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ABSTRACT 

Deciphering the potential of non-coding loci to influence gene regulation has been the subject 

of intense research, with important implications in understanding genetic underpinnings of 

human diseases. Massively parallel reporter assays (MPRAs) can measure regulatory activity of 

thousands of DNA-sequences and their variants in a single experiment. With increasing number 

of publically available MPRA datasets, one can now develop data-driven models which, given a 

DNA-sequence, predict its regulatory activity. Here, we performed a comprehensive meta-

analysis of several MPRA datasets in a variety of cellular contexts. We first applied an ensemble 

of methods to predict MPRA output in each context and observed that the most predictive 

features are consistent across datasets. We then demonstrate that predictive models trained in 

one cellular context can be used to predict MPRA output in another, with loss of accuracy 

attributed to cell-type specific features. Finally, we show that our approach achieves top 

performance in the Fifth Critical Assessment of Genome Interpretation “Regulation Saturation” 

Challenge for predicting effects of single nucleotide variants. Overall, our analysis provides 

insights into how MPRA data can be leveraged to highlight functional regulatory regions 

throughout the genome and can guide effective design of future experiments by better 

prioritizing regions of interest.  
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INTRODUCTION 

Massively Parallel Reporter Assays (MPRA) (Weingarten-Gabbay and Segal, 2014) provide cost 

effective, high-throughput activity screening of thousands of sequences and their variants for 

regulatory activity (Kheradpour, et al., 2013; Melnikov, et al., 2012; Mogno, et al., 2013; 

Patwardhan, et al., 2012; Sharon, et al., 2012; Smith, et al., 2013). In these assays, a library of 

putative regulatory elements is cloned and then transfected or infected into cells of interest. 

Each element is either associated with a unique barcode or can serve as a unique barcode itself 

(Arnold, et al., 2013). The activity associated with each given regulatory element (i.e. MPRA 

output) is assessed by sequencing the transcribed barcodes and estimating the ratio between 

the transcribed RNA and the construct’s DNA. Since MPRA is still a nascent technology, the 

development of computational tools that take advantage of existing MPRA datasets could help 

improve future MPRA candidate sequence selection, enhance our ability to predict functional 

regulatory sequences, and increase our understanding of the regulatory code and how its 

alteration can lead to phenotypic consequences. 

   

Previous work have used single MPRA datasets to better identify functional DNA sequences and 

then study the features that make a sequence regulatory active (Grossman, et al., 2017; Lee, et 

al., 2015; Sharon, et al., 2012). For example, in the expression quantitative trait loci (eQTL) 

causal SNP challenge of the Fourth Critical Assessment of Genome Interpretation (CAGI4) 

community experiment, participants developed methods for predicting regulatory activity of 

candidate genomic regions and the effect of minor variants on their regulatory potential in 

MPRA (Beer, 2017; Kreimer, et al., 2017; Zeng, et al., 2017). The main lessons learned from this 

community effort highlighted the effectiveness of ensembles of non-linear methods, especially 

when used on features related to transcription factor (TF) binding and chromatin accessibility. 

Interestingly, epigenetic properties predicted from DNA sequence (Alipanahi, et al., 2015; Zeng, 

et al., 2016; Zhou and Troyanskaya, 2015) were shown to be more predictive features than 

experimentally measured epigenetic properties. 

  

While these efforts provided an important first step, each of them focused on a single MPRA 

dataset in a specific cellular context. Critical questions therefore remain as to how generalizable 

the insights from MPRA experiments are to other datasets or other cellular contexts. Here, we 

present a first comprehensive analysis of several MPRA datasets collected by different labs and 

in various cellular systems; these datasets explore the effect of endogenous loci in several 

different cell types. We derive a large set of properties to characterize each putative regulatory 

region and compare the performance of different methods and features for predicting MPRA 

output. We show that MPRA activity is predictable and that prediction methods tend to 

perform consistently well when tested on different datasets, with better performance for non-

linear methods and favorable results when using an ensemble approach. Consistently, the 
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predictive capacity of individual features is comparable across datasets, with transcription 

factor binding and epigenetic properties being the top predictors.  

 

We next turned to investigate the generalizability of our models across datasets, which allowed 

us to distinguish between determinants of MPRA activity that are dependent on the cellular 

context (e.g., protein milieu in the cell) vs. ones that are intrinsic to the DNA sequence. Here, 

we demonstrate that predictive models trained in one cellular context can be used to predict 

the MPRA output in another with reduced prediction power and that, as expected, regions 

whose activity is cell type specific are harder to predict in in this cross- dataset setting. We also 

observe that gene expression of TFs is overall consistent with the predictive ability of their 

binding instances, with highly expressed TFs being generally more predictive of MPRA activity. 

When comparing pairs of datasets for TFs that are predictive of MPRA activity, we notice that in 

some cases, TFs with cell type specific functionality are better predictors in that cell type. 

 

In addition, we wanted to evaluate the applicability of our predictive models in studying the 

function of naturally occurring mutations. We therefore tested the ability of our framework to 

detect the effects of small variants – single nucleotide variants (SNV) or short insertions or 

deletions (indels) – on MPRA activity, and achieved similar accuracy to the state of the art 

methods (Zeng, et al., 2017). Finally, we applied our approach to the Regulation Saturation 

challenge of the Fifth Critical Assessment of Genome Interpretation (CAGI5), and demonstrate 

that it achieves top performance in identifying functional effects of SNVs in supervised settings. 

 

RESULTS 

We used five publicly available MPRA datasets and one unpublished dataset collected at several 

labs using a range of experimental methodologies and cell types (Methods). In all cases, the 

MPRA constructs were designed to test endogenous human DNA sequences, and not in-silico 

designed synthetic sequences (Smith, et al., 2013). Thus, each element tested in each dataset is 

associated with a source genomic region. Each dataset consists of approximately 2,000 

sequences with length that varies between 121 and 171 base pairs (Methods). Unless 

otherwise noted, the MPRA experiment was performed in an episomal context. The first 

dataset (Kwasnieski, et al., 2014), which we refer to as K562, consists of putative regulatory 

regions selected from ENCODE-based annotated regions in K562 cells (Consortium, 2012; Ernst 

and Kellis, 2010; Hoffman, et al., 2013). The second and third datasets, which we refer to as 

LCL-eQTL and HepG2-eQTL (Tewhey, et al., 2016), consist of sequences that contain an eQTL in 

Lymphoblastoid Cell Lines (LCLs). The same sequences were tested in LCL and HepG2 cells, thus 

forming the two datasets. Notably, the LCL-eQTL dataset was used as the primary source for the 

CAGI4 eQTL causal challenge (Kreimer, et al., 2017). The fourth and fifth datasets (Inoue, et al., 

2017) include candidate liver enhancers, tested in either episomal or chromosomal context. We 
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refer to these datasets as HepG2-epi (for MPRA plasmids) and HepG2-chr (for MPRA integrated 

in the genome). The sixth dataset includes putative enhancer regions (F., et al., 2018), tested in 

chromosomal context in human embryonic stem cells (hESC). We refer to this dataset as hESC. 

Separately, for each dataset, we applied MPRAnalyze (Note S1; (Ashuach, et al.); Methods; 

Figures S1-S3), a new tool for statistical analysis of MPRA data developed in our group, to 

obtain (1) MPRA output: a quantitative measure of enhancer-induced transcription, computed 

as the ratio between the estimated abundances of transcribed RNA and the construct’s DNA. 

These values are estimated by constructing a nested pair of generalized linear models that 

extract the ratio RNA / DNA as a measure of activity while controlling for various confounding 

factors, and (2) a binary label that identifies active/inactive enhancers, namely enhancers 

whose activity significantly deviates from that of the negative controls (median-based z-score; 

FDR < 0.05). 

 

Predictive features for MPRA activity are consistent across datasets 

We first defined a set of features that characterize each MPRA sequence and inspected each 

feature individually (Methods; see Table S1 for a complete description of all features). Overall, 

we examined 56 features that can be divided into four categories (similarly to (Kreimer, et al., 

2017)): (1) Experimentally measured epigenetic properties. To define these, we mapped each 

assayed region to its corresponding position in the reference human genome, and then queried 

this position against tracks of epigenetic properties from ENCODE (Consortium, 2012). These 

properties were measured in multiple cell lines and include the overall number of observed TF 

binding sites (TFBS), histone marks, binding by chromatin structure- associated proteins (e.g., 

P300), chromatin accessibility (primarily by identifying DNase-hypersensitivity sites; henceforth 

abbreviated as DHS), and DNA- methylation. For all these features we either aggregate over all 

available cell types, or restrict the analysis to the same cell type in which the MPRA was 

conducted. (2) Predicted epigenetic properties. This set of features covers similar properties as 

the experimentally-derived ones (e.g., TFBS or histone marks). However, instead of being 

directly measured, the properties are inferred based on the DNA sequence of the respective 

MPRA construct, using models trained on experimental data (e.g., protein binding microarrays 

for TFBS (Newburger and Bulyk, 2009) or ChIP-seq for histone marks (Consortium, 2012)). We 

use three models for this purpose: scoring of protein-DNA binding motifs (Grant, et al., 2011) 

and the more recent supervised methods DeepBind (Alipanahi, et al., 2015) and DeepSea (Zhou 

and Troyanskaya, 2015). Another feature included here is Motif Density – defined as the 

maximum number of protein-DNA binding motifs within a 20 bp window in the MPRA 

sequence. (3) DNA k-mer frequencies using k=5. And (4) Additional locus specific features. 

Here we used the number of G/C in the sequence (#GC) as well as the length of longest polyA/T 

subsequence (#polyA/T).  We also used DNA shape features (Zhou, et al., 2013) quantifying 
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minor groove width, roll, propeller twist, and helix twist (MGW, Roll, ProT, and HelT 

respectively). Additional features in this category include: Conservation – evolutionary 

conservation score of region as predicted by phastCons (Siepel, et al., 2005). Closest Gene 

Expression – expression (TPM) of the closest gene from RNA-seq data in the corresponding cell 

type. Promoter, Exon, Intron, Distal – binary features indicating the respective location in the 

endogenous genome. 

 

We use these 56 features (Methods; Table S1) individually in two ways: 1) we test how well 

each feature correlates with the quantitative MPRA output of each dataset using seven 

regression tests (Methods) and 2) we test how well each feature discriminates between active 

and inactive regions using two classification tests (Methods). We rank each feature for each of 

the nine tests and then take the median of these ranks to obtain a dataset-specific feature 

ranking. We then take the median across all dataset-specific ranking to obtain a global ranking 

of the features and sort them according to their global rank (Figure 1). Notably, the different 

statistical test are largely consistent with the global rank (Figure 1; Table S1), supporting its 

robustness. This global rank highlights chromatin accessibility (DNase Mean) and the number of 

TF binding sites (TFBS Mean) as the most predictive features for MPRA activity across all data 

sets. To gauge the robustness of our results, we repeated the above feature correlation 

experiments 100 times, each time sampling 80% of the loci in the data, and report the mean 

and standard deviation (STD) of the resulting accuracy (Table S1).  

 

To further explore cell-type specificity in the context of TF binding, we stratified the TFs into 

three groups according to their expression level in the cell type of interest (low / intermediate / 

high) and sum over the number of binding sites in each group. While these three features #tf-

high, #tf-med, #tf-low had a strong correlation (especially #tf-high) with MPRA activity (Figure 

1), they are still less predictive than TFBS Mean (the simple mean across all TFBS-related 

features). Consistently, we found several cell-type agnostic features such as GC content and 

#motifs that are predictive of MPRA activity as well (Figure 1; Figures S4-S5). 

 

Furthermore, we found that limiting the set of TFs in a manner specific to the cell-type under 

investigation (e.g. for the K562 dataset, TFBS Cell Mean only considers TF ChIP-seq experiments 

conducted in K562 cells) does not improve accuracy (Table S1), compared with taking all 

available data regardless of cell type of origin (TFBS Mean). This observation is consistent with 

previous work on enhancer annotation, showing that integration of diverse datasets from 

different cellular contexts improves developmental enhancer prediction over approaches based 
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on single context data (Erwin, et al., 2014). As additional control, we randomly subsampled N 

(the number of TFs used to calculate TFBS Cell Mean) ChIP-seq experiments that were 

conducted in a cell type different from the one used for MPRA, and computed the mean 

number of binding sites. Consistent with the results above, we found that the predictive 

capacity of this random set of TFs binding scores (considering 100 randomly selected sets for 

each of our six data sets; denoted TFBS Shuffled Mean) is not lower than that of ChIP-seq 

experiments conducted in cell type in which MPRA was conducted (empirical p-value >0.25).   

 

 

 

 

Figure 1: Individual feature 

correlation with MPRA output. 

The within-dataset ranking is 

calculated by first ranking each 

feature by each test, then taking 

the median of the regression and 

classification test rankings. The 

comprehensive ranking is the 

median across all the dataset 

rankings. The heatmaps are 

ordered according to the 

comprehensive ranking and 

colored according to 1) the 

within-dataset rank 2) the 

Spearman correlation coefficient 

for regression task 3) the AUROC 

value for classification task. 
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Predictive models of MPRA activity are similar across datasets  

We next turned to the construction of supervised models that are trained to predict the MPRA 

output either as a quantitative measure of enhancer activity (i.e. regression task) or as a binary 

label that distinguishes between active and inactive enhancers (i.e. classification task). To this 

end, we considered a collection of regression models (Elastic Net  (Hui Zou, 2005), Random 

Forest (Breiman, 2001), Extra Trees (Geurts, et al., 2006), Gradient Boosting (Zhu, et al., 2009), 

and ensemble)  and classification models (Random Forest (Breiman, 2001), Extra Trees (Geurts, 

et al., 2006), ensemble), which we applied separately for each data set. We trained these 

models using a set of features that extends the one investigated in Figure 1, with the following 

categories: (1) Experimentally measured epigenetic properties – 1095 binary features based on 

ENCODE data (Consortium, 2012). These features indicate whether the genomic region overlaps 

with experimentally measured tracks of: TFBS from ChIP-seq experiments, histone 

modifications, and DNase-hypersensitivity sites across different cell types (Table S1). (2) 

Predicted epigenetic properties. This set consists of three sources:  (i) DeepBind – 515 features, 

each indicating a binding score of a certain TF, predicted by a sequence- based neural network 

model trained on protein-binding microarrays (Alipanahi, et al., 2015). (ii) DeepSea – 919 binary 

features, indicating predictions of various events related to chromatin structure, namely TF 

binding, DNA accessibility, and histone modifications. These events were predicted by a 

sequence- based neural network model trained on ENCODE data (Zhou and Troyanskaya, 2015). 

(iii) Motifs – 2065 binary features indicating motif hits (Consortium, 2012; Kheradpour and 

Kellis, 2014) (Grant, et al., 2011). (3) DNA k-mer frequencies – 1024 binary features, indicating 

the presence or absence of all possible nucleotide 5-mers. (4) Additional locus specific features 

as in Figure 1 (Table S1). 

We evaluate the accuracy of prediction in each combination of data set x prediction method x 

feature category using 10- fold cross validation. We report the mean and standard deviation 

(STD) of the resulting scores (Figure 2). Importantly, we do not use our evaluation of individual 

features in Figure 1 during model training (e.g., for feature selection), thus avoiding circularity.  

Reassuringly, the accuracies of our top model for predicting MPRA activity on the LCL-eQTL 

dataset (regression and classification: 0.4 Spearman correlation and 0.79 AUROC respectively) 

matched that of the top ranking group in the CAGI4 challenge (0.34 Spearman correlation and 

0.8 AUROC) (Zeng, et al., 2017). Consistent with our results for single features, we observe an 

overall agreement in our results across datasets, both in terms of the relative performance of 

each algorithm, and in terms of the importance of each feature category. Specifically, we 

observe that non-linear methods perform better (e.g., compare elastic net to random forest) 

and that an ensemble approach (aggregating over all classifiers or regression methods) tends to 
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have the highest performance (Figure 2; Table S2). Among the feature categories, the predicted 

TF binding properties according to DeepBind are top performers, and the union of all feature 

categories generally yields the best performance, indicating that even with a large feature set 

the various models still do not over-fit. To further test this, we trained our models on shuffled 

labels (Methods), and observed that the performance significantly decreases in all cases, 

including the more complex ensemble model that uses the complete feature set. 

 

Another result consistent with the ones observed with single features regards the importance 

of cell type specificity, where we again noticed that limiting the epigenetic features to be cell 

type specific does not increase accuracy (Figure S6; Table S3). Finally, it is interesting to note 

that the accuracy achieved with a chromosomal MPRA library in HepG2 cells (HepG2-chr) tends 

to be slightly higher than the one obtained with an episomal library (HepG2-epi) (regression: 

0.59 vs. 0.45 Spearman correlation and 0.41 vs. 0.31 Kendal correlation; Figure 2). These results 

are consistent with a recent comparison between these two experimental approaches (Inoue, 

et al., 2017) that found chromosomal MPRA to be more reproducible, have higher correlation 

with epigenetic marks and work in variety of cell-types that are harder to transfect (e.g. hESCs); 

however, more datasets are required to substantiate this finding. 

 

Figure 2: Performance of (A) regression models and (B) classification models with different feature 

combinations. The within-dataset ranking is calculated for each cell by taking the median of the rankings 

for all the (A) regression or (B) classification tests within a dataset. Each heatmap is colored according to 

the within-dataset rankings. The statistics are mean ± std for (A) Spearman and Kendall tests or (B) 

AUROC and AUPRC tests. 
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Transferring knowledge between cell types 

 

Using existing MPRA data to build models that can be applied across different cellular 

backgrounds and for genome-wide predictions of regulatory elements can be useful for 

prioritizing functional regulatory regions, which can guide the design of new MPRA panels and 

used for analysis purposes. To evaluate how well our models generalize to a new cellular 

context where MPRA data is not available, we tested the extent to which models trained in 

each dataset can be used to predict the outcome in the remaining datasets. Based on the 

results in Figure 2, we take the Full set of features (i.e., all feature categories) and use the 

ensemble model for both the regression and classification tasks. We avoid training on any 

genomic region from one dataset (e.g. LCL-eQTL) that is already in the test set from another 

dataset (e.g. HepG2-eQTL).  

We observe that the accuracy of prediction is reduced in this cross- dataset  setting, compared 

with the cross validation setting (e.g. cross validation for K562: 0.58 Spearman; Figure 2; 

comparing to cross- dataset learning: 0.23, 0.21, 0.44, 0.3, 0.33 Spearman for LCL-eQTL, HepG2-

eQTL, HepG2-chr, HepG2-epi, hESC respectively; Figure 3; Table S4). However, the performance 

is generally robust for determining if a region is active (e.g. cross validation for K562: 0.85 

AUROC; Figure 2; comparing to cross- dataset learning: 0.7, 0.67, 0.75, 0.74, 0.68 AUROC for 

LCL-eQTL, HepG2-eQTL, HepG2-chr, HepG2-epi, hESC respectively; Figure 3; Table S4). These 

results suggest that MPRA data in one cellular context can be leveraged to distinguish between 

regions of regulatory importance in another.  

 

 

Figure 3: Performance of cross- 

dataset learning for (A) 

regression task and (B) 

classification task between cell 

types. All cross- dataset learning 

models are ensemble models 

with full features. Each cell is 

colored according to the median 

over the ranks of all (A) 

regression tests or (B) 

classification tests. The statistics 

are mean ± std of (A) Spearman 

and Kendall tests or (B) AUROC 

and AUPRC tests. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/202002doi: bioRxiv preprint 

https://doi.org/10.1101/202002
http://creativecommons.org/licenses/by-nc-nd/4.0/


We hypothesized that genomic regions that are uniquely active in a certain cell type would be 

harder to predict in a cross data set setting. To explore this, we took advantage of the LCL-eQTL 

and HepG2-eQTL datasets, which include the same set of genomic regions. We first examined 

the distribution of three region categories in these two datasets (Figure 4A): common regions 

(i.e. active regions in both datasets), cell type specific regions (i.e. regions active in one of the 

datasets), and inactive regions (i.e. regions not active in both datasets). We then examined 

prediction performance for each of the region categories (Figure 4B) in cross-data set analysis 

where we apply the classifier built on one dataset to annotate regions in the other dataset as 

active or not. To assess this, we defined the “hardness” of the region based on the difference 

between the predicted score (in range [0, 1]) and the class label (1 for active and 0 for not-

active region). Reassuringly, we observe that cell type specific regions are harder to predict in 

cross- dataset learning (Figure 4B). These results suggest that while the MPRA signal can be 

predicted to some extent using cell type agnostic components, it also depends on cell type 

specific ones. Interestingly, and consistent with our cross validation (i.e., per- dataset) analysis, 

we observe that the cross-dataset accuracy achieved with models trained on chromosomal 

MPRA library (HepG2-chr) is higher (0.33, 0.28, 0.3, 0.31 Spearman and 0.53, 0.6, 0.63, 0.63 

AUC for K562, LCL-eQTL, HepG2-eQTL, hESC respectively) than the one obtained with an 

episomal library (HepG2-epi) (0.4, 0.32, 0.35, 0.37 Spearman and 0.61, 0.66, 0.72, 0.7 AUC for 

K562, LCL-eQTL, HepG2-eQTL, hESC respectively). (Methods; Figure 3; Table S4).  

 

 

 

Figure 4: (A) LCL-eQTL vs. HepG2-eQTL 

MPRA activity by log2 alpha values. 

The points are colored according to 

activity in each of the datasets 

(active/inactive is defined as 

above/below 1.5 cutoff respectively). 

(B) We define hardness as the rank-

normalized absolute difference 

between the ground truth binary 

activity label (0 or 1) and predicted 

probability. The cumulative 

distribution function of the hardness 

for each of the four activity groups 

when training the ensemble, full 

feature cross- dataset model on 

HepG2-eQTL (Left subfigure) and LCL-

eQTL (Right subfigure), and testing on 

LCL-eQTL and HepG2-eQTL, 

respectively. 
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Contributions of individual TFs to the accuracy of predicting MPRA outcome 

 

We wanted to explore which factors in different cells drive the activity of regulatory regions, 

and hypothesized that the protein milieu in the cell might act as one. To this end, we examined 

the contribution of individual TFs to MPRA activity. We recorded the correlation between each 

TF binding signal (DeepBind prediction) and the activity of each MPRA region (Alipanahi, et al., 

2015). Similarly to our analysis in Figure 1, we then ranked the TFs based on their predictive 

ability across datasets, thus revealing several TFs whose binding is generally informative of 

regulatory activity of MPRA constructs in all cellular contexts in this study (Figure 5; Figure S7-8; 

Table S5). For instance, two TF families with a dataset-wide high predictive capacity, that is also 

supported by experimentally-evaluated binding from ChIP-seq (Figure S8; Table S5) sites are 

JUN and FOS. Proteins of the FOS family dimerize with proteins of the JUN family, thereby 

forming the transcription factor complex AP-1, which has been implicated in a wide range of 

cellular processes, including cell growth, differentiation, and apoptosis across different cell 

types (Ameyar, et al., 2003). More generally, we find that TFs whose binding is commonly 

predictive of MPRA activity across data sets are also highly expressed across all the three cell 

types, as indicated by RNA-seq data (Figure 5). Indeed, the gene expression of TFs is overall 

consistent with their predictive capacity, whereby more predictive factors have overall higher 

expression as measured by RNA-seq (Consortium, 2012) (Figure 5 – right four columns) across 

all cell types (Wilcoxon rank sum test of top vs. bottom 50 factors: p-value of 3.9e-6, 1.36e-5, 

8.7e-4, and 8.0e-4 for K562, LCL, HepG2, and H1hESC respectively).  

 

Figure 5: Contribution of individual DeepBind TF 

binding for predicting regulatory activity of MPRA 

constructs. The within-dataset ranking is 

calculated by taking the per feature median rank 

across all classification and regression tests. The 

comprehensive ranking is the per feature median 

overall within-dataset rankings. TFs are sorted 

from best (smallest) to worst comprehensive rank. 

(Left) Heatmap of the within-dataset rankings. 

(Right) The per TF ranking of its mRNA levels 

measured by RNA-seq in each of the four cell lines. 

Names of the common top/bottom 10 factors are 

indicated on the left.  
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Exploring common and distinct TF binding between datasets 

We next proceeded to explore TFs whose binding is predictive of MPRA activity only in specific 

cell types. To this end, we defined, for each dataset, a set of predictive TFs, as the set of bound 

TFs (predicted by DeepBind) that is significantly correlated with MPRA output (Spearman FDR 

corrected p-value < 0.05).  We then compare across pairs of datasets to determine if there is 

significant overlap in predictive TFs. To this end, for each pair of datasets, we calculated the fold 

enrichment of the overlap between the predictive TF set, and evaluated the significance of this 

overlap using a hypergeometric p- value (Figure 6A). Overall, we see that there is significant 

overlap across every pair of datasets. Interestingly, the similarity between datasets seem to be 

dominated by the similarity between the MPRA sequences and less so by the similarity in 

cellular context. Specifically, the HepG2-chr and HepG2-epi pair and LCL-eQTL and HepG2-eQTL 

pair had the strongest overlap, suggesting that the same genomic regions tested in different 

conditions have correlated signals in MPRA. However, this result may depend on the specific 

sequences studied, and further data needs to be collected to substantiate it. 

 

We further examine the predictive TFs that differ between pairs of datasets (Figure 6B; Table 

S6), and provide a list of top predictive TFs in at least one dataset. In some cases, we find 

proteins whose function is related to the cell type under investigation. For instance, when 

comparing the two datasets with the lowest similarity score for predictive TFs, K562 to HepG2-

eQTL, we find that RARG (a retinoic acid receptor which belongs to the nuclear hormone 

receptor family and is associated with liver risk phenotype (Roberts, et al., 2010)) is predictive 

in HepG2-eQTL but not K562. When comparing K562 to LCL-eQTL, we observed that the genes 

in the ETS family (ELF1, ELF5, ELF3, ETV6, ELK3) are predictive only in K562. These genes are 

known to be expressed in hematopoietic tissues and cell lines, and play a role in hematopoietic 

cell development (Clausen, et al., 1997). When comparing hESC to the other datasets, we 

observe a known pluripotent factor- POU5F1 (Boyer, et al., 2005) to be predictive only in hESC 

for most of the comparisons (Table S6). 

Overall, these results support the notion that both sequence-intrinsic and cell-type specific 

properties are determining MPRA activity. We also find that the cell-type specific component 

may be captured by the activity of TFs whose function is associated with the cell-type under 

investigation.  
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Figure 6: Similarities and differences in TFs whose binding is predictive of MPRA activity between 

datasets. For each dataset, we define a set of predictive TFs, as the set of bound TFs (predicted by 

DeepBind) that is significantly correlated with MPRA output (Spearman q-value< 0.05). (A) Similarity of 

predictive TFs between datasets. For each pair of datasets, a hypergeometric test is performed on the 

sets of predictive TFs of both datasets, resulting in a q-value indicating the likelihood of the overlap 

occurring by chance (color scale). We also calculate the enrichment ratios of predictive TFs for each pair 

of datasets (cell text). (B) Differences in predictive TFs between datasets. For each dataset, we only plot 

high confidence predictive TFs (i.e. significant TFs) that have Spearman q-values of less than 0.01, and 

non-predictive TFs (i.e. non-significant TFs) have q-values of greater than 0.1.   

 

Studying the effects of small genetic variants on MPRA output with application to CAGI 

challenges 

 

MPRA can be used to study the transcriptional effects of small variants that commonly occur in 

regulatory regions, namely SNPs and small indels (Tewhey, et al., 2016).  We wanted to 

examine if we can predict these effects in the synthetic setting of MPRA. An important feature 

of the LCL-eQTL and HepG2-eQTL datasets (Tewhey, et al., 2016) is that each of the sequences 

(which come from the reference human genome) is matched with an alternative allele (single 

nucleotide variants (SNVs) or short indels) (Lappalainen, et al., 2013) that was tested by MPRA 

as well. Here, we test the ability of our models to determine the amount of shift in MPRA 
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transcriptional activity, comparing each reference allele to its alternative. We focus on the LCL-

eQTL dataset, which was featured in the CAGI4 challenge, and for which the results of 

competing methods are available (Kreimer, et al., 2017).  To this end, we first applied the 

ensemble regression model above to predict transcriptional activity of the reference and 

alternative alleles, separately. Next, we trained a logistic regression using the absolute 

difference between those predicted expression values as a feature to predict whether there is a 

significant allelic variation. This strategy leads to favorable results (0.67 AUROC, 0.45 AUPRC in 

5-fold cross validation), compared to other participants in the CAGI4 challenge (best result: 0.65 

AUROC, 0.45 AUPRC). Unsurprisingly, however, the absolute performance is substantially lower 

than that achieved in the task of predicting the transcription of individual sequences, which can 

be expected as this task relates to a much more nuanced signal.  

 

Importantly, our approach is also one of the top performing methods in the CAGI5 Regulation 

Saturation Challenge, also titled “Predicting individual non-coding variant effects in disease 

associated promoter and enhancer elements.” This challenge experimentally assessed the 

effects of 17,500 SNVs in 5 enhancers (IRF4, IRF6, MYC, SORT1, ZFAND3) and 9 promoters (F9, 

GP1BB, HBB, HBG, HNF4A, LDLR, MSMB, PKLR, TERT) of lengths 187 to 600 bps with saturation 

mutagenesis MPRA. Participants were asked to predict the directional effect (negative, zero, 

positive) of a SNV on the MPRA signal (in this case - log ratio of RNA counts to DNA counts).  

We featurized each variant and wildtype sequence with the subset of Full features that differ 

between variant and wildtype. We adjusted our ensemble approach to concatenate the sets of 

features from the variant and wild-type sequences to predict the directional effect via 

multiclass classification (Methods). For the “direction” prediction, our method yielded the best 

correlations (0.318 Pearson and 0.249 Spearman), as well as competitive AUROCs (0.762 for 

positive vs negative, 0.706 for positive vs. rest, 0.776 for negative vs rest) (Table S7). 

 

DISCUSSION 

 

MPRA holds a great promise to be a key functional tool that will increase our understanding of 

gene regulatory elements and the consequences of nucleotide changes on their activity. While 

previous studies already used MPRA to construct predictive models of transcriptional 

regulation, its generalizability across cellular contexts and its applicability for studying the 

endogenous genome have not yet been systematically evaluated. Here, we study MPRA data 

from a number of cellular systems to determine which features are reflective of the cellular 

context (e.g., protein milieu in the cell), and which are intrinsic to DNA sequence. We aimed to 

incorporate the most recently produced MPRA datasets of endogenous sequences in this work, 

but had to exclude several datasets after quality control analysis (e.g. The data in (Maricque, et 
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al., 2017) consisted of few barcodes per candidate enhancer and had significant inconsistency 

across replicates. The experimental design in (Ulirsch, et al., 2016) included three genomic 

regions per enhancer, in overlapping windows. Activity measurements were highly variable 

between windows of the same enhancer, while many of the features we use were shared 

among the overlapping windows). We explore the extent by which knowledge on regulatory 

activity in one cellular context can be used to make predictions in a held out cellular context. 

Finally, we examine the ability of our framework to detect the effects of small variants on 

MPRA activity. Our results represent, to the best of our knowledge, the first such 

comprehensive analysis. 

  

Our work highlights genome accessibility and TF binding as the strongest predictors of 

regulatory activity, with no observed advantage to cell type specific features. When applying 

prediction models, we observe that performance is improved when using an ensemble of all 

features, with no significant prediction improvement when using cell type specific features. 

These results imply that part of the signal observed in MPRA studies is not cell type specific. 

Interestingly, models trained with chromosomal MPRA data yield better predictions across 

datasets than those trained on episomal MPRA data, stressing the importance of this 

experimental approach that conveys a more reliable representation of the endogenous 

settings.  

 

When training on one cell type and predicting on another cell type, we observe overall lower 

but robust results, with regions enriched in cell type specific signal being harder to predict. 

Notably, we detect a communal component across datasets with a group of TFs being top 

predictors, as well as some cell-specific factors that seem to be involved in phenotypes 

associated with the corresponding cell type. In the MPRA setting the cis environment (e.g. 

chromatin) is altered, thus generally not cell-type specific, and the trans environment (e.g. TF 

binding) remains similar, hence we can still observe predictive factors that are cell type specific. 

 

As seen through its performance in the CAGI5 Regulation Saturation challenge, our approach is 

competitive in the high resolution task of predicting the functional effects of SNVs in a 

supervised setting. 

 

Our work provides a comprehensive resource of annotation for thousands of endogenous 

sequences across the genome. Furthermore, we demonstrate the performance of different 

machine learning models for MPRA activity prediction (Tables S2-3) by using publicly available 

tools. Our approach can highlight functionally important regulatory regions across the genome 

in a cell-type agnostic fashion and can be leveraged for an efficient design of future MPRA 

experiments by prioritizing regions of interest.  
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METHODS 

MPRA datasets 

We used five publicly available MPRA datasets and one unpublished dataset. (1) K562 – 

putative regulatory regions (Kwasnieski, et al., 2014) selected from ENCODE-based annotated 

regions in K562 cells (Consortium, 2012; Ernst and Kellis, 2010; Hoffman, et al., 2013). This set 

includes 600 regions annotated as enhancers, 600 as weak enhancers, 300 as repressed in K562 

cell line, 600 enhancer predictions from the H1hESC cell line that are not annotated as weak 

enhancers or enhancers in K562 cells, and 1,136 negative controls – random sequences from 

each class above were chosen and scrambled while maintaining dinucleotide content. The 

regions range from 121 to 130 base pairs and were tested in episomal context in K562 cells. 

Data from all sequences were used to fit MPRAnalyze, although only the 1,500 regions 

annotated with the K562 cell-line were used in the remaining analyses. (2) LCL-eQTL – 78,738 

regions (Tewhey, et al., 2016) that contain an eQTL in Lymphoblastoid Cell Lines (LCLs), 150 

base pairs, tested in episomal context in LCL. (3) HepG2-eQTL – the same set of elements 

(Tewhey, et al., 2016) as above, tested in episomal context in HepG2 cell line instead of LCL. For 

both datasets 2 and 3, all of the 78,738 regions were used to fit MPRAnalyze, while 3,044 

regions corresponding to the first test group in the CAGI4 challenge (Kreimer, et al., 2017) were 

used for the remaining analyses. (4) HepG2-chr – 2,236 candidate liver enhancers (Inoue, et al., 

2017) and 102 positive and 102 negative control sequences. Each sequence is 171 base pairs 

and tested in chromosomal context. (5) HepG2-epi – the same set of elements (Inoue, et al., 

2017) as above, tested in episomal context. For both datasets 4 and 5, all regions were used to 

fit MPRAnalyze and the 2,236 candidate enhancer regions were used for the remaining 

analyses. (6) hESC – 2,464 putative enhancer regions (F., et al., 2018) and 200 negative controls. 

Each region is 171 base pairs and tested in chromosomal context in hESC cell line. All regions 

were used to fit MPRAnalyze, while only the 2,268 candidate enhancer regions were used for 

the remaining analyses. 

 

Quantifying activity of regions using MPRAnalyze 
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For each dataset, we obtain the RNA and DNA raw counts for each barcode. We obtain a 

quantitative measure of enhancer-induced transcription using MPRAnalyze ((Ashuach, et al.); 

Note S1). MPRAnalyze assumes a linear relationship between the RNA and DNA counts, with 

the scaling parameter, denoted alpha, as the transcription rate. The method uses a parametric 

graphical model to incorporate external covariates and dispersion estimates into quantifying 

alpha.  

The MPRAnalyze model assumes the DNA counts are Gamma-distributed and that given the 

latent plasmid count, the RNA counts are Poisson-distributed centered around the product of 

the plasmid count and alpha. This results in a closed-form negative-binomial likelihood function 

for the RNA counts. External covariates such as barcode effect, batch effects and conditions of 

interest are then incorporated into the model by constructing a pair of nested generalized 

linear models: one using the DNA counts to estimate the latent plasmid counts, and the other 

using these latent plasmid counts along with the RNA raw counts to estimate alpha. 

Classification of active / inactive enhancers is done by using the fitted alpha values. If a dataset 

has control regions (K562 and hESC), we first calculate a robust version of the standard score 

from the alpha values by subtracting the median over the control regions and dividing by the 

median absolute deviation (MAD) of the control regions. If no control region exists for the 

dataset, we perform the previous step with the median and MAD over all regions instead of just 

the control regions. We then compute the survival function for each standard score and apply 

the Benjamini-Hochberg (BH) correction. The active regions are then defined as regions with a 

false discovery rate (FDR) of less than 0.05. 

 

Features 

We assessed the correlation of 56 single features (Table S1) with MPRA activity. 

(a) #GC; #polyA, #polyT – number of G/C in the sequence; length of longest polyA/T 

subsequence. (b) #5-mers – number of distinct 5-mers in the sequence. (c) MGW, Roll, ProT, 

HelT – DNA shape features (Zhou, et al., 2013) quantifying minor groove width, roll, propeller 

twist, and helix twist. (d) Conservation – evolutionary conservation score of region as predicted 

by phastCons (Siepel, et al., 2005). (e) Closest Gene Expression – expression (TPM) of the 

closest gene from RNA-seq data in the corresponding cell type. (f) Promoter, Exon, Intron, 

Distal – binary features indicating whether the element intersects a promoter, exon, and 

intron. Distal is defined to be 1 if the element does not intersect with either promoter, exon or 

intron annotations. (g) #motifs, Motif Density – number of significant DNA-binding ENCODE 

motifs (Consortium, 2012) from simple DNA-binding motif scoring (Grant, et al., 2011), 

maximum number of motifs within a 20 bp window in the sequence. (h) #deepsea-top, 
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#deepbind-top – number of TFs quantifications above 90th percentile across all the regions 

predicted by DeepSea / DeepBind. (i) #tf-high, #tf-med, #tf-low – number of TFs that are bound 

above 90th percentile by DeepBind and rank in the top, middle, or bottom 100 (out of 515) for 

RNA-seq TPM in the relevant cell type. (j) <factor> [Cell] Mean, TFBS Shuffled Mean – mean 

across subsets of Experimental features. <factor> can be TFBS, DNase, Ctcf, Ezh2, H2az, 

H3k4me1, H3k4me2, H3k4me3, H3k9ac, H3k9me1, H3k9me3, H3k27ac3, H3k27me3, 

H3k36me3, H3k79me2, H4k20me1, P300. For these factors we take the mean of the binary 

overlaps over all corresponding [, cell-type specific to the dataset’s cell-type,] Experimental 

features. TFBS Shuffled Mean is the mean across n non cell-type specific, randomly chosen TFBS 

features, where n is the number of features in TFBS Cell Mean.  

 

Statistical tests 

We examine the predictivity of features and accuracy of prediction models using several 

statistical tests. For regression task – e.g. predicting quantitative activity – we applied several 

correlation measures (Pearson, Spearman, Kendall) considering either the entire test data or 

regions at the top 25% of quantitative activity; we also applied another Spearman correlation 

test after first binning quantitative activity by quintiles. We refer to these seven tests as the 

regression tests. For classification task – e.g. predicting active or not active – we record the 

AUROC (area under receiver operating characteristic curve) and AUPRC (area under precision 

recall curve); we refer to these two tests as the classification tests. The significance of each 

regression task was evaluated by the respective statistical test q-values, which are obtained 

from p-values via the Benjamini–Hochberg correction. The significance of classification was 

evaluated by the q-values of the Kolmogorov-Smirnov test on the predictions with positive 

ground truth labels. 

 

Training and testing  

We deterministically divide each dataset into 10 sections; datasets with the same regions (LCL-

eQTL and HepG2-eQTL, and HepG2-chr and HepG2-epi) are divided consistently. For the 

supervised case, we perform 10-fold cross-validation where each fold trains the model on 9 

training sections then evaluating on the remaining section. For the cross- dataset case, we 

perform 10-fold cross-validation where each fold trains the model on 9 sections from the 

training dataset, then evaluating on the corresponding remaining section in the last dataset. 

We use the statistics from each fold to calculate the overall mean and standard deviation 

statistics. 

When comparing cross- dataset learning performance between training on chromosomal MPRA 
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data (HepG2-chr) vs. training on episomal MPRA data (HepG2-epi), we observe that training on 

HepG2-chr showed better results than HepG2-epi 37 out of 40 times (comparing results across 

different statistical tests) (Figure 3; Table S4).  Same regions were used for training and testing 

was done on the other four datasets.  

 

Prediction models description 

We predict the quantitative activity from element features with four regression models and 

their ensemble. The four models are a linear regressor with ElasticNet regularization (Hui Zou, 

2005) with 0.5 as the L1 and L2 regularization coefficients and a RandomForest regressor 

(Breiman, 2001), an ExtraTrees regressor (Geurts, et al., 2006), and a GradientBoosting 

regressor (Zhu, et al., 2009), each with 1000 estimators. The ensemble method is implemented 

by taking the average prediction of all four regression models. 

For the classification task, we use a RandomForest classifier (Breiman, 2001) and an ExtraTrees 

classifier (Geurts, et al., 2006), each with 1000 estimators, as well as their ensemble. The 

ensemble method averages the predicted probability from each classifier. 

For both regression and classification, we define a shuffle model with the same composition as 

an ensemble model but shuffles the labels of the training set before training. This allows us to 

quantify the probability of producing our ensemble results by chance. 

 

CAGI5 model description 

We predicted the directional effects (positive, zero, negative) of 13,186 SNVs from 5 enhancers 

and 9 promoters after training on 4,650 different SNVs from the same enhancers and 

promoters. For each SNV, we obtain the variant and wildtype sequence, each of length 187 to 

600, then featurize both variant and wildtype with the 4,535 features that differ between 

variant and wildtype: Predicted epigenetic properties, DNA k-mer frequencies, #GC, #polyA/T, 

DNA shape features, and conservation. We concatenate the features from variant and wildtype 

into a feature vector of size 9,070. 

We split the set of SNVs into two sets: one containing all enhancer SNVs and one containing all 

promoter SNVs. We train a separate ensemble of 5 RandomForest classifiers and 5 ExtraTrees 

classifiers for each set to predict the direction class (positive, zero, negative). Each classifier 

consists of 1000 estimators, and each estimator considers the square root of the total number 

of features when looking for the best split. 
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