1

1 Polymerase chain reaction-based assays facilitate the breeding and study of mouse

2 models of Klinefelter syndrome

- 3 Haixia Zhang ^{1§}, Wenyan Xu ^{1§}, Yulin Zhou ^{1§}, Xiaolu Chen ¹, Jiayang Jiang ², Xiaoman
- 4 Zhou¹, Zengge Wang³, Rongqin Ke², and Qiwei Guo^{1*}
- ⁵ ¹United Diagnostic and Research Center for Clinical Genetics, Women and Children's
- 6 Hospital, School of Medicine & School of Public Health, Xiamen University. Xiamen,
- 7 Fujian 361102, China
- ⁸ ²School of Biomedical Sciences & School of Medicine, Huaqiao University, Quanzhou,
- 9 Fujian 362021, China
- ³Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
- ¹¹ [§]These authors contributed equally to this work.
- 12 *Correspondence to: Qiwei Guo, United Diagnostic and Research Center for Clinical
- 13 Genetics, Women and Children's Hospital, School of Medicine & School of Public
- 14 Health, Xiamen University. Xiamen, Fujian 361102, China
- 15 Email: guoqiwei@xmu.edu.cn
- 16 Running title: PCR assays for breeding and study of KS mouse
- 17

18 Abstract

19	Klinefelter syndrome (KS) is one of the most frequent genetic abnormalities and the
20	leading genetic cause of non-obstructive azoospermia. The breeding of mouse models of
21	KS and their study are essential to advance our knowledge of the pathologic mechanism.
22	Karyotyping and fluorescence in situ hybridization are reliable methods for identifying
23	chromosomal contents. However, technical issues associated with these methods can
24	decrease the efficiency of breeding KS mouse models and limit studies that require
25	rapid identification of target mice. To overcome these limitations, we developed three
26	polymerase chain reaction-based assays to measure the specific genetic information,
27	including the presence or absence of Sry, copy number of Amelx, and Xist RNA
28	transcript levels. Through a combined analysis of the assay results, we can infer the
29	karyotype of target mice. We confirmed the utility of our assays with the successful
30	generation of KS mouse models. Our assays are rapid, inexpensive, high capacity, easy
31	to perform, and require small amounts of sample. Therefore, they facilitate the breeding
32	and study of KS mouse models and help advance our knowledge of the pathologic
33	mechanism underlying KS.

34 Keywords:

35 Klinefelter syndrome; mouse model; 40,XX^{Y*} mouse; 41,XXY mouse

36 Introduction

37	Klinefelter syndrome (KS), a set of symptoms that results from an extra X chromosome
38	in males, is one of the most frequent genetic abnormalities and the leading genetic cause
39	of non-obstructive azoospermia. ¹ The prevalence of KS in newborn, infertile, and
40	azoospermic males is approximately 0.15%, 3–4%, and 10–12%, respectively. $^{2, 3}$ The
41	phenotypic spectrum of KS is wide, ranging from presenting only small testes and
42	infertility to the classical traits and comorbidities such as hypergonadotropic
43	hypogonadism, infertility, neurocognitive deficits, psychiatric disorders, obesity,
44	diabetes, osteoporosis, and autoimmune disorders. ⁴ Early diagnosis of KS and
45	subsequent treatment and intervention, such as testosterone replacement therapy,
46	testicular sperm extraction, early speech and occupation therapy, and educational
47	assistance, have been shown to improve the long-term quality of life for patients with
48	KS and alleviate later complications. ⁵⁻¹⁰ However, the data was limited and more
49	rigorous scientific investigations are needed. ¹¹ In fact, the pathologic mechanism
50	between abovementioned phenotypes and the extra X chromosome is much more
51	complicated than previously envisioned and remain largely unknown, in large part
52	because in-depth investigations, such as developmental studies and experimental
53	manipulations, are almost impossible to perform in patients with KS for ethical reasons.
54	^{11, 12} Therefore, studies of animal models are essential to advance our knowledge of the
55	pathologic mechanism of this prevalent syndrome. ¹²
56	The discovery of a mutant mouse line, the Y* mouse, has enabled us to generate KS
57	mouse models. ¹³ As shown in Fig. 1, the Y* chromosome contains the X-centromere,

58	partial pseudoautosomal region (PAR) of the X chromosome, partial PAR of the Y
59	chromosome, and the entire non-recombining region of the Y chromosome (NRY). In
60	addition, a small fragment of the non-pseudoautosomal region of the X chromosome
61	(NPX), containing eight genes including Amelx, is located between the X-centromere
62	and the duplicated PAR. Through cross-breeding, $40,XX^{Y^*}$ and $41,XXY$ mice could be
63	generated in the second and fourth generations, respectively. ¹⁴ These two mouse breeds
64	have many of the characteristics of KS, including small firm testes, germ cell loss,
65	hypergonadotropic hypogonadal endocrine changes, altered body proportions,
66	behavioral and cognitive issues, and so on. ^{12, 14} Therefore, these mouse breeds have
67	been widely used as animal models to overcome the limitations of human studies to
68	explore the pathological mechanisms underlying KS. ^{15, 16}
69	One of the most important steps in the successful breeding of $40,XX^{Y^*}$ and $41,XXY$
69 70	One of the most important steps in the successful breeding of 40,XX ^{Y*} and 41,XXY mice is the accurate identification of the karyotypes and chromosomal fragments of the
70	mice is the accurate identification of the karyotypes and chromosomal fragments of the
70 71	mice is the accurate identification of the karyotypes and chromosomal fragments of the targeted mouse breeds (Fig. 1). This is typically performed through cytogenetic methods,
70 71 72	mice is the accurate identification of the karyotypes and chromosomal fragments of the targeted mouse breeds (Fig. 1). This is typically performed through cytogenetic methods, such as karyotyping or fluorescence <i>in situ</i> hybridization (FISH). To ensure that the
70717273	mice is the accurate identification of the karyotypes and chromosomal fragments of the targeted mouse breeds (Fig. 1). This is typically performed through cytogenetic methods, such as karyotyping or fluorescence <i>in situ</i> hybridization (FISH). To ensure that the mice are alive for subsequent breeding after testing, culture cells derived from blood
 70 71 72 73 74 	mice is the accurate identification of the karyotypes and chromosomal fragments of the targeted mouse breeds (Fig. 1). This is typically performed through cytogenetic methods, such as karyotyping or fluorescence <i>in situ</i> hybridization (FISH). To ensure that the mice are alive for subsequent breeding after testing, culture cells derived from blood samples or tissue biopsies are used. ¹⁷ However, identification of target mice by
 70 71 72 73 74 75 	mice is the accurate identification of the karyotypes and chromosomal fragments of the targeted mouse breeds (Fig. 1). This is typically performed through cytogenetic methods, such as karyotyping or fluorescence <i>in situ</i> hybridization (FISH). To ensure that the mice are alive for subsequent breeding after testing, culture cells derived from blood samples or tissue biopsies are used. ¹⁷ However, identification of target mice by karyotyping or FISH is labor-intensive, time-consuming (5–10 days), and requires a
 70 71 72 73 74 75 76 	mice is the accurate identification of the karyotypes and chromosomal fragments of the targeted mouse breeds (Fig. 1). This is typically performed through cytogenetic methods, such as karyotyping or fluorescence <i>in situ</i> hybridization (FISH). To ensure that the mice are alive for subsequent breeding after testing, culture cells derived from blood samples or tissue biopsies are used. ¹⁷ However, identification of target mice by karyotyping or FISH is labor-intensive, time-consuming (5–10 days), and requires a relatively high level of expertise. These drawbacks reduce their usefulness of large-scale

80	pathological changes require immediate identification of target mice prenatally or
81	neonatally; this poses a challenge for karyotyping and FISH, which require a relatively
82	long turnaround time.
83	To overcome these limitations, we developed three polymerase chain reaction
84	(PCR)-based assays to identify the chromosomal contents of target mice and confirmed
85	the utility of our assays for reliable breeding of KS mouse models.
86	Materials and Methods
87	Study design
88	As shown in Fig. 1, each karyotype has specific sex chromosome contents that could
89	provide specific genetic information such as gene copy number and transcriptional
90	activity. Theoretically, by analyzing this genetic information using molecular methods,
91	instead of cytogenetic analyses such as karyotyping and FISH, we would be able to
92	infer the karyotype of a mouse breed. Based on this concept, three genes, Sry, Amelx,
93	and Xist, could be informative. Sry is located in the NRY, and its presence or absence
94	determines the gender of the mouse. Since Amelx is located in the NPX and is also
95	present on the Y^* chromosome, the copy number of <i>Amelx</i> implies the copy number of
96	the NPX fragment. ¹⁹ Xist is also located on the NPX and is transcribed into a long
97	noncoding RNA that can transcriptionally silence one of the two X chromosomes to
98	achieve dosage equivalence between males and females. Thus, a high level of Xist RNA
99	is expected when there are two X chromosomes in a single cell, whereas an absence or
100	low level of Xist RNA is expected when there is only one X chromosome in a single
101	cell. ²⁰ Corresponding to the breeding protocol shown in Fig. 1, the genetic information

6		

102	of the mouse breeds in each generation is shown in Fig. 2. This genetic information was
103	determined using the PCR-based assays designed to measure the presence or absence of
104	Sry, copy number of Amelx, and the transcript levels of Xist RNA. Notably, the
105	combined information for two genes was sufficient to identify a target karyotype (Fig.
106	2).
107	Mice and samples
108	To establish the PCR assays, tail tissue samples from 16 pairs of 40,XX and 40,XY
109	mice (C57BL/6J) were obtained from the Experimental Teaching Department, School of
110	Medicine, Xiamen University. To generate 40,XX ^{Y*} and 41,XXY mice, breeding pairs
111	of 40,XY* (C57BL/6JEiJ) and 40,XX (C57BL/6J) mice were purchased from The
112	Jackson Laboratory (Bar Harbor, ME, USA). The 40,XY mice (C57BL/6J) were
113	purchased from Xiamen University Laboratory Animal Center. The breeding was
114	performed in the standard animal facility of the Xiamen University Laboratory Animal
115	Center.
116	Nucleic acid purification
117	Approximately 20 mg of tail tissue was used to purify DNA or RNA with the QIAamp
118	Fast DNA Tissue Kit (Qiagen, Valencia, CA, USA) or the RNeasy [®] mini Kit (Qiagen),
119	respectively, according to the manufacturer's protocols. The purity and concentration of
120	the purified nucleic acid were determined by measuring the absorbance at 260 nm and
121	280 nm using a NanoDrop 2000 spectrophotometer (Thermo Fisher, Waltham, MA,
122	USA).

123 **Reaction conditions**

124	The PCR conditions for all assays were identical: each 25 μ L reaction contained 10
125	mmol/L Tris-HCl (pH 8.3), 50 mmol/L KCl, 1 U of TaqHS (Takara, Dalian, China), 2
126	mmol/L Mg^{2+} , 0.2 mmol/L each dNTP, 0.8× LightCycler 480 ResoLight Dye (Roche
127	Applied Science GmbH, Mannheim, Germany), 0.2 mmol/L each forward and reverse
128	primer, and a specific amount of DNA or cDNA template. The amplification cycling
129	conditions were as follows: 95 °C for 3 min, followed by 40 cycles of 95 °C for 20 s,
130	60 °C for 20 s, and 72 °C for 20 s. Fluorescence was recorded at the end of each
131	annealing step. The sequences of the primers used in each assay are listed in Table 1.
132	For the measurement of Sry, a melting analysis was performed after the amplification,
133	which began with denaturation at 95 °C for 1 min and renaturation at 35 °C for 3 min,
134	followed by melting from 40 °C to 95 °C, with a ramp rate of 0.04 °C/s. Fluorescence
135	was recorded every 0.3 °C. PCR and melting analysis were performed on a SLAN-96S
136	thermocycler (Zeesan, Xiamen, China). Before PCR, RNA samples were reverse
137	transcribed with the GoScript Reverse Transcription System (Promega, Beijing, China)
138	according to the manufacturer's protocol, and 1 μL of the resulting cDNA was used as
139	template for subsequent PCR.
140	Data analysis
141	For the analysis of <i>Sry</i> , a melting profile was used to determine its presence or absence.
142	To quantify the copy number of <i>Amelx</i> , relative quantification was performed by
143	measuring the difference between the quantification cycle (Cq) values obtained for
144	Amelx and Actb ($\Delta Cq_{Amelx - Actb}$). Similarly, to evaluate Xist RNA transcript levels,

145 relative quantification was performed by measuring the difference between the Cq

146	values for the Xist and Actb transcripts ($\Delta Cq_{Xist-Actb}$). Actb was used as a quantitative
147	reference because it has consistently has two copies and a stable transcriptional pattern
148	in mouse cells. The Cq value is defined as the amplification cycle when the
149	fluorescence intensity of an amplicon reaches a specific threshold. ²¹ Based on a
150	previous study, the threshold was set to 30% of the plateau fluorescence intensity as the
151	optimal Cq value for differentiation of different karyotypes. ²²
152	Karyotyping and histologic analysis
153	To confirm the accuracy of our assays, after breeding, the karyotypes of the target mice
154	were examined by karyotyping using hemopoietic lineage cells derived from the bone
155	marrow according to a previous protocol. ¹⁷ For histologic analysis of the testes of KS
156	model mice, periodic acid-Schiff staining was performed on cross-sections of the
157	seminiferous tubules according to a previous protocol. ²³
158	Ethics statement
159	Mouse breeding and experimentation were performed in accordance with international,
160	national, and institutional guidelines for the ethical use of animals. ²⁴ The study was
161	approved by the Ethics Committee of Xiamen University Laboratory Animal Center.
162	Results
163	Establishing an assay for the detection of Sry
164	To determine the optimal amount of DNA template for the Sry detection assay, serial
165	dilutions of DNA isolated from 40,XY (Sry positive) and 40,XX (Sry negative) mice
166	were evaluated. A no template control was also examined to determine the melting

167 profiles of primer dimers. As shown in Fig. 3A, the melting profiles changed with the

168	amount of DNA template. To obtain only the Sry amplicon, at least 2 ng of DNA
169	template was required for samples from the 40,XY mouse. However, for the 40,XX
170	mouse samples, the use of a larger amount of DNA template (≥20 ng) generated
171	non-specific amplicons that presented similar melting profiles to those of the Sry
172	amplicons. Therefore, 2 ng was considered as the optimal amount of template to
173	specifically detect the presence or absence of Sry and was used for subsequent
174	experiments.
175	Establishing an assay for quantification of Amelx
176	We first evaluated the influence of the amount of DNA template on the effectiveness of
177	the Amelx quantification assay by examining serial dilutions of DNA isolated from a
178	40,XX mouse as a template. As shown in Fig. 3B, amplification in both the Amelx and
179	Actb detection reactions was robust across a wide range of template concentrations (20
180	pg-200 ng). However, a repressive effect was observed when a relatively large amount
181	of DNA template (≥20 ng) was used. Therefore, 2 ng was chosen as the amount of
182	template to evaluate the ranges of the $\Delta Cq_{Amelx - Actb}$ values for the 40,XX (two copies of
183	Amelx) and 40,XY (one copy of Amelx) mouse samples. As shown in Fig. 3C, the ranges
184	for 16 samples from 40,XX and 40,XY mice were distinct from each other. The mean
185	$\Delta Cq_{Amelx-Actb}$ value (1.65) of the maximum of the 40,XX samples and the minimum of
186	the 40,XY samples was used as the cut-off value for classifying mice as having one or
187	two copies of Amelx in subsequent experiments.
188	Establishing an assay for evaluating Xist RNA transcript levels
189	We first evaluated the influence of different amounts (2000, 200, and 20 ng) of RNA

190	template from a 40,XX mouse (high level of Xist RNA transcripts) in a reverse
191	transcription reaction on PCR effectiveness. As shown in Fig. 3D, both 2 000 ng and
192	200 ng of RNA had a repressive effect. Therefore, 20 ng of RNA template was used for
193	reverse transcription to evaluate the range of the $\Delta Cq_{Xist-Actb}$ values for 40,XX and
194	40,XY mouse samples (no or low level of Xist RNA transcript). As shown in Fig. 3E,
195	the range of the $\Delta Cq_{Xist-Actb}$ values for the 16 40,XX and 40,XY mouse samples were
196	distinct from each other. The mean $\Delta Cq_{Xist-Actb}$ value (6.05) of the maximum for the
197	40,XX samples and the minimum for the 40,XY samples was used as the cut-off value
198	for differentiating Xist RNA transcript levels in subsequent experiments.
199	Breeding KS mouse models using these PCR assays
200	Using the established PCR assays, we bred $40,XX^{Y^*}$ and $41,XXY$ mice from a pair of
201	40,XY* and 40,XX mice following the protocol in Fig. 1, which confirmed the
202	effectiveness of our method. Ultimately, we obtained one 40,XX ^{Y*} mouse and four
203	41,XXY mice. Subsequent karyotyping and histological analysis confirmed the
204	reliability of our assays (Figs. 4 and 5).
205	Discussion
206	Karyotyping and FISH are reliable methods that have been used for decades to identify
207	chromosomal abnormalities, which are essential for the breeding and study of KS
208	mouse models. However, these methods have some technical issues, e.g., a relatively
209	low capacity and long turnaround time, that decrease the breeding efficiency and limit
210	studies which require rapid identification of chromosomal contents.
211	PCR is a basic tool of the molecular laboratory that has demonstrated capability for

212	detecting various types of genetic abnormalities through different data analysis
213	strategies. For example, we can detect the presence or absence of a specific gene region
214	(e.g., AZF on the Y chromosome) by analyzing amplification profiles, ²⁵ and we can
215	detect numerical changes (e.g., trisomy 21, 47,XXY, or a SMA carrier) by analyzing
216	meting profiles or ΔCq values. ^{5, 22, 26-28} Based on previous studies, we developed three
217	PCR-based assays to detect genetic information related to KS, including the presence or
218	absence of Sry, changes in the copy number of Amelx, and Xist RNA transcript levels in
219	mouse tissue samples. Using these assays, we were able to identify target mice for the
220	breeding of KS models without performing karyotyping or FISH (Figs. 1 and 2).
221	Compared to karyotyping or FISH, our method is rapid, as it takes less than 1 h for
222	nucleic acid purification, less than 2 h for reverse transcription, and less than 2 h for
223	PCR and melting analysis. A short turnaround time for mouse identification is essential
224	for studies focused on rapid physical and pathologic changes in fetal or newborn mice,
225	e.g., testicular degeneration. $^{15, 18}$ Our method is also inexpensive (<0.5 US dollar per
226	PCR assay), high capacity (up to 96 samples per assay), and easy to perform. Moreover,
227	only 2 ng of DNA and 20 ng of RNA was sufficient to obtain reliable results (Fig. 3),
228	suggesting that less than 0.2 mg of tissue or 1 μ l of peripheral blood would be a
229	sufficient sample, further revealing its utility, especially for the detection of fetal or
230	newborn mice.
231	An ideal assay for Sry identification should only yield a product from male mouse
232	samples with Sry but not from female mouse samples without Sry, so that we can
233	identify male mouse samples directly by their amplification profiles. In practice,

234	however, non-specific amplicons derived from paralogous sequences and/or primer
235	dimers were difficult to eliminate from reactions with female mouse samples. Because
236	of this, melting profiles are more specific than the amplification profiles since the
237	melting profiles of the Sry amplicons could be readily differentiated from those of
238	non-specific amplicons (Fig. 3A). The amount of DNA template used plays an
239	important role in the melting profiles, and 2 ng was confirmed to be an optimal amount
240	of template in our study (Fig. 3A). However, if different PCR reagents are used, the
241	optimal amount of DNA template should be re-evaluated.
242	Theoretically, after equalizing the DNA template input for the Amelx assay, samples
243	with different Amelx copy numbers should generate different ranges of Cq values.
244	Therefore, we could infer the Amelx copy number in a mouse sample by its Cq value. In
245	practice, we confirmed this assumption (data not shown). However, to further diminish
246	the potential impacts of slight differences (e.g., differences in the quantity or quality of
247	the DNA template) between samples, Actb was used as a reference gene to calibrate the
248	Amelx quantification. Accordingly, instead of ranges of Cq values, ranges of ΔCq_{Amelx} .
249	Actb values were established to quantify Amelx in unknown samples (Fig. 3C). Moreover,
250	rather than using confidence intervals for the different ranges of $\Delta Cq_{Amelx-Actb}$ values,
251	we used a single cut-off value to determine the Amelx copy number (Fig. 3C), which
252	simplified the data analysis.
253	The underlying principle of the assay used to determine Xist RNA transcript levels
254	was identical to that of Amelx quantification. Similarly, a large amount of nucleic acid
255	template had a repressive effect on PCR amplification (Fig. 3D). We further evaluated

256	whether the repressive effect was derived from the large amount of RNA or the resulting
257	cDNA. The results suggested that the repressive effect was greater for large amounts of
258	RNA (data not shown). Therefore, a smaller amount of RNA was preferable for reverse
259	transcription, which was sufficient to reliably determine Xist RNA transcript levels (Fig.
260	3E).
261	In conclusion, we developed three PCR-based assays for facilitating the breeding
262	and study of KS mouse models. Our method is rapid, inexpensive, high capacity, easy to
263	perform, and requires small amounts of sample. We confirmed the utility of our assays
264	for the successful generation of KS mouse models. We believe our method will advance
265	the knowledge of the pathologic mechanism of KS.
266	Authors' Contributions
267	HXZ, WYX and YLZ participated in study design and the establishment of PCR assays.
268	XLC, JYJ, XMZ, ZGW, and RQK participated in breeding of KS mouse models. QWG
269	conceived of the study, and participated in its design and coordination and draft the
270	manuscript. All authors have read and approved the final version of the manuscript, and
271	agree with the order of presentation of the authors.
272	Acknowledgements
273	We thank the Experimental Teaching Department, School of Medicine, Xiamen
274	University and the Xiamen University Laboratory Animal Center for their kind supports
275	to this study.
276	Conflict of Interest

277 None of the authors declare competing financial interests.

14

278 **References**

- 279 1. Klinefelter HF, Reifenstein, E.C., Albright, F. Syndrome characterized by gynecomastia
- 280 aspermatogenesis without A-Leydigism and increased excretion of follicle stimulating hormone. J Clin
- 281 Endocrinol Metab 1942; 2: 615-27.
- 282 2. Berglund A, Stochholm K, Gravholt CH. The epidemiology of sex chromosome abnormalities. Am J
- 283 *Med Genet C Semin Med Genet* 2020; **184**: 202-15.
- 284 3. Forti G, Corona G, Vignozzi L, Krausz C, Maggi M. Klinefelter's syndrome: a clinical and
- 285 therapeutical update. *Sex Dev* 2010; **4**: 249-58.
- 286 4. Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, et al. Klinefelter Syndrome: Integrating
- 287 Genetics, Neuropsychology, and Endocrinology. *Endocr Rev* 2018; **39**: 389-423.
- 5. Fu DM, Zhou YL, Zhao J, Hu P, Xu ZF, et al. Rapid screening for Klinefelter syndrome with a
- simple high-resolution melting assay: a multicenter study. Asian J Androl 2018; 20: 349-54.
- 290 6. Pizzocaro A, Vena W, Condorelli R, Radicioni A, Rastrelli G, et al. Testosterone treatment in male
- 291 patients with Klinefelter syndrome: a systematic review and meta-analysis. J Endocrinol Invest 2020; 43:
- 292 1675-87.
- 293 7. Graham JM, Jr., Bashir AS, Stark RE, Silbert A, Walzer S. Oral and written language abilities of
- 294 XXY boys: implications for anticipatory guidance. *Pediatrics* 1988; **81**: 795-806.
- 295 8. Gies I, Unuane D, Velkeniers B, De Schepper J. Management of Klinefelter syndrome during
- 296 transition. *Eur J Endocrinol* 2014; **171**: R67-77.
- 297 9. Skakkebaek A, Wallentin M, Gravholt CH. Neuropsychology and socioeconomic aspects of
- 298 Klinefelter syndrome: new developments. Curr Opin Endocrinol Diabetes Obes 2015; 22: 209-16.
- 299 10. Tournaye H, Krausz C, Oates RD. Concepts in diagnosis and therapy for male reproductive

- 300 impairment. Lancet Diabetes Endocrinol 2017; 5: 554-64.
- 301 11. Gravholt CH, Tartaglia N, Disteche C. Sex chromosome aneuploidies in 2020-The state of care and
- 302 research in the world. Am J Med Genet C Semin Med Genet 2020; 184: 197-201.
- 303 12. Wistuba J, Beumer C, Brehm R, Gromoll J. 41,XX(Y) * male mice: An animal model for Klinefelter
- 304 syndrome. Am J Med Genet C Semin Med Genet 2020; 184: 267-78.
- 305 13. Eicher EM, Hale DW, Hunt PA, Lee BK, Tucker PK, et al. The mouse Y* chromosome involves a
- 306 complex rearrangement, including interstitial positioning of the pseudoautosomal region. Cytogenet Cell
- 307 *Genet* 1991; **57**: 221-30.
- 308 14. Cox KH, Bonthuis PJ, Rissman EF. Mouse model systems to study sex chromosome genes and
- 309 behavior: relevance to humans. *Front Neuroendocrinol* 2014; **35**: 405-19.
- 310 15. Lue Y, Jentsch JD, Wang C, Rao PN, Hikim AP, et al. XXY mice exhibit gonadal and behavioral
- 311 phenotypes similar to Klinefelter syndrome. *Endocrinology* 2005; **146**: 4148-54.
- 312 16. Wistuba J, Luetjens CM, Stukenborg JB, Poplinski A, Werler S, et al. Male 41, XXY* mice as a
- 313 model for klinefelter syndrome: hyperactivation of leydig cells. *Endocrinology* 2010; **151**: 2898-910.
- 314 17. Lee JJ, Warburton D, Robertson EJ. Cytogenetic methods for the mouse: preparation of
- chromosomes, karyotyping, and in situ hybridization. *Anal Biochem* 1990; **189**: 1-17.
- 316 18. Hunt PA, Worthman C, Levinson H, Stallings J, LeMaire R, et al. Germ cell loss in the XXY male
- 317 mouse: altered X-chromosome dosage affects prenatal development. Mol Reprod Dev 1998; 49: 101-11.
- 318 19. Vernet N, Mahadevaiah SK, Yamauchi Y, Decarpentrie F, Mitchell MJ, et al. Mouse Y-linked Zfy1
- and Zfy2 are expressed during the male-specific interphase between meiosis I and meiosis II and promote
- 320 the 2nd meiotic division. *PLoS Genet* 2014; **10**: e1004444.
- 321 20. Wolstenholme JT, Rissman EF, Bekiranov S. Sexual differentiation in the developing mouse brain:

322 contributions of sex chromosome genes. Genes Br	<i>rain Behav</i> 2013; 12 : 166-80.
---	---

- 323 21. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, et al. The MIQE guidelines: minimum
- information for publication of quantitative real-time PCR experiments. *Clin Chem* 2009; **55**: 611-22.
- 325 22. Guo Q, Zhou Y, Wang X, Li Q. Simultaneous detection of trisomies 13, 18, and 21 with multiplex
- 326 ligation-dependent probe amplification-based real-time PCR. *Clin Chem* 2010; **56**: 1451-9.
- 327 23. Keeney S. Meiosis. Volume 2, cytological methods. Preface. *Methods Mol Biol* 2009; 558: v-vi.
- 328 24. Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the
- 329 Care and Use of Laboratory Animals, 8th ed. Washington (DC): National Academies Press (US) 2011.
- 330 25. Guo Q, Lan F, Xu L, Jiang Y, Xiao L, et al. Quadruplex real-time polymerase chain reaction assay
- for molecular diagnosis of Y-chromosomal microdeletions. *Fertil Steril* 2012; **97**: 864-9.
- 332 26. Guo Q, Xiao L, Zhou Y. Rapid diagnosis of aneuploidy by high-resolution melting analysis of
- 333 segmental duplications. *Clin Chem* 2012; **58**: 1019-25.
- 334 27. Xia Z, Zhou Y, Fu D, Wang Z, Ge Y, et al. Carrier screening for spinal muscular atrophy with a
- simple test based on melting analysis. J Hum Genet 2019; 64: 387-96.
- 28. Zhou Y, Xu W, Jiang Y, Xia Z, Zhang H, et al. Clinical Utility of a High-Resolution Melting Test for
- 337 Screening Numerical Chromosomal Abnormalities in Recurrent Pregnancy Loss. J Mol Diagn 2020; 22:
- 338 523-31.
- 339

Toward come		Amplification region
Target gene	Primer sequence	(assembly: GRCm39/mm39)
C	F: GCAGCTTACCTACTTACTAACA	-L-X-2662400-2662564
Sry	R: CTGAGGTGCTCCTGGTA	chrY:2662499-2662564
A 7	F: CCTTCAGCCTCATCACCA	1 X 1/70/5017 1/70/510
Amelx	R: TTGGGTTGGAGTCATGGA	chrX:167965017-167965122
17.	F: CATCCTACCATCATCTGCTTT	1 10 10 20 10 20 10 20 10 20 10 20
Xist	R: GGGAAGATGACTCCAGTCT	chrX:102504207-102504284
4 . 7	F: CCATGAAACTACATTCAATTCCAT	1 5 1 40000015 1 4000000
Actb	R: TGTGTTGGCATAGAGGTCTT	chr5:142889915-142889984

344	Figure 1.	Breeding of	Klinefelter sy	ndrome (KS)) mouse models.	The mouse in the
-----	-----------	-------------	----------------	-------------	-----------------	------------------

- 345 blue circle is a 40,XX^{Y*} mouse, i.e., one of the KS mouse models. The mice in the red
- 346 circles are the target mice in each generation for breeding 41,XXY mice, i.e., another
- 347 KS mouse model. This figure was modified from figures in a previous study (Front
- 348 Neuroendocrinol 2014; 35: 405-19). NPX: non-pseudoautosomal region of the X
- 349 chromosome; NRY: non-recombining region of the Y chromosome; PAR:
- 350 pseudoautosomal region.

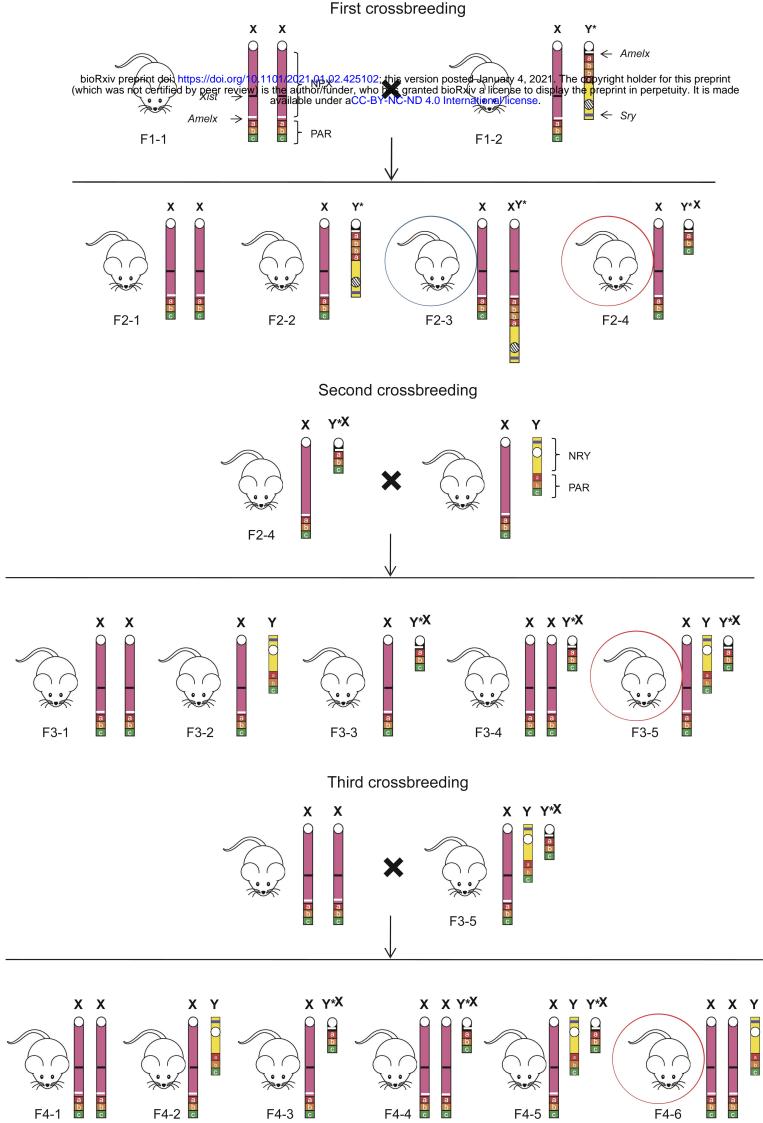
19

352	Figure 2. Genetic information of the mouse breeds obtained during the breeding of
353	Klinefelter syndrome mouse models. +: presence of Sry or a high Xist RNA transcript
354	level; -: absence of Sry or low/no Xist RNA transcript. Pink labels indicate the target
355	mice in each generation for the breeding of 41,XXY mice. Green labels indicate the
356	assays required to identify the target mice in each generation. For example, in the
357	second generation, each mouse was first tested for Sry, and those negative for Sry were
358	further tested for Xist RNA transcript levels. Mice with low/no Xist RNA transcript, i.e.,
359	negative results in both assays, were identified as 40,XY* ^X mice.

20

361	Figure 3.	PCR-based	assays for	the breeding	of Klinefelter	syndrome mouse

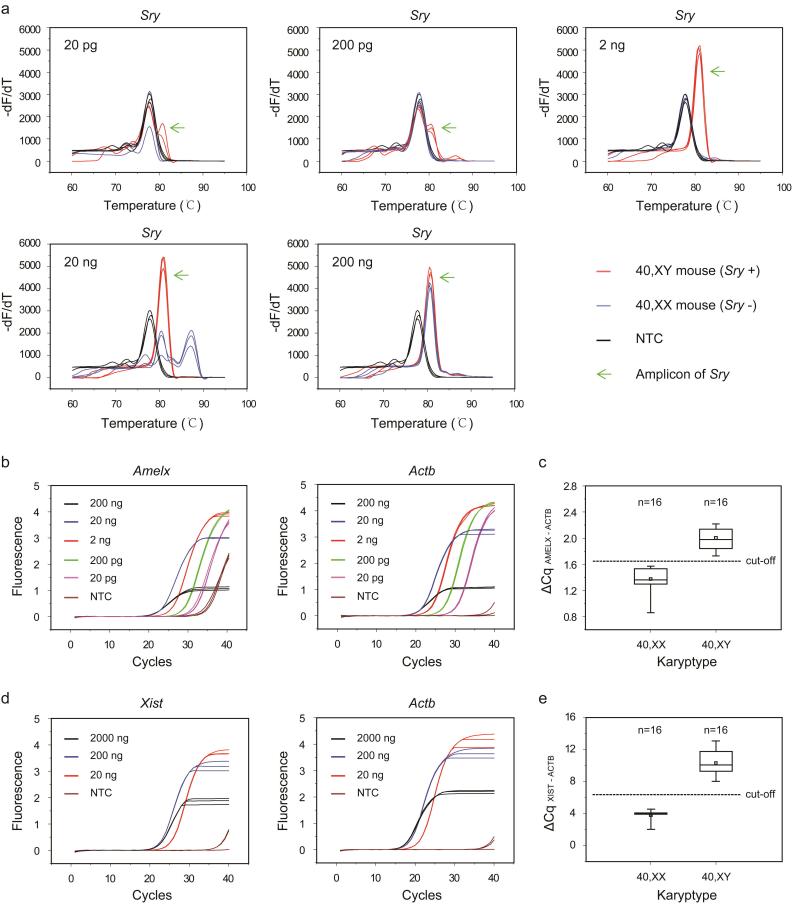
- 362 models. (a) Melting profiles for detecting *Sry* using different amounts of DNA template.
- 363 (b) Assays to quantify *Amelx* using different amounts of DNA template. (c) Establishing
- 364 a cut-off value for *Amelx* quantification. (d) Assays for evaluating Xist RNA transcript
- 365 levels using different amounts of RNA template. (e) Establishing a cut-off value for Xist
- 366 RNA quantification. Each sample was tested in triplicate, and the Cq value of each
- 367 sample is the mean Cq value of three replicates. NTC: no template control.


21

369	Figure 4.	Karyotypes	of the target m	ice for breeding	Klinefelter syndrome mouse

- 370 **models.** (a) A 40,XX^{Y^*} mouse from the second generation. The arrow indicates the X^{Y^*}
- 371 chromosome. (b) A $40,XY^{X^*}$ mouse from the second generation. The arrow indicates the
- 372 Y^{X^*} chromosome. (c) A 41,XYY^{X*} mouse from the third generation. The arrow
- 373 indicates the Yx* chromosome. (d) A 41,XXY mouse from the fourth generation.

Figure 5. Testicular phenotypes of Klinefelter syndrome mouse models. (a-c)

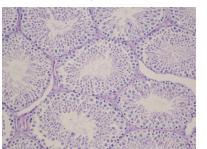

- Respective appearance, anatomic analysis, and histologic analysis of the testes of a
- $40,XX^{Y^*}$ mouse and $40,X^{Y^*}$ littermate. (d-f) Respective appearance, anatomic analysis,
- and histologic analysis of the testes of a 41,XXY mouse and 40,XY littermate. The
- arrows indicate the position of the testes. As expected, the $40,XX^{Y^*}$ and 41,XXY mice
- 380 presented small, firm testes. Moreover, the tubule diameters of $40, X^{Y^*}$ and 41, XXY
- mice were smaller than those of their reference littermates, germ cells were absent, and
- 382 only Sertoli cells were observed within the tubules.

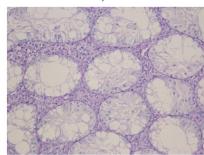
Breed	F2-1	F2-2	F2-3	F2-4
Karyotype	40, XX	40, XY*	40 , XX ^{Y*}	40 , XY ^{*X}
Sry	-	+	+	-
Amelx	2	2	2	2
Xist RNA	+	-	+	-

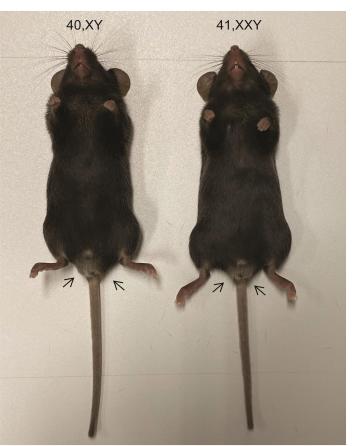
Breed	F3-1	F3-2	F3-3	F3-4	F3-5
Karyotype	40, XX	40, XY	40 , XY ^{*X}	41 , XXY ^{*X}	41, XYY ^{*X}
Sry	-	+	-	-	+
Amelx	2	1	2	3	2
Xist RNA	+	-	-	+	-

Breed	F4-1	F4-2	F4-3	F4-4	F4-5	F4-6
Karyotype	40, XX	40, XY	40, XY ^{*X}	41 , XXY ^{*X}	41, XYY ^{*X}	41, XXY
Sry	-	+	-	-	+	+
Amelx	2	1	2	3	2	2
Xist RNA	+	-	-	+	-	+

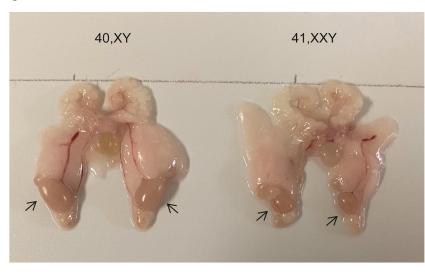
С

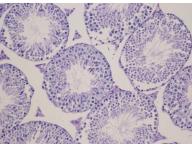


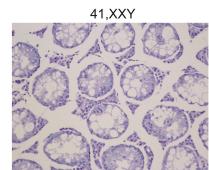



40,XY*

40,XX^{Y*}


d


е


f

С

40,XY

