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Some bacteria and archaea possess an adaptive immune system that maintains a memory of past
viral infections as DNA elements called spacers, stored in the CRISPR loci of their genomes. This
memory is used to mount targeted responses against threats. However, cross-reactivity of CRISPR
targeting mechanisms suggests that incorporation of foreign spacers can also lead to autoimmunity.
We show that balancing antiviral defense against autoimmunity predicts a scaling law relating spacer
length and CRISPR repertoire size. By analyzing a database of microbial CRISPR-Cas systems,
we find that the predicted scaling law is realized empirically across prokaryotes, and arises through
the proportionate use of different CRISPR types by species differing in the size of immune memory.
In contrast, strains with nonfunctional CRISPR loci do not show this scaling. We also demonstrate
that simple population-level selection mechanisms can generate the scaling, along with observed
variations between strains of a given species.

Clustered regularly interspaced short palindromic re-
peats (CRISPR) and CRISPR-associated (Cas) proteins
form a prokaryotic defense against phage [1]. CRISPR
loci are composed of DNA repeats alternating with vari-
able DNA segments called spacers, acquired from phage
and other foreign genetic material. In a process called in-
terference, spacer RNA guides sequence-specific binding
and cleavage of target DNA by Cas proteins. In this way,
spacers acquired during phage attack confer acquired,
heritable resistance against subsequent invasions.

CRISPR-Cas systems are remarkably diverse, char-
acterized by functionally divergent Cas proteins and
distinct mechanisms for each stage of immune defense
[2]. Spacer acquisition is mediated by the conserved
Cas1–Cas2 adaptation module, which sets spacer lengths
within a narrow range varying by system [3, 4]. CRISPR
arrays are also broadly distributed in size, ranging from
less than 10 to hundreds of spacers, and the full reper-
toire of a host may comprise several CRISPR arrays [5].
Maintaining a broad spacer repertoire confers resistance
against many phages and possible escape mutants [6].
However, there are constitutive costs associated with Cas
protein expression [7], and diminishing returns of broad
defense due to finite Cas protein copy numbers [8, 9]. In
addition, CRISPR-Cas systems can prevent horizontal
transfer of beneficial mobile genetic elements [10, 11].

CRISPR-Cas systems also cause autoimmunity, occur-
ring when a spacer guides interference somewhere on the
host genome, leading to cell death and strong mutational
pressure in the CRISPR-cas locus and target region [12–
15]. The patchy incidence of CRISPR-Cas systems in
prokaryotes (roughly 40% of bacteria and 85% of archaea
[2]), and the presence of diverse mechanisms for self–
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nonself discrimination [16], suggest that avoiding autoim-
munity is a constraint in the evolution of CRISPR-Cas
systems [2, 13–19].

Several mechanisms exist in divergent CRISPR-Cas
types for suppressing autoimmunity arising from differ-
ent forms of potential self-targeting [16]. In type I and II
systems, interference requires presence of a protospacer-
adjacent motif (PAM), a 2–5-nt-long sequence adjacent
to target DNA but absent in CRISPR repeats, preventing
interference within the CRISPR array [20, 21]. In type
III systems, interference requires transcription of target
DNA, which avoids targeting phages integrated into the
host chromosome (prophage) [22]. Spacers acquired from
the host genome are naturally self-targeting, but there
are mechanisms to suppress such acquisition [23, 24]. For
example, type I-E systems acquire spacers preferentially
at double-stranded DNA breaks, which occur primarily
at stalled replication forks of replicating phage DNA, and
acquisition is confined by Chi sites which are enriched in
bacterial genomes [23].

Here we propose that CRISPR evolution is also shaped
by heterologous autoimmunity, which occurs if an ac-
quired foreign spacer and a segment of the host genome
are sufficiently similar. The likelihood of this effect
depends on sequence statistics and the specificity of
CRISPR targeting mechanisms. Heterologous autoim-
munity is analogous to off-target effects that are an im-
portant concern in CRISPR-Cas genome editing [25, 26],
but the possible effects on prokaryotic adaptive immunity
have not been explored. We combine a probabilistic mod-
eling approach with comparative analyses of CRISPR
repertoires across prokaryotes to show that: (a) het-
erologous autoimmunity is a significant threat caused by
CRISPR-Cas immune defense, (b) avoidance of autoim-
munity leads to a scaling law in CRISPR repertoires,
and (c) the scaling law can be achieved by population-
level selection. Our work suggests that avoidance of het-
erologous autoimmunity is a key factor shaping CRISPR
repertoires and the evolution of CRISPR-Cas systems.
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I. RESULTS

A. Cross-reactivity leads to autoimmunity

We approach heterologous self-targeting as a sequence-
matching problem [27–29], and derive estimates for the
probability of a spacer being sufficiently similar to at least
one site in the host genome. For a spacer of length ls
and PAM of length lp (where it exists), an exact match
at a given position requires l ≡ ls + lp complementary
nucleotides. In a host genome of length L, where L� l,
there are L − l + 1 ≈ L starting positions for a match.
At leading order, and ignoring nucleotide usage biases,
we may treat matches as occurring independently with
probability 4−l. Thus, the probability of an exact match
anywhere on the genome is (see Methods)

p0 ≡ L4−l, where l = ls + lp. (1)

Considering order-of-magnitude parameter estimates for
the E. coli type I-E system of L = 5× 106 nt, ls = 32 nt,
and lp = 3 nt gives a negligible probability p0 ∼ 10−15.

However, CRISPR interference tolerates several mis-
matches between spacer RNA and target DNA depend-
ing on position and identity [25, 26, 30, 31]. In general,
mismatches in the PAM are not allowed, and mismatches
in the PAM-distal region are tolerated to a greater extent
than mismatches in the PAM-proximal region [21]. Up to
∼ 5 mismatches are allowed in type II systems [25, 26],
while in type I-E systems, errors are mostly tolerated at
specific positions with a 6-nt periodicity [30, 31].

Partial spacer-target matching may also trigger primed
spacer acquisition, which is the rapid acquisition of new
spacers from regions surrounding target DNA [30, 32, 33].
In type I-E and I-F systems, primed acquisition tolerates
many (up to 10) mismatches in the PAM and target re-
gion [30, 33]. Thus, a foreign spacer that does not cause
direct interference may still trigger primed acquisition of
self-spacers [33] and hence cause autoimmunity.

Given that the specificity of CRISPR interference and
primed acquisition have been characterized for only a few
systems, we consider two general classes of mismatch tol-
erance that include the above scenarios: (a) mismatches
at kfix fixed positions, and (b) mismatches at kvar variable
positions anywhere else in the target region. These in-
crease the per-spacer self-targeting probability by a com-
binatorial factor α(kfix, kvar, l) (see Methods), so that

pself = α(kfix, kvar, l) p0 = α(kfix, kvar, l)L 4−l. (2)

A greater number of allowed mismatches greatly in-
creases the likelihood of heterologous self-targeting (Fig.
1b). To gain intuition we can rewrite Eq. 2 as

pself ≡ L 4−leff , where (3)

leff(l, kfix, kvar) ≡ l − log4 α ≈ l − kfix − kvar log4 3(l − kfix),

where leff is the effective spacer length after discount-
ing for allowed mismatches (see Methods). This shows

that mismatches exponentially increase the probability
of self-targeting, and variable-position mismatches par-
ticularly so. Considering the E. coli system as before,
the matching probability increases to pself ∼ 10−4 with
kfix = 5 nt and kvar = 5 nt (see Fig. 1b). Other CRISPR-
Cas systems may similarly lie in parameter regimes with
appreciable pself, especially when including indirect self-
targeting through primed acquisition [34]. Furthermore,
the probability of self-targeting is likely higher than im-
plied by our calculations as it can be increased by cor-
relations in sequence statistics between host and phage
genomes [28, 29]. Given our estimates, we thus hypothe-
size that heterologous autoimmunity may occur generally
and be a significant cost of CRISPR-Cas immunity.

B. Spacer length scales with repertoire size

To test this hypothesis, we exploited the large natural
variability in CRISPR systems across different microbial
species. As the self-targeting probability depends expo-
nentially on spacer length (Eqs. 2–3), we expect small
differences in length to lead to large variations in the risk
of autoimmunity. If CRISPR repertoire sizes are selected
to balance broader immunity against the risk of autoim-
munity, then qualitatively we expect that species with
shorter spacers should have smaller repertoires, while
species with longer spacers should have larger ones (Fig.
1c).

To make this prediction more quantitative, suppose
prokaryotes tolerate a maximum probability P of self-
targeting, and that CRISPR-Cas systems are selected to
maximize protection against pathogens subject to this
constraint. Repertoires with N spacers incur a self-
targeting probability of ∼ Npself, and thus Eq. 2 implies

lnN = l ln 4− lnα(kfix, kvar, l)− ln(L/P ). (4)

Linearizing the dependence of the combinatorial factor α
around typical spacer lengths l0 (see Methods) predicts
a scaling relationship between spacer length and the log-
arithm of repertoire size

lnN ∼ l
(

ln 4− kvar

l0 − kfix

)
∼ 1.2 l, (5)

where we arrived at the latter estimate by taking kvar ∼
kfix ∼ 5 and l0 ∼ 35.

We analyzed a database of CRISPR-Cas systems iden-
tified in publicly available bacterial and archaeal genomes
[5, 35] (see Methods). To sample widely from CRISPR-
Cas systems while eliminating oversampling of certain
species, we first selected strains carrying both CRISPR
and cas loci, and then picked one strain at random from
each species for further analysis (see Methods). We ob-
served a multimodal distribution of spacer lengths ac-
quired by these representative strains (Fig. 2a), con-
sistent with different CRISPR-Cas types having narrow
spacer length distributions (Fig. 3a). The distribution of
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Figure 1. CRISPR-Cas immune defense incurs a risk of heterologous autoimmunity. a, Sketch of the main
components of CRISPR-Cas immune defense. b, Per-spacer probability of heterologous self-targeting, pself, as a function of the
number of tolerated mismatches at fixed and variable positions along the spacer, kfix and kvar, respectively. c, We hypothesize
that the evolution of CRISPR-Cas systems is constrained by the risk of heterologous autoimmunity. As the self-targeting
probability depends strongly on spacer length, this predicts a scaling of repertoire size with spacer length.

spacer repertoire sizes, defined as the sum of CRISPR
array sizes in each genome, was broad, ranging from 1 to
812 spacers (Fig. 2b).

A linear regression between spacer length and log-
repertoire size gave a slope of 1.1 ± 0.1 (Fig. 2c), in
line with the predicted scaling (Eq. 5). A range of cross-
reactivity parameters is broadly consistent with this scal-
ing (Fig. S1), with a best-fit value of kvar = 3.41 ± 0.02
obtained assuming kfix = ls/6 (consistent with a 6-nt
periodicity in tolerated fixed-position mismatches as in
type I-E systems) (see Fig. S1). The empirical law holds
over two orders of magnitude in CRISPR repertoire size,
but over this range the spacer length changes only mod-
estly. These changes however lead to significant differ-
ences in the self-targeting probability, which is exponen-
tial in spacer length (Eq. 3).

Some prokaryotes may tolerate self-targeting spacers
because they have defective cas genes [12] or contain

anti-CRISPRs [36]. To further test the link between
autoimmune risk and spacer length, we investigated the
incidence of missing cas genes across CRISPR-Cas sys-
tems. We expected that a higher autoimmune risk in
species with shorter spacers would lead to a higher rate
of cas gene loss. Thus, we analyzed how the fraction of
strains with missing cas loci depends on spacer length,
which shows the expected relationship (Fig. 2d). Once
immunopathology from self-targeting is avoided by the
loss of cas interference genes, the relation between spacer
length and repertoire size should no longer be selected
for. Indeed, we found no clear relation in strains with
missing cas loci (Fig. 2e). Taken together, these obser-
vations strengthen the interpretation of the scaling law
as arising from the modulation of autoimmunity risk by
spacer length.
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Figure 2. A scaling law relates CRISPR repertoire size and spacer length. a, b Distributions of spacer lengths (a)
and repertoire sizes (b) across prokaryotes. For each of 2,449 species with CRISPR and cas loci we randomly picked a single
strain (see Methods), and calculated its repertoire size as the sum of all CRISPR array sizes present in the genome. The length
distribution of all spacers found in these filtered strains are shown in (a). Bins in (b) were formed by dividing each decade into
10 equal bins on a log scale. c, Scaling of repertoire size with spacer length. A linear fit of the mean spacer length against
log repertoire size was performed on all 2,449 species, and is shown alongside the data, which is binned by repertoire size
(50 strains/bin). The fitted slope is consistent with theory predictions (Eq. 5). d, Fraction of species with missing cas genes
decreases with spacer length. e, Spacer length and repertoire size do not show a clear relation in strains with nonfunctional
CRISPR loci. A linear fit was performed on 340 species with CRISPR arrays but no cas loci, and is shown alongside the data,
which is binned by repertoire size (50 strains/bin). Error bars in panels c–e denote the standard error of the mean in each bin,
which in (d) are calculated assuming a binomial probability distribution for the absence of cas at each spacer length.

C. Variable CRISPR-Cas type use underlies scaling

CRISPR-Cas systems are classified into different types
and subtypes based on their evolutionary relationships
and the use of different cas genes [2]. We won-
dered whether the aggregate scaling relationship between
spacer length and repertoire size (Fig. 2) reflected dif-
ferences at the level of CRISPR-Cas type usage. We
thus grouped the species by subtype, when there is a sin-
gle CRISPR-Cas system in the genome, or in a separate
group when multiple subtypes are present.

For species carrying a single cas type, we aggregated
all spacers found across species of each type to quantify
the statistics of acquired spacer lengths. We observed dif-
ferences in the spacer length distributions between types
(Fig. 3a): (a) Type II-A and II-C systems have narrow
distributions tightly clustered around 30 nt; (b) Type
I-E and I-F systems also have narrow distributions, clus-
tered around 32 nt, while other type I systems have spac-
ers that are longer and more broadly distributed; (c)
Type III systems have even longer and more broadly dis-

tributed spacers, with median lengths in the 36–39 nt
range.

A broader distribution of acquired spacer lengths leads
to a higher risk of autoimmunity than a narrow distribu-
tion with the same mean, since the self-targeting prob-
ability increases exponentially for shorter spacers. To
account for an increase in autoimmune risk for broader
distributions, we focused on the lower quartile of spacer
lengths for each cas type as a proxy for autoimmune risk.
Also, to account for the requirement of PAM recognition
in type I and II (but not type III) systems, we added a
PAM length of 3 nt to types I and II to obtain the overall
length l. Strikingly, we observed that the predicted rela-
tionship between l and repertoire size also broadly holds
between CRISPR-Cas types (Fig. 3b): Type II systems
have the shortest spacers and the smallest repertoires,
and among type I subtypes those with shorter spacers
generally have smaller repertoires. Type III systems have
smaller repertoires than type I systems despite somewhat
longer spacers, but this is explained by the absence of
PAMs and the broader spacer length distributions for
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Figure 3. Preferential CRISPR-Cas type use underlies the scaling law relating spacer length and repertoire size.
a, Length distributions of all spacers found in single-type strains aggregated by CRISPR-Cas type (for types with >10 species
in CRISPRCasdb [35]; see Methods). Also indicated are the median (solid vertical) and lower quartile (dotted vertical line) for
each distribution. The subtypes are presented in order of lower quartile. b, A trend is observed between spacer + PAM length
and repertoire size for different CRISPR-Cas types. For spacer lengths, the central dot is the lower quartile and the whisker
runs between the lowest decile and the median. Repertoire sizes are indicated as the mean ± standard error. To indicate the
requirement of PAM recognition, a length of 3 nt was added to all type I and II (but not type III) subtypes. c, Variable usage
of cas subtypes among multiple-type strains. A total of 826 strains with multiple CRISPR-Cas systems, randomly picked from
different species, were analyzed. They were divided into 3 groups of 275, 275 and 276 strains having small, medium, and large
repertoire size, respectively. Each subfigure was normalized to 1, so that the bars indicate the relative incidence of a subtype
in each repertoire size bin. The order of subtypes is the same as panel a.

the type III systems, both of which increase autoimmune
risk.

We next tested whether this relation also carries over
to species carrying multiple CRISPR-Cas systems, in the
form of a differential use of cas types as a function of
repertoire size. We divided species with multiple cas
types into three equally sized groups by repertoire size,
and determined the relative incidence of CRISPR sub-
types within each group (Fig. 3c). We found that the
use of types II, I-E, and I-F decreases with repertoire size
in line with expectations, and an opposite pattern for two
of the type III systems and the type I systems with the
longest spacers. The relation between total repertoire
size and spacer length in species with multiple cas sub-
types was further reinforced by a direct analysis of the
incidence of spacers of different lengths as a function of
repertoire size, with a greater proportion of longer spac-
ers present in larger repertoires (Fig. S2).

Taken together, we find that species carrying either
single or multiple CRISPR-Cas systems differentially use
CRISPR-Cas types having different spacer length distri-
butions to form repertoires of different sizes. This differ-
ential use gives rise to the aggregate scaling observed in
Fig. 2c, and is consistent with the hypothesis of minimiz-
ing the risk of heterologous autoimmunity.

D. Dynamical origin of the scaling law

Dynamical mechanisms can give rise to the scaling law
that our theory predicts, and which is found in the em-
pirical data. While spacer dynamics involves complex
epidemiological feedbacks [8, 37–44], here we consider a
simple effective model in which spacer acquisition and
loss are described as a birth-death process, such that
spacers are acquired at a rate b and lost at a per-spacer
rate d (Fig. 4a, left panel). This gives rise to a Pois-
son distribution of repertoire sizes at steady state, with
mean b/d (see SI). Our statistical theory requires that the
mean of the distribution should shift with spacer length.
There are two mechanisms by which selection could lead
to such a dependence. First, the negative fitness effect of
acquiring self-targeting spacers [13] purges lineages that
undergo deleterious acquisition events. Indeed, CRISPR
arrays are selected for the absence of self-targeting spac-
ers [12]. Effectively, this reduces the net acquisition rate
among surviving lineages. Second, over longer evolution-
ary timescales, different CRISPR-Cas systems may be
selected to acquire spacers at different rates depending
on their respective risks of autoimmunity. These differ-
ences in rates could arise from the maintenance of mul-
tiple copies of cas genes, or through regulation of cas
expression [45]. Indeed, spacer repertoire size increases
with the number of cas loci (Fig. S3), suggesting that
larger gene copy numbers of cas1 and cas2, necessary for
spacer acquisition, result in greater acquisition rates. In-
terestingly, strains having exactly one copy of both cas1
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Figure 4. A spacer acquisition-loss model with population-level selection of acquisition rates produces scaling
as well as substantial variability between strains of the same species. a, In our model, strains acquire spacers at a
rate b and lose them with a per-spacer rate d, giving rise to a Poisson distribution at steady state with mean b/d (left panel). b
is selected to minimize the risk of heterologous autoimmunity, such that species differing in pself have different mean repertoire
sizes (middle panel). We generate a synthetic dataset of strains by sampling from steady-state distributions with different spacer
lengths and hence pself (see Methods). The synthetic data displays scaling of the mean and variability on the single-strain level
(right panel). The green points show 100 individually sampled strains, the blue points means after binning by repertoire size
(50 species/bin, 2,450 species total), and the orange line is a fit to all 2,450 sampled points. b, Correlated spacer loss broadens
the predicted distribution of repertoire sizes. We consider a model in which all spacers are lost simultaneously during a deletion
event, which leads to a geometric steady-state distribution (see SI). Despite this additional variability, a synthetic sample
generated as in panel a shows scaling of the means. c, The distributions of repertoire sizes of sequenced strains belonging to the
same species are broad. 4 pairs of species with > 50 sequenced strains and with the indicated CRISPR-Cas type are displayed.
Vertical lines denote the mean for each species.

and cas2 still obey a scaling relationship (Fig. S4), sug-
gesting that regulation of these genes also contributes to
minimizing autoimmune risk.

Let us suppose that one or both of these selection
mechanisms lead to an effective spacer acquisition rate
inversely proportional to the risk of self-targeting, b ∝
1/pself. To replicate the empirical analysis, we created a
synthetic dataset of the same size by sampling strains
at random from steady-state distributions at different
spacer lengths, which have different pself (Fig. 4a, mid-
dle panel) (see Methods). Plotting spacer length against
mean repertoire size in the same way as we did for the
empirical data, we recover a scaling law as predicted by
our theory (Fig. 4a, right panel).

In addition to providing a dynamical explanation for
scaling of the means, this birth-death model produces
substantial variability around the mean relationship (Fig.
4a, right panel, green dots). In fact, the Poisson vari-

ance of Fig. 4a, originating from a constant per-spacer
loss rate, is likely an underestimate. Spacer loss occurs
through double-stranded DNA breaks followed by ho-
mologous recombination at a different CRISPR repeat,
a process which may delete chunks of an array in a single
deletion event (see e.g. [46, 47]). Including such cor-
related spacer loss greatly increases the variance. For
example, in a simple analytically solvable limiting case
where entire arrays are lost at once, the distribution of
repertoire sizes becomes geometric (see SI) and thus very
broad (Fig. 4b, left panel). Given this substantial vari-
ability, we wondered whether a comparative analysis of
many species could still recover a scaling in this model.
We thus sampled strains from geometric steady-state dis-
tributions whose means obey a scaling law as in panel a,
observing a much larger variability in individual strains
(Fig. 4b, right panel, green dots). However, the scaling
of the mean is recovered with a fit to the dataset and
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when strains are binned by repertoire size (Fig. 4b, right
panel).

Prompted by the broad variability predicted by cor-
related spacer loss, we analyzed the repertoire size dis-
tributions of species with many sequenced strains (see
Methods). We indeed observed a broad distribution even
among strains of the same species (Fig. 4c). We com-
pared the repertoire size distributions of four pairs of
highly-sampled species with the same CRISPR-Cas type,
and found that the within-species variability comprises a
substantial part of the overall variance. Additional vari-
ability between species, leading to different mean reper-
toire sizes for species with the same CRISPR-Cas type,
might originate from different microbes inhabiting envi-
ronments that differ in viral diversity and thus pressure
to acquire broad immune defense. We tested the robust-
ness of the comparative analysis to this additional source
of variability, by sampling strains from steady-state dis-
tributions where we additionally sample the prefactor in
b ∝ 1/pself from a wide distribution (see Methods). This
further increases the variability of individually sampled
strains, but the means still show scaling (Fig. S5).

II. DISCUSSION

An adaptive immune system is dangerous equipment
to have in an organism. There is always the risk that the
immune receptors, intended as defenses against foreign
invaders, will instead target the self. In CRISPR-Cas
systems, biophysical mechanisms avoiding various forms
of autoimmunity such as targeting of the CRISPR locus
and self-spacer acquisition are known [16, 20, 21, 23], but
here we propose that heterologous autoimmunity, where
spacers acquired from foreign DNA seed self-targeting, is
a significant threat to microbes carrying CRISPR-Cas.
This threat is analogous to off-target effects in genome-
editing applications [25, 26], and has been observed in an
experimental CRISPR-Cas system [33], but its wider im-
plications for the evolution of CRISPR-Cas systems are
unexplored. We showed that avoidance of this form of au-
toimmunity while maximizing antiviral defense predicts
a scaling law relating spacer length and CRISPR reper-
toire size. The scaling depends on the number and nature
of sequence mismatches permitted during CRISPR inter-
ference and primed acquisition.

To test our prediction we used a comparative approach
analyzing the natural variation in CRISPR-Cas systems
across microbial species, and demonstrated that: (a) the
predicted scaling law is realized, (b) the observed scaling
constrains parameters for cross-reactive CRISPR target-
ing to lie in a range consistent with experimental stud-
ies, (c) the scaling arises in part from differential usage
of different CRISPR-cas subtypes having different spacer
length distributions, and (d) the scaling, and hence a bal-
anced tradeoff between successful defense and autoimmu-
nity, can be achieved by population-level selection mech-
anisms. In addition, we demonstrated a negative control:

CRISPR arrays in species that no longer have functional
Cas proteins, and thus are not at risk of autoimmunity,
do not show the predicted scaling relation. We propose
two further tests of the link between spacer length and
autoimmune risk: (1) If cross-reactivity leads to self-
targeting, in addition to a depletion of self-targeting spac-
ers in CRISPR arrays [12, 36], we predict a depletion of
spacers several mismatches away from self-targets, and
(2) Our theory predicts that CRISPR-Cas subtypes with
longer spacers should acquire spacers more readily.

A similar tradeoff between sensitivity to pathogens and
autoimmune risk shapes the evolution of vertebrate adap-
tive immune systems [27, 48]. In the light of our results it
would be interesting to determine whether this tradeoff
also leads to a relation between the size of the immune
repertoire and specificity in vertebrates. Such a relation
will likely be harder to ascertain for vertebrates as pat-
terns of cross-reactivity between lymphocyte receptors
and antigens are more complex. Interestingly, however,
T cell receptor hypervariable regions in human are sev-
eral nucleotides longer on average than those found in
mice [49], which accompanies a substantial increase in
repertoire size in human. If longer hypervariable regions
translate to a greater specificity on average, one might
view the increased human receptor length as an adapta-
tion to a larger repertoire. The key to our current work
was the ability to compare microbial immune strategies
across a large panel of phylogenetically distant species.
Further insight into how this tradeoff shapes vertebrate
immune systems might thus be gained by building on
recent efforts to survey adaptive immune diversity in a
broader range of vertebrates [50, 51].

Many theoretical studies of adaptive immunity in both
prokaryotes [8, 37–44] and vertebrates [52–55] consider
detailed dynamical models of evolving immune reper-
toires. For prokaryotes, such dynamical models can be
regarded as describing the role of CRISPR-Cas as a short-
term memory for defense against a co-evolving phage
[56]. Studying adaptive immunity in this way requires
detailed knowledge of the parameters controlling the dy-
namics, many of which are not well-characterized experi-
mentally. In this paper, we took an alternative approach
of focusing on the statistical logic of adaptive immunity,
where we regard the bacterial immune system as a func-
tional mechanism for maintaining a long-term memory
[56] of a diverse phage landscape [57], via probabilistic
matching of genomic sequences. Previous work taking
this perspective offered an explanation for why prokary-
otic spacer repertoires lie in the range of a few dozen to
a few hundred spacers [56]. As in our discussion of possi-
ble mechanisms for generating the observed scaling law,
evolution should select dynamics that achieve the statis-
tical organization that we predict, because this is what is
useful for achieving a broad defense against phage while
avoiding autoimmunity. A probability theory perspec-
tive of this kind has been applied to the logic of the
adaptive immune repertoire of vertebrates [58–60], but
to our knowledge we are presenting a novel approach to
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the study of CRISPR-based autoimmunity.

III. MATERIALS AND METHODS

a. Derivation of self-targeting probability. We esti-
mate the probability of an alignment between a spacer +
PAM sequence of length l and a host genome of length
L. We assume that both sequences are random and un-
correlated, with nucleotide usage frequencies of 1/4. In
a length-L genome, where L� l, there are L− l+ 1 ≈ L
starting positions for an alignment. The matching prob-
ability at each position, pm, depends on the number and
nature of mismatches tolerated. In regimes where pm is
small, the matching probabilities at the different posi-
tions may be treated independently. Thus, the probabil-
ity of having at least one alignment within the length-L
genome is

pself = 1− (1− pm)L−l+1

≈ Lpm, since pm � 1, l� L. (6)

If no mismatches are tolerated, pm = 4−l as in Eq. 1.
At each site where a mismatch is allowed, four alterna-
tive nucleotide choices are possible. This gives a certain
number α of unique complementary sequences matching
to a given spacer, which we compute as a function of
the number and nature of mismatches. If up to kfix mis-
matches are tolerated at fixed positions in the alignment,
α = 4kfix . If instead up to kvar mismatches are tol-
erated anywhere in the complementary region, naively
α ∼

(
l

kvar

)
4kvar , where the binomial coefficient is the

number of combinations of sites where mismatches are
allowed. This is however an upper bound as matching
sequences are overcounted, and the precise expression is

α =

kvar∑
i=0

(
l

i

)
3i, (7)

where each term in the sum is the number of unique com-
plementary sequences having exactly i mismatches. The
largest term dominates, giving α ≈

(
l

kvar

)
3kvar . Thus,

combining kfix mismatches at fixed positions and up to
kvar mismatches at any of the remaining l−kfix positions
gives

α(kfix, kvar, l) ≈ 4kfix

(
l − kfix

kvar

)
3kvar . (8)

We can introduce an effective spacer length, leff, by pm ≡
4−leff . To leading order the binomial expression in Eq. 8
is approximated by (l − kfix)kvar . This gives leff ≈ l −
kfix − kvar log4 3(l − kfix) as in Eq. 3.

The probability that a repertoire of N spacers avoids
self-targeting, 1−Pself, is one minus the probability that
at least one spacer self-targets. This gives

Pself = 1− (1− pself)
N

≈ Npself, since Lpm � 1. (9)

If CRISPR repertoires are selected to maximize reper-
toire size subject to the constraint Pself ≤ P , we obtain
Eq. 4. Taylor expanding lnN around l = l0 gives Eq. 5
to lowest order in l.
b. Comparative analyses. For our comparative anal-

yses we use CRISPRCasdb [5], which is a database of
CRISPR and cas loci identified using CRISPRCasFinder
[61] in public bacterial and archaeal whole-genome as-
semblies [35]. CRISPR arrays are assigned evidence lev-
els 1–4, 4 being the highest confidence [61]. We restricted
our analysis to level 4 CRISPR arrays only. Strains con-
taining both annotated CRISPR and cas loci were used
for the analyses in Figs. 2a–c, 3, and 4c. Strains contain-
ing annotated CRISPR but no cas loci were used for the
analyses in Figs. 2d–e. In order to eliminate oversam-
pling of certain species, we picked one strain at random
from each species for further analysis (2,449 species with
annotated CRISPR and cas loci, and 340 species with
annotated CRISPR but no cas loci). To produce Fig. 3,
the randomly chosen strains were grouped by annotated
cas subtype, or into a separate group if they contain mul-
tiple subtypes. The 12 subtypes shown in Figs. 3a and c
have >10 species represented in CRISPRCasdb. To pro-
duce Fig. 4c, 4 pairs of species, each with > 50 sequenced
strains of the same CRISPR-Cas type, were chosen for
analysis.
c. Synthetic data generation and analysis. A syn-

thetic dataset producing a scaling law was generated
in the following way: (1) A spacer of length ls was
drawn from the length distribution of Fig. 2a, and (2)
a repertoire size distribution with mean A/pself was cre-
ated, from which one strain was sampled and added to
the dataset. Parameter values of L = 5 · 106, lp = 3,
kfix = ls/6, kvar = 3, and A = 10−5.5 were used. The
steady-state distributions are Poisson in Fig. 4a, and ge-
ometric with the same mean in Fig. 4b. In Fig. S5, A was
sampled from a log-normal distribution with the same
mean, and standard deviation chosen such that the coef-
ficient of variation is 1.2.
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SUPPLEMENTARY INFORMATION

SI text on population dynamics

Consider a host population acquiring spacers of length
l. Let the number of individuals in the population that
have repertoire size n (n ≥ 0) be Xn. Consider spacer
acquisition to occur at a rate b:

Xn
b−→ Xn+1. (10)

Spacer acquisition is balanced by spacer loss leading to
a well-defined steady-state distribution of repertoire size.
Spacer loss occurs through double-stranded DNA breaks
followed by homologous recombination at a subsequent
repeat, which deletes chunks of the CRISPR array (see
e.g. [46, 47]). The precise rate and mechanism by which
this occurs is not well-understood. Here, we consider 3
solvable scenarios of this process:

1: Xn
d−→ Xn−1 (11)

2: Xn
dn−→ Xn−1 (12)

3: Xn
d−→ X0. (13)

The first scenario represents spacer loss at the end(s) of
the CRISPR array, hence independent of n. The second
represents a constant per-spacer loss rate. For the third
scenario, all spacers are lost in a deletion event, which is
a solvable limit of several spacers being deleted at a time.

Scenario 1: Xn
d−→ Xn−1. The probabilities Pn (n ≥

0) obey the following master equation:

dPn

dt
= −(b+ d)Pn + bPn−1 + dPn+1, n ≥ 1 (14)

dP0

dt
= −bP0 + dP1. (15)

The steady state fulfills the detailed balance condition,

dPn = bPn−1. (16)

We can solve the recursion equation (Eq. 16) for the
steady-state distribution,

Pn = (b/d)n(1− b/d), (17)

which is geometric with parameter 1 − b/d. Its mean is
b/(b−d), implying that a well-defined steady state is only
possible if d > b.

Scenario 2: Xn
dn−→ Xn−1. The master equation is:

dPn

dt
= −(b+ dn)Pn + bPn−1 + d(n+ 1)Pn+1, n ≥ 1

(18)

dP0

dt
= −bP0 + dP1. (19)

At steady state again detailed balance holds

dnPn = bPn−1. (20)

Eq. 20 implies that the steady-state distribution is Pois-
son with mean b/d:

Pn =
1

n!
(b/d)ne−b/d. (21)

Scenario 3: Xn
d−→ X0. Here, the master equation is:

dPn

dt
= −(b+ d)Pn + bPn−1, n ≥ 1 (22)

dP0

dt
= −bP0 + d(1− P0). (23)

Here there is no detailed balance, but probability flux is
conserved,

(d+ b)Pn = bPn−1. (24)

Eq. 24 implies that the steady-state distribution is geo-
metric with parameter d/(b+ d):

Pn =

[
b

b+ d

]n
d

b+ d
. (25)

The mean of this distribution is b/d.
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SI figures
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Figure S1. Cross-reactivity parameters obtained by a fit to the empirical data lie in a plausible range. The blue points are
data from 2,449 species binned in increasing windows of repertoire size (50 species/bin), and the orange line is the linear fit
to all species as in Fig. 2c. The green line is the naive ln 4 scaling (Eq. 5). The fitted slope is consistent with a broad range
of cross-reactivity parameters (yellow region). A best-fit to Eq. 4 was performed, in which lp was fixed at 3, and kfix was set
to ls/6, consistently with a 6-nt periodicity in mismatch tolerance in type I-E systems [30, 31] and approximately 5 allowed
mismatches in type II systems in which most spacer lengths are ∼30 nt [25, 26]. We found best-fit values of kvar = 3.41 ± 0.02
and log10(L/P ) = 11.47 ± 0.02, where the errors are 90% confidence intervals. The estimate of kvar is consistent with primed
acquisition tolerating many mismatches, up to 10 in some systems [30, 33], and the estimate of L/P implies a maximum risk of
self-targeting P in the range of 10−4 to 10−5. We expect these cross-reactivity parameters to show significant variation around
these means in individual species and systems (see Fig. 4).
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Figure S2. Variable usage of spacer lengths among multiple-type strains. 826 species with multiple CRISPR-Cas systems
were divided into 3 groups of small, medium and large repertoire sizes containing 275, 275 and 276 species, respectively. Each
repertoire size bin was normalized to 1, so that the bars indicate the fraction of spacers in each repertoire size bin with that
length. The usage of spacers of length ≤ 32 nt decreases with repertoire size, while usage of spacers of length ≥ 35 nt increases
with repertoire size among these strains.
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Figure S3. Spacer repertoire size is correlated with the number of CRISPR and cas loci. Data from 2,449 representative strains
belonging to different species are binned by repertoire size (50 strains/bin). Error bars denote the standard error of the mean
in each bin.
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Figure S4. Repertoire size versus mean spacer length for strains restricted to one annotated gene copy of cas1 and cas2. 1,578
out of the 2,449 sampled species contain one gene copy of cas1 and cas2. The orange line is a linear fit to these species, shown
alongside the data, which are binned by repertoire size (50 species/bin). Error bars denote the standard error of the mean in
each bin.
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Figure S5. Species and system-specific stochasticity increases the variability of the sampled data, but a scaling law is recovered
by binning by repertoire size. A sampling procedure on synthetically generated data is replicated as in Fig. 4. Individuals were
drawn from steady-state distributions with mean proportional to 1/pself, but each time the prefactor A was also drawn from a
wide (log-normal) distribution with the same mean as in Fig. 4a–b, and standard deviation chosen such that the coefficient of
variation is 1.2. A large variability in the data results, but binning recovers a clear relation between mean repertoire size and
spacer length. The green points show 100 individually sampled strains, the blue points means after binning by repertoire size
(50 species/bin, 2,450 species total), and the orange line is a fit.
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