Statistical analysis. ITD tuning was quantified by fitting a Gabor function15 to noise delay321

responses. The parametric expression for a Gabor function is:322

(4)323

in which we characterized a nodes’ best ITD as the parameter , is the tuning curve324

frequency, is a scaling factor (constrained to be positive), is a constant offset, and is a325

decay constant. These parameters were fit with the non-linear least squares algorithm326

curve_fit (a SciPy function51). An F-test was used to assess whether a Gabor function was a327

significantly better fit to noise delay responses than a linear function of ITD.328

We performed Student’s two-tailed t-tests (assuming unequal variance) to assess329

BMLDs and differences in node responses at threshold tone levels. We also used Student’s330

two-tailed t-tests (assuming unequal variance) to assess BMLDs following network ablations,331

for which a Bonferonni correction was applied to offset the impact of testing multiple ablation332

rates. Pearson product-moment correlation was calculated between the average responses333

of nodes to NoSo, NoSπ, NπSπ, and NπSo, and the delay matched outputs of a binaural 334 

cross-correlation algorithm. A two-way ANOVA was also run for these nodes responses, with335

main effects of best ITD and noise phase. For the outlined statistical analyses, the criterion for336

significance (following multiple comparison corrections, when applied) was set to p=0.05. Error337

bars and lightly shaded underlays in figures are 95% confidence intervals.338

339

Resource availability. Code generated during this study is available at340

https://github.com/Hearing-Sciences/BinauralDetection_DNN. Further information and341

requests for resources should be directed to the Lead Contact, Samuel Smith342

(samuel.smith@nottingham.ac.uk).343
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FIGURE LEGENDS362

Figure 1. Deep neural network accounts for binaural detection psychophysics.363

Data from a frontal field binaural detection task (a, generated using psychophysical equations)364

were used to train DNNs (b) to detect a pure tone (black circle in a) in broadband noise (empty365

circle in a). Locations (and hence ITDs) of the tone and noise were chosen at random on each366

trial and were equally likely to come from each location (bottom panels of a). The DNN was a367

5-layer network with a low-dimensional central layer, i.e. layer 3, designed to promote368

interpretation of the internal workings of the network (b). The DNN performance (d) for unseen369

testing data (c) was found to be comparable. In addition, binaural masking level differences370

(BMLDs) were derived for experimental stimulus configurations (NoSo/NoSπ, NπSπ/NπSo, 371 

e, Note: π is beyond the DNNs trained range). Error bars for DNN represent 95% confidence 372 

intervals.373
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Figure 2. Time delay tuning emerges early in the network.374

Neural ITD tuning curves have been observed in a number of animal species (a), including375

cat35 (inferior colliculus, IC), barnowl39 (IC), and guinea pig16 (auditory cortex, GP ACtx). ITD376

tuning emerged as a property of nodes within the early layers of the DNN and increased377

hierarchically between layer 1 (b) and layer 2 (e). ITD tuning was defined as the proportion of378

variance explained (R2) by fits (Gabor functions) regressed to noise delay responses for nodes379

in the DNN’s layers. Bars are color-coded by the nodes’ best ITD (bITD; black indicates the380

Gabor fit was not significantly better than a linear fit). Individual examples of ITD tuning within381

a subselection of nodes in layer 1 (c and d) and layer 2 (f). The gray box underlays represent382

the ITD-limit for our simulation (modelled on the human head).383
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Figure 3. Network dynamics match those of a cross-correlation mechanism of384

the type suggested in animal physiology.385

The internal mechanism of layer 2 of the DNN was probed by considering activation of nodes386

with different ITD tuning (a) for a set of typically employed binaural detection stimuli (NoSo,387

NoSπ, NπSπ, NπSo; color-coded). Single node data in light colors where error bars represent 388 

95% confidence intervals. Moving averages are overlaid and color-coded. DNN activation (a)389

was found to closely match a simple cross-correlation model (d). It was also comparable to390

animal physiological data16 (g) at the bITDs sampled (g, bottom panel shows the total spike391

counts of guinea pig auditory cortical neurons tuned to a given bITD, top panel shows neural392

count for each bITD). The activation change of nodes to paired stimulus configurations (NoSo393

vs NoSπ and NπSπ vs NπSo, b and c respectively) produced a profile across bITD (Error394

bars represent 95% confidence intervals. Moving averages are overlaid and color-coded). This395

profile matched that of a simple cross-correlation model (e and f, change in cross-correlation396

at different lags). In addition, a similar profile has been observed in the guinea pig animal397

model (h and i, change in spike count at different bITDs).398
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Figure 4. Low-dimensional representations in DNN imitate neural signature of399

population-level cortical activity.400

A noise delay function from a representative neuron in right guinea pig auditory cortex16 (a,401

red line) alongside its reflection representative of left cortex (a, blue line) and their sum (black402

line). Population masked rate-level functions recorded from guinea pig auditory cortex16, in403

response to experimental binaural detection stimuli (NoSo, NoSπ, NπSπ, NπSo) are shown 404 

amongst arrows indicating changes as stimuli become more easily detectable (b). Noise delay405

functions (c) from operational nodes in layer 3 (n1-n6) are alongside masked rate-level406

functions (d) in response to the same stimuli configurations as in (b), i.e NoSo, NoSπ, NπSπ, 407 

NπSo. Dashed lines represent polarity corrected responses (such that noise delay functions 408 

in (c) are peaked as in (a)). The gray box underlays represent the ITD-limit for the guinea pig409

(in a) or an average human head (in c). Lightly shaded regions represent 95% confidence410

intervals.411
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EXTENDED DATA412

Figure 1. Meta-parameter search413

Prediction error for 60 (10 for each value of β [see Methods]) DNNs tested on the validation 414 

dataset (a). The DNNs with the minimum error for each value of β are represented with large 415 

black squares. Information transmission was investigated for the most accurate DNNs for each416

value of β (b). Displayed is the total Kullback–Leibler (KL) divergence between latent (layer 3)417

nodes in layer 3 and an isotropic Gaussian (empty black circles). The KL divergence between418

each individual node and a unit Gaussian is also shown (color coded in order). The gray region419

represents nodes deemed to be suppressed during training. The number of nodes with KL420

divergences above this region (out of 10) are typed on the upper border of this region.421
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Figure 2. Early network ablation is detrimental to binaural detection.422

BMLDs (NoSo-NoSπ) were predicted following varying levels of random ablation (setting to 423 

zero) to nodes in the DNN’s layers. Error bars represent 95% confidence interval. Color-coded424

asterisks indicate significant BMLDs (p<0.05 following Bonferonni correction).425
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