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Abstract14

Electrophysiological recording in the primary visual cortex (V1) of mammals have15

revealed a number of complex interactions between the center and surround. Under-16

standing the underlying circuit mechanisms is crucial to understanding fundamental17
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brain computations. In this paper we address the following phenomena that have been18

observed in V1 of animals with orientation maps: 1) surround suppression that is ac-19

companied by a decrease in the excitatory and inhibitory currents that the cell receives20

as the stimulus size increases beyond the cell’s summation field; 2) surround tuning21

to the center orientation, in which the strongest suppression arises when the surround22

orientation matches that of the center stimulus; and 3) feature-specific suppression, in23

which a surround stimulus of a given orientation specifically suppresses that orienta-24

tion’s component of the response to a center plaid stimulus. We show that a stabilized25

supralinear network that has biologically plausible connectivity and synaptic efficacies26

that depend on cortical distance and orientation difference between neurons can con-27

sistently reproduce all the above phenomena. We explain the mechanism behind each28

result, and argue that feature-specific suppression and surround tuning to the center29

orientation are independent phenomena. Specifically, if we remove some aspects of30

the connectivity from the model it will still produce feature-specific suppression but31

not surround tuning to the center orientation. We also show that in the model the32

activity decay time constant is similar to the cortical activity decay time constant re-33

ported in mouse V1. Our model indicates that if the surround activates neurons that34

fall within the reach of the horizontal projections in V1, the above mentioned phe-35

nomena can be generated by V1 alone without the need of cortico-cortical feedback.36

Finally, we show that these results hold both in networks with rate-based units and37

with conductance-based spiking units. This demonstrates that the stabilized supra-38

linear network mechanism can be achieved in the more biological context of spiking39

networks.40

Introduction41

Electrophysiological recording from cells in the primary visual cortex (V1) reveal that visual42

stimuli presented outside the classical receptive field (CRF) of a neuron (the surround) can43

modulate the neuron’s response to a stimulus present in its CRF (the center) in complex44
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ways. The degree and direction of modulation depends on the distance between the center45

and surround, the contrasts of the stimuli, their relative orientations, etc. (Akasaki et al.,46

2002; Bair et al., 2003; Cavanaugh et al., 2002; Sceniak et al., 1999; Shen et al., 2007; Sillito47

et al., 1995; Wang et al., 2009). Which of these modulations are carried by V1 lateral48

connections, and which require top-down signals from higher visual areas is still largely49

unknown. Understanding the underlying circuit mechanisms is crucial to understanding50

fundamental brain computations.51

To address these mechanisms, we build a spatially-extended, biologically-constrained52

model of layer 2/3 of V1 of animals with orientation maps. We investigate whether a set53

of key phenomena that have been reported in V1 can be consistently generated by lat-54

eral connections alone, without the need of cortico-cortical feedback. We find that lateral55

connections are sufficient provided that specific conditions for connectivity and synaptic ef-56

ficacies are met. Therefore, our model makes testable predictions about the structure of the57

underlying circuit.58

We first address surround suppression. We show that our model can successfully repro-59

duce surround suppression in similar strength and with similar contrast dependence to that60

observed in layer 2/3 of V1 of animals with orientation maps. Furthermore, this suppression61

is accompanied by a decrease in both excitatory and inhibitory conductances that the cell62

receives, as reported in Ozeki et al. (2009). In order to achieve this, in addition to structured63

connectivity, the network must locally have strong connections. Although many studies have64

shown that surround suppression in V1 can be mediated through lateral connections (Ru-65

bin et al., 2015), this is the first demonstration of the accompanying decrease in received66

inhibition as well as excitation in a spatially extended (spatially two-dimensional) model.67

We then investigate two new phenomena: (1) The strongest suppression arises when the68

surround orientation matches that of the center stimulus, even when the center orientation69

is not optimal for the cell (Shushruth et al., 2012; Trott and Born, 2015) and (2) A surround70

with orientation matching the orientation of one component of a plaid center stimulus more71
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strongly suppresses the response of the matching component (Trott and Born, 2015). We72

show that phenomena (1) and (2) can be generated within V1 if the surround falls with the73

reach of V1 lateral connections. We find that to match (1), local connectivity, in addition to74

being strong, must be broadly tuned for orientation; however to match (2) this additional75

requirement is not needed. This leads us to conclude that effects (1) and (2) are independent.76

We further show that in the model the activity decay time constant is fast, similar to77

the cortical activity decay time constant reported by Reinhold et al. (2015). Finally, we78

show that our results hold in networks with conductance-based spiking units as well as rate79

units. This demonstrates that the Stabilized-Supralinear Network mechanism described in80

Ahmadian et al. (2013) and Rubin et al. (2015) can arise in the more biological context of a81

spiking neural network (see also Sanzeni et al. (2020a,b)).82

Model83

Model Overview84

To investigate the computational role of V1 lateral connections, we build a 2-dimensional85

spatially extended model of layer 2/3 of the primary visual cortex of animals with orientation86

maps. Retinotopic position changes smoothly across both spatial dimensions, while preferred87

orientation of neurons is determined by their position in the orientation map. The Cortical88

Magnification Factor (CMF), which expresses how many mm of cortex represents one degree89

in visual angle, constrains the size of a neuron’s receptive field (RF), as we describe below.90

The connectivity in the model is broadly constrained by biological data. Neurons in V191

layer 2/3 are found to form dense axonal projections at distances of a few hundred µm, and92

sparse long range horizontal projections that target cells of similar orientation preferences.93

These long range connections, which can reach up to 3mm in cat and 10mm in monkey, arise94

from excitatory cells, and give rise to the patchy connectivity observed in V1 (Amir et al.,95

1993; Bosking et al., 1997; Stettler et al., 2002). In comparison, inhibitory cells primarily96
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form short range connections.97

We first present results from a rate-based model. The units in the rate-based model98

are taken to have an expansive or supralinear, power-law transfer function (Albrecht and99

Hamilton, 1982; Albrecht, 1991; Carandini et al., 1997, 1999; Finn et al., 2007; Hansel100

and Van Vreeswijk, 2002; Heeger, 1992; Miller and Troyer, 2002), as expected for neurons101

whose spiking is driven by input fluctuations rather than by the mean input (Hansel and102

Van Vreeswijk, 2002; Miller and Troyer, 2002). Rubin et al. (2015) and Ahmadian et al.103

(2013) showed that when neural-like units have such a power-law transfer function, responses104

with nonlinear behaviors observed in visual cortex emerge due to network dynamics. The105

authors called this mechanism the Stabilized Supralinear Network (SSN). They showed that106

the SSN mechanism can explain normalization and surround suppression and their nonlin-107

ear dependencies on stimulus contrast, which are observed across multiple sensory cortical108

areas.109

To verify that our results are robust and independent of the neuron model, we also build110

a conductance-based spiking neural network model, and show that all our key results still111

hold. This shows as well that the SSN mechanism can be realized with spiking neurons.112

Model Details113
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Figure 1: (A) Orientation map, the color corresponds to the cells preferred orientation. (B)
Gratings with different orientations and contrasts. (C) External input as a function of the stimulus
contrast (Eq. 3).
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We use a grid of 75 x 75 grid points. We place one excitatory cell (E), and one inhibitory114

cell (I) at each location on the lattice, and thus have 5625 E cells and 5625 I cells in the115

network. Even though we use a 50/50 E/I ratio, we believe that our main results will116

not change if we take the E/I ratio to be 80/20. In unpublished work we studied SSN117

behavior in spiking networks consisting of 1152 E cells and 288 I cells (E/I ratio of 80/20),118

and found that the network behavior was consistent with SSN predictions in the parameter119

regime we studied (strongly suppressive regime , i.e. with ΩE < ΩI < 0, using parameters120

defined in Ahmadian et al. (2013) ). We take the map to represent 16x16 degrees of visual121

space, with position in visual space varying linearly across the map, and assume a Cortical122

Magnification Factor (CMF) of 0.5 mm/deg. Thus the grid represents 8.0 x 8.0 mm of123

cortex, with each grid interval representing 0.213 degrees and 107 µm of cortical distance.124

We use periodic boundary conditions; our results are independent of that condition. This is125

verified by removing periodic boundary conditions, and adjusting the weight efficacy matrix126

to compensate for the lost connections.127

We superpose on the grid an orientation map, specifying the preferred orientations of cells128

at the corresponding grid points (Fig. 1A). The orientation map is generated randomly using129

the method described in Kaschube et al. (2010) (their supplementary materials, Eq. 20). To130

summarize, we superpose n complex plane waves to form a function z(x) of two-dimensional131

spatial position x:132

z(x) =
n∑
j=1

ei(ljkjx+φj). (1)133

Here, kj = k
(

cos(jπ/n), sin(jπ/n)
)
, with signs lj ∈ {+1,−1} and phases φj ∈ [0, 2π)134

randomly chosen. Writing z(x) = r(x)eiΦ(x) for real amplitude r(x) and phase Φ(x), we take135

the preferred orientation at each grid point x to be Φ(x)/2. We use a map spatial frequency136

of k = 8 cycles
75 grid points

, i.e. a map with on average 8 full periods of the orientation map across137

the length or width of the grid, and n = 30. The orientation map is not periodic, so there is138

a discontinuity in orientation at the grid borders, although the retinotopy and intracortical139
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connections wrap around. In our results, we report on cells sampled away from the boundary140

(20 < x < 60, 20 < y < 60 , in terms of the grid coordinates that go from 1 to 75 in each141

dimension ) to avoid boundary effects.142

The excitatory cells form long range connections, while the inhibitory cells form short143

range connections. The connection strength from a unit of type Y and grid position b144

to a unit of type X at position a, X, Y ∈ {E, I}, is written W ab
XY . Let the units at a145

and b have positions xa and xb, respectively, and preferred orientations θa and θb. The146

connection strength is given by W ab
XY = JXY pXY (|xa − xb|) qXY (d(θa, θb)), where d(θa, θb) is147

the shortest angular distance around a 180◦ circle between the two orientations. Here, pXY (x)148

describes the dependence of strength on the spatial distance between the units (measured149

as the shortest distance across the grid with periodic boundary conditions), while qXY (θ)150

describes the dependence on the difference between their preferred orientations measured151

as shortest distance around the circle of orientations . The function pXY (x) is specified152

as follows: for projections of excitatory cells, pXE(x) is 1 for distances x ≤ Lo, and then153

decays as a Gaussian with standard deviation σXE. Lo = 324µm, σEE = 324µm and154

σIE = 642µm. For projections of inhibitory cells, pXI(x) is Gaussian with standard deviation155

σEI = σII = 216µm. For all cells regardless of pre- or postsynaptic type, the function156

qXY (θ) has the form of a Gaussian with a non-zero baseline: qXY (θ) = AXY +BXY e
−θ2

2∗(σori
XY

)2 .157

For projections of I cells and of E cells at distances less than Lo, AXI = AXE = 0.2,158

BXI = BXE = 0.8 and σoriXI = σoriXE = 55◦. For projections of excitatory cells at distances159

greater than Lo, AXE = 0.14, BXE = 0.86 and σoriXE = 25◦. The constants JXY are, for I160

projections, JEI = 0.0528 and JII = 0.0288; for E projections, at distances less than Lo,161

JEE = 0.072 and JIE = 0.06, while at distances greater than Lo, JEE = JIE = 0.036. We162

point out that the heterogeneity in the network comes from the underlying orientation map.163

We choose the connectivity parameters so that the connectivity profile agrees with exper-164

imental findings. We choose the JXY such that 1) the network is in a strong sublinear regime165

(see Result 1 for more details) and 2) with increasing stimulus size, the loss of excitatory166
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input to inhibitory cells from nearby surround-suppressed excitatory cells is greater than167

their gain in excitatory input from far away excitatory cells, which is necessary for the net168

inhibition received by excitatory cells to decrease with surround suppression. We constrain169

the rest of the model parameters by experimental data to make the model more biologically170

plausible.171

We ignore stimulus features like spatial frequency and phase, and consider only three172

features: contrast, orientation and size (Fig. 1B). The cells in the model behave like ideal173

complex cells, in that their response to a drifting grating is static in time. Spatially, each174

cell has a circularly symmetric Gaussian receptive field with standard deviation σrf = 0.09◦.175

The external input to a neuron located at position (xo, yo) with preferred orientation θo,176

from a stimulus of contrast C and orientation θs that is centered at (xs, ys) and is uniform177

for a diameter of ` degrees about the center (and zero contrast outside), is given by178

f(C)h`(xs − xo) g(θs − θo). (2)179

Here f(C) is a Naka-Rushton function given by180

f(C) =
fmax ∗ C3.5

C3.5
50 + C3.5

(3)181

with fmax = 50 and C50 = 11 (Fig. 1C). h`(x) is the integral of the product of the Gaussian182

classical receptive field with a sharp edge stimulus. It is given by:183

h`(xs − xo) =
1

4

(
erf

(
`/2 + (xs − xo)

σrf
√

2

)
+ erf

(
`/2− (xs − xo)

σrf
√

2

))

∗

(
erf

(
`/2 + (ys − yo)

σrf
√

2

)
+ erf

(
`/2− (ys − yo)

σrf
√

2

)) (4)184

where erf(x) is the error function defined as erf(x) = 1√
π

∫ x
−x e

−t2dt. The function g is defined185

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 2, 2021. ; https://doi.org/10.1101/2020.12.30.424892doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424892


by186

g(θs − θo) = e
−d(θs,θo)2

2∗σ2
fori (5)187

with σfori = 20◦. To define the equations for the rate model, we let raE be the rate of the188

excitatory neuron at position a, and raI similarly. Both receive the same external input IaExt.189

The rate equations are:190

τE
draE
dt

= −raE +K[IaExt +
∑
b

W ab
EEr

b
E −

∑
b

W ab
EIr

b
I ]
nE
+

τI
draI
dt

= −raI +K[IaExt +
∑
b

W ab
IEr

b
E −

∑
b

W ab
II r

b
I ]
nI
+

(6)191

where [x]+ = max(0, x). The excitatory cells’ time constant τE = 10ms, and the inhibitory192

cells’ time constant τI = 6.67ms. We use, K = 0.01, nE = nI = 2.2.
∑

bW
ab
XEr

b
E is the193

recurrent excitatory input to neuron Xa where X = {E, I}. Similarly,
∑

bW
ab
XIr

b
I is the194

recurrent inhibitory input.195

For the conductance-based model, the equations of motion of the membrane potential196

and the conductances for each cell are identical for E and I cells. For a cell at a of type X,197

the equations are (we omit specifying the type X for the dynamical variables and parameters198

that don’t differ between the two types):199

τm
dV a

dt
= −(V a −RL) +

gaE
gL

(RE − V a) +
gaI
gL

(RI − V a) +
gain
gL

(RE − V a) + σV
√

2τm η
a(t)

τE
dgaE
dt

= −gaE + τE

NE∑
b=1

∑
j

gabXE δ(t− tbEj)

τI
dgaI
dt

= −gaI + τI

NI∑
b=1

∑
j

gabXI δ(t− tbIj)

τE
dgain
dt

= −gain + ḡain +
√
τE σ

a
gin
ζa(t).

(7)
200

Here V a is the membrane potential of the given cell at a. τm is the membrane potential201

time constant. gaE is the excitatory AMPA-like conductance, gaI is the inhibitory GABA-like202
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conductance and gain is the excitatory input conductance from outside the network. RE,203

RI , and RL are reversal potentials of the excitatory, inhibitory, and leak conductances. τE204

and τI are the time constants of the excitatory and inhibitory conductances. gabXE is the205

conductance of the synapse of the excitatory cell at b to the given cell at a, similarly gabXI206

is the conductance from the inhibitory cell at b, and tbXj is the time of the jth spike of the207

cell of type X at b. δ(x) is the Dirac delta function. Each cell in the network receives input208

from Ninput external spiking cells, where Ninput is a large number. We assume the spike209

trains are Poisson and invoke the Central Limit Theorem to approximate the input to the210

cell τE gext
∑Ninput

i=1

∑
k δ(t − tki ) by a stochastic process with mean ḡain and variance τE σ

a2

gin
,211

where ζa is white Gaussian noise with < ζa(t)ζa(t′) >= δ(t − t′). The stochastic dynamics212

will lead gain to have a mean ḡain and a variance σa
2

gin
/2 (Tuckwell, 1988), where213

ḡain = Ninput rext τE gext

σa
2

gin
= Ninput rext τE g

2
ext

(8)214

where gext is the amplitude of the conductance evoked when a single external cell spikes,215

and rext is the firing rate of the external cells given by Eq. 2. We assume the membrane216

potential is noisy, and model the noise as white Gaussian noise. ηa(t) is a Gaussian random217

variable with mean 0 and variance 1, and σV is the standard deviation of the membrane218

potential fluctuations. In the simulations we set σV = 6.85mV to get spontaneous activity219

similar to what has been reported in (Chen et al., 2009; Gur and Snodderly, 2008; Ringach220

et al., 2002). In the model the mean spontaneous activity of the excitatory cells is about221

1.5 Hz, and of the inhibitory cells is about 3 Hz. The parameters for both E and I cells are222

as follows: τm = 15ms; τE = τI = 3ms; RL = −70mV ; RE = 0mV ; RI = −80mV ;223

gL = 10nS; Ninput = 200 and gext = 0.1nS. We take threshold voltage Vth = −50mV and224

after-spike rest voltage to be 6mV below threshold, Vr = −56mV , as in Troyer and Miller225

(1997). After the cell spikes, it goes into a refractory period with τref = 3ms.226

Similar to the rate model, the conductance values are given by gabXY = gXY pXY (|xa −227
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xb|)qXY (d(θa, θb)). The parameters gXY are: gEI = 3.3nS and gII = 2nS; at distances less228

than Lo, gEE = 1.8nS and gIE = 1.76nS; and at distances greater than Lo, gEE = 0.7nS229

and gIE = 0.65nS. Again Lo = 324µm as in the rate model.230

To measure the strength of the surround suppression in the network, we compute the231

suppression index (SI) defined as:232

SI =
rmax − rinf

rmax
(9)233

where rmax is the response to a stimulus size that elicits maximum response, and rinf is the234

response for a very large stimulus. To measure whether the presence of a surround stimulus235

facilitates or suppresses the response of a cell compared to its response to a center-only236

stimulus, we define a modified suppression index:237

SIm =
r(center−only) − r(center+surround)

r(center−only)

(10)238

SIm negative means facilitation, while SIm positive means suppression.239

In experiments on the surround tuning to the center orientation, we fix the center stimulus240

diameter, and the inner and outer annulus diameters to (1.3◦, 4.3◦, 21.6◦) and set both stimuli241

contrasts to 100. In these experiments we record the activity of a single neuron as we vary242

the stimulus orientations, and we roughly pick the largest annulus inner diameter at which243

the phenomena is still observed. This corresponds to an annulus inner radius of 2.15◦ or244

1.1mm which is roughly the span of E-to-I monosynaptic connections. In feature-specific245

suppression experiments we fix the center stimulus diameter, and the inner and outer annulus246

diameters to (1.7◦, 3.9◦, 21.6◦). In these experiments we follow the procedure in Trott and247

Born (2015) to make our results directly comparable with experimental data. Thus, we use248

a slightly bigger center stimulus to obtain a better fit of the population rates (see Result249

3 for more details). The contrast is set to 16.4 (representing 80% of the maximal input250

strength), for each component of the plaid as well as the surround in the rate model, and to251
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50 (representing 99.5% of the maximal input) in the conductance-based model.252

In all experiments, cells are sampled randomly from locations away from the boundary.253

We first randomly pick 100 locations within the region we define as away from the boundary254

(20 < x < 60, 20 < y < 60). Cells in all experiments are randomly picked from those 100255

locations.256

Results257

We first check that our network is functioning as an SSN, by checking for several salient258

SSN behaviors. The SSN shows a transition, with increasing input strength, from a weakly259

coupled, largely feedforward driven regime for weak external input, to a strongly coupled,260

recurrently-dominated regime for stronger external input (Ahmadian et al., 2013). This261

transition can account for many aspects of summation of responses to two stimuli and of262

center-surround interactions and their dependencies on stimulus contrast (Rubin et al., 2015).263

Our network shows the characteristic signs of this transition (Rubin et al., 2015): the net264

input a neuron receives grows linearly or supralinearly as a function of external input for265

weak external input, but sublinearly for stronger external input (Fig. 2A); this net input is266

dominantly external input for weak external input, but network-driven input for stronger267

external input (Fig. 2B); the network input becomes increasingly inhibitory with increasing268

external drive (Fig. 2C); and a surround stimulus of a fixed contrast can be facilitating for269

a weak center stimulus, but becomes suppressive for stronger external drive to the center270

(Fig. 2D).271

We then explore whether lateral connections in V1 are capable of generating several272

phenomena that emerge due to center-surround interaction.273
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Figure 2: Stabilized Supralinear Network (SSN) behavior of the model network (A)
Inputs to an excitatory (E) cell and its firing rate vs external input, the cell is at a randomly
selected grid location (see section Model Details). Stimulus contrast level corresponding to external
input is shown on the bottom axis. The net input is defined as (Iext + Iexc−recurrent − Iinh),
where Iext is the external input to the cell, Iexc−recurrent is the cell’s recurrent excitatory input
from the network, and Iinh its recurrent inhibitory input from the network, Iinh is defined to be
positive, see section Model Details for the expressions of Iexc−recurrent and Iinh . (B) Percentage
of external and network inputs as a function of external input for the excitatory cell in (A) and
an inhibitory cell at the same grid location (dashed line is external input, solid line is network
input). Here, the total input is defined as (Iext + Iexc−recurrent + Iinh), and the network input
is (Iexc−recurrent + Iinh). (C) Iexc−recurrent/(Iexc−recurrent + Iinh) as a function of external input
for the excitatory and inhibitory cells in (A,B). In panels (A-C) we use a stimulus of diameter
2.16◦ centered on the cell’s retinotopic position and with the cell’s preferred orientation. (D)
Surround Facilitation to Suppression transition: a near surround can be facilitating or suppressing
depending on the center stimulus contrast. SIm negative means facilitation, while SIm positive
means suppression (see section Model Details, Eq. 10 for the definition of SIm). In panel (D)
the data is from an excitatory cell at a randomly selected grid location(see section Model Details);
surround stimulus has contrast C = 12, and inner and outer diameters 0.865◦ and 4.32◦ respectively;
the center stimulus diameter is 0.65◦; both center and surround stimuli are centered on the cell’s
retinotopic position, with the cell’s preferred orientation.
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Result 1: Surround Suppression274

We first investigate surround suppression, a widely studied phenomena in V1 and other275

sensory areas in multiple species (Angelucci et al., 2017). Ozeki et al. (2009) showed in276

anesthetized cat V1 that, after presenting an optimal center-only stimulus, presentation of277

an iso-oriented surround stimulus decreased firing rates, and decreased both the inhibition278

and excitation neurons receive. Adesnik (2017) similarly showed that inhibition as well as279

excitation were decreased by surround suppression in awake mice. Ozeki et al. (2009)280

showed that suppression of inhibition as well as excitation required that the network be281

an inhibition stabilized network, or ISN, meaning that, if inhibition were frozen and could282

not respond dynamically, the excitatory subnetwork would be unstable. Rubin et al. (2015)283

demonstrated a circuit model with one spatial dimension in which surround suppression284

was accompanied by a decrease of inhibition as well as excitation, and showed contrast285

dependence like that seen in visual cortex. They also studied a model with two spatial286

dimensions that was in a different parameter regime but that showed similar behaviors.287

However, since Rubin et al. (2015) was published, we discovered that the 2-D spatial model288

of V1 studied there did not show a decrease in inhibition received with surround suppression,289

and to our knowledge no other 2-D spatial model of V1 has shown this. We investigate the290

conditions under which surround suppression can emerge in a 2-d spatially extended model291

of layer 2/3 of V1 with a decrease in inhibition received. More specifically, what structure of292

connectivity and synaptic efficacies can achieve this? Before addressing this question, we first293

show that our model replicates surround suppression behavior and its contrast dependence294

observed in Rubin et al. (2015).295

To study surround suppression, we record the firing rates of a cell in the network, as296

we vary the diameter of a high contrast stimulus centered on the cell’s retinotopic position297

and with orientation identical to the recorded cell’s preferred orientation. In the model both298

excitatory (E) and inhibitory (I) cells are surround-suppressed. However, excitatory cells299

are more strongly surround suppressed than inhibitory cells, as illustrated by an E and I300
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Figure 3: Surround suppression (A,B) The firing rates of an excitatory (E) cell (A) and an
inhibitory (I) cell at the same grid location (B) vs. stimulus size. Different colors correspond to
different stimulus contrast levels, high (C=16.4; external input 80% of maximal), medium (C=10;
external input 42% of maximal) and low (C=8; external input 25% of maximal). The cells are at
a randomly selected grid location (see section Model Details). (C) The average firing rate of 80 E
cells at randomly selected grid locations (see section Model Details), and of 80 I cells at the same
grid locations, after normalizing each cell’s rates so that its peak rate is 1.0, vs. stimulus size for
a high contrast stimulus (C=16.4). (D) The distribution of Summation Field sizes (SFS) of the E
and I cells used to produce panel (C), the mean SFS for the E cells is 1.14 deg and for the I cells
is 1.75 deg. (E) The mean suppression index of the E cells and I cells used to produce panel (C)
versus stimulus contrast, the mean Suppression Index (SI) for E and I cells changes from little or
no suppression (low SI’s) for very weak stimuli, to stronger suppression (higher SI’s) for stronger
stimuli, with E cells showing much stronger suppression than I cells. The error bars are too small
to show properly, they are of order 10−2 or smaller.
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cell at a randomly selected grid location (see section Model Details) (Fig. 3A,B) and by the301

average size tuning across 80 E and 80 I cells (Fig. 3C) for a high contrast stimulus, C=16.4.302

Accordingly, the summation field sizes – the size of a stimulus driving optimal response,303

before further increase in size causes response suppression – of E cells are smaller than those304

for I cells (Fig. 3D).305
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Figure 4: Surround suppression, summation field sizes (A) The distribution of summation
field sizes for 80 excitatory (E) cells (same E cells used to produce panel Fig. 3C), at contrast
C=16.4 (dark red color) and contrast C=10 (light red color). (B) The distribution of the ratio
of the summation field sizes in (A). The summation field size of all cells is smaller for the higher
contrast stimulus.

We repeat the above experiment with different contrast levels. The strength of surround306

suppression increases with increasing stimulus contrast (Fig. 3A,B). The mean suppression307

index (SI) increases from little or no suppression for weak contrasts to stronger suppression308

for stronger contrasts (Fig. 3E). For a relatively high contrast stimulus (C=16.4, representing309

80% of the maximal input strength), the mean suppression index (SI) is 0.79 for the E cells310

and 0.27 for the I cells (where 0 is no suppression and 1 is complete suppression). Similarly,311

the summation field size shrinks with increasing contrast, as we illustrate for E cells in312

Fig. 4A,B, as in (Sceniak et al., 1999). The summation field sizes of I cells behave similarly.313

We examine whether surround suppression in the network is accompanied by a decrease314

in excitation and inhibition, as reported by Ozeki et al. (2009), rather than simply being315

due to ramping up of inhibitory input. The size tuning of the excitatory and inhibitory316

input currents to the E cell in Fig. 3A at high contrast (C=16.4) reveals that both currents317
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indeed show surround suppression (Fig. 5A). We then look at the average size tuning of318

these currents across cells, after normalizing each cell’s curve for each current to have a peak319

of 1. Both E cells (Fig. 5B) and I cells (Fig. 5C) show surround suppression of both their320

excitatory and their inhibitory currents.321

We then wish to directly compare, across cells, the currents for a small, nearly-optimally-322

sized stimulus to those for a large, suppressive stimulus. To compare to experiments, there323

is now a problem to be solved: as modelers we know the exact stimulus size that gives peak324

response, and can compare inhibition received for that size to inhibition received for a large325

size. However experimenters do not know the optimal size, and must choose some size in that326

vicinity, which may evoke less inhibition than the peak (see Fig. 3). Thus, if we choose the327

optimal size for comparison, we may bias our results towards seeing a decrease in inhibition,328

compared to experimental procedures. To avoid this, we follow a procedure similar to that329

of Ozeki et al. (2009). We measure the excitatory and inhibitory inputs for a small stimulus330

size with diameter ds around which the cells respond close to maximally, and for a very large331

stimulus at which all cells are surround suppressed. We take ds to be equal to the median332

of all stimulus diameters for which the sampled cells respond maximally. The results are333

entirely similar if ds is taken to be the mean rather than the median.334

Using this procedure, for excitatory inputs and for inhibitory inputs to E and to I cells, we335

plot the input current at small stimulus size vs. the current at large stimulus size (Fig. 5D,E).336

In Fig. 5D we plot the excitatory inputs and inhibitory inputs respectively to 80 excitatory337

cells, at small stimulus size against those at large stimulus size. Both excitatory and in-338

hibitory inputs are smaller for the large suppressive stimulus. Fig. 5E shows the same data339

for 80 inhibitory cells. Thus, for both excitatory and inhibitory cells in the model, surround340

suppression is accompanied by a decease in excitation and inhibition that the cell receives.341

While we cannot exhaustively search all parameters, in our explorations of parameters,342

we have found the surround suppression of inhibitory as well as excitatory input to depend343

on two elements of the connectivity. First, locally, roughly over distances of about Lo (the344
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Figure 5: Surround suppression, inputs to cells (A) The excitatory (red) and inhibitory
(blue) total input to the excitatory (E) cell in Fig. 3A, shown for the high contrast stimulus (C=16.4;
external input 80% of maximal), both show surround suppression. (B,C) The size tuning of the
averaged normalized excitatory and inhibitory inputs (each normalized to have peak value 1) to
excitatory (E) cells (B) and inhibitory (I) cells (C) for contrast C=16.4 (same cells used to produce
panel Fig. 3C). Note the change in horizontal axis between panels (A) and (B,C). (D) The excitatory
and inhibitory inputs to E cells (same E cells used to produce panel Fig. 3C) for a large stimulus
(for which all the cells are surround suppressed) are shown vs. their values for a small stimulus
(with size given by the average size that yields maximal response across cells). Panel (E) is the
same as (D) but for I cells (same I cells used to produce panel Fig. 3C). Stimulus contrast C=16.4.

distance over which lateral connections are most dense, see section Model Details), the345

cells must be strongly enough connected so that, as the stimulus size increases, the local346

circuit around the recorded cell goes through the SSN transition from being mainly driven347

by the feedforward input to being dominated by recurrent currents. This occurs through348

the increase in effective synaptic weights with increased external drive to the network due349

to the expansive, supralinear neuronal input/output function, which is the fundamental350

mechanism underlying the SSN (see (Ahmadian et al., 2013; Rubin et al., 2015) for a detailed351

description of the SSN mechanism). At the transition, the growth of effective excitatory352

synaptic strengths is sufficient that the excitatory subnetwork becomes unstable by itself353
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(Ahmadian et al., 2013), but the network is stabilized by feedback inhibition. This means354

that the local circuit becomes an inhibition stabilized network (ISN), which was the condition355

for surround suppression of inhibitory input identified in (Ozeki et al., 2009), based on the356

ISN mechanism initially identified by (Tsodyks et al., 1997). We put the network into a357

particular regime of the SSN that is thought to be most strongly non-linear, though we358

don’t know if this is necessary since we did not do an exhaustive parameter search. This359

regime, using parameters defined in Ahmadian et al. (2013), is defined by ΩE < 0 (in360

particular, we use ΩE < 0 < ΩI) where, for equal inputs to the excitatory and inhibitory361

cells as we use here, ΩE = WII −WEI and ΩI = WIE −WEE, with WXY the total synaptic362

weight from units of type Y to a unit of type X. This produces a regime in which responses363

saturate with increasing external input (and ultimately would supersaturate for sufficiently364

strong external input). In particular, for our connectivity parameters, ΩE = −0.49 ± 0.01365

and ΩI = 3.59± 0.03.366

The second element we have found critical is that the ratio of projection strength of long-367

range horizontal connections to I cells vs. E cells must increase with increasing distance,368

that is, the E-to-I connections must be effectively longer range than E-to-E connections.369

Furthermore, the excitatory input received by I cells from far away E cells should not be370

large compared to the excitatory input they receive from nearby excitatory cells. Then, with371

increasing stimulus size, the loss of excitatory input to I cells from surround suppression of372

nearby E cells can exceed the gain of excitatory input from far away E cells, causing the I373

cells to be surround suppressed. Note that, in our model (as in (Rubin et al., 2015)), the374

I cells have larger summation fields than the E cells (Fig. 3C,D). This means that there is375

an intermediate range of stimulus sizes for which inhibitory firing rates continue on average376

to increase with stimulus size, while excitatory cells are surround suppressed. With further377

increase in stimulus size, both E and I cells are suppressed.378
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Result 2: Surround Tuning to the Center Orientation379

Cells in V1 are found to be suppressed maximally when the surround stimulus orientation380

matches the orientation of the center stimulus, regardless of whether that orientation matches381

the cell’s preferred orientation (Shushruth et al., 2012; Sillito et al., 1995; Trott and Born,382

2015). This might enable the cell to detect orientation discontinuities or help in foreground-383

background separation. A similar behavior has been observed for other stimulus features,384

such as spatial frequency and velocity (Shen et al., 2007).385

A previous model (Shushruth et al., 2012) showed that this behavior could arise if cells386

received strong, weakly tuned excitatory and inhibitory input from the local network, while387

the surround drove more strongly tuned inhibition of the excitatory cells and excitation388

of the inhibitory cells. Then, when the center stimulus differed from the recorded cell’s389

preferred orientation, the cell would receive a great deal of local recurrent excitation and390

inhibition from cells preferring the stimulus orientation, which would be the most strongly391

activated cells. A surround stimulus matched to the center stimulus would most strongly392

target these most activated cells. Withdrawal of input from those cells would then cause393

greater suppression of the firing of the recorded cell than would direct suppression from394

a surround stimulus at the cell’s preferred orientation. Therefore, suppression would be395

greatest when the surround stimulus orientation matched the center stimulus orientation.396

We use similar reasoning here, but now in the context of the SSN model with power-law397

rather than linear-rectified input/output functions. Our long-range projections are excitatory398

onto both E and I cells, whereas in (Shushruth et al., 2012) they were inhibitory onto E399

cells and excitatory onto I cells. In addition, the model of (Shushruth et al., 2012) was400

not recurrent, because the input from one cell to another was simply determined by the401

difference in their preferred orientations, regardless of the firing rate of the presynaptic cell402

(and thus was a constant, independent of the stimulus); and the surround input to a cell was403

determined only by the difference between the cell’s preferred orientation and the surround404

stimulus orientation, and not by the firing rates of lateral cells responding to the surround405
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Figure 6: Surround tuning to the center orientation in an excitatory (E) cell The orien-
tations are relative to the cell’s preferred orientation. The black curves show the cell’s orientation
tuning curve for a center-only stimulus (i.e., firing rate vs. center orientation), normalized so the
maximum response is 1.0. The red curves show the similarly normalized tuning to surround orien-
tation for a fixed center stimulus. In each panel, the red asterisk marks the fixed center orientation:
(A) center at preferred minus 20◦, (B) center at preferred and (C) center at preferred plus 20◦.

stimulus. We use a recurrent model.406

We record the firing rate of cells in the network for different center orientations. For each407

center orientation, we then present a stimulus in the surround, rotate its orientation, and408

record the cell’s firing rate for each center-surround orientation configuration. In an exci-409

tatory cell (Fig. 6), we study tuning to center orientation absent a surround (black curves)410

and then tuning to surround orientation for a fixed center stimulus (red curves). The most411

suppressive surround orientation (minimum of red curve) is pulled strongly toward the center412

orientation (red asterisk) as the center orientation is varied from -20◦ relative to preferred413

orientation (Fig. 6A), to preferred (Fig. 6B), to +20◦ relative to preferred (Fig. 6C). Similar414

results are seen more generally in 67 excitatory cells at randomly selected grid locations415

(Fig. 7). The surround orientation producing maximum suppression is pulled strongly to-416

wards the center orientation (Fig. 7A,C-D) and in most cases is within 10◦ of the center417

orientation (Fig. 7B).418

As described above, surround tuning to the center orientation arises due to the strong,419

broadly tuned local connectivity profile in orientation space, along with the more sharply420

tuned surround input, which causes maximal input to the cell to come from cells preferring421

the center stimulus rather than from cells with the same preferred orientation as the recorded422
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Figure 7: Surround tuning to the center orientation Surround tuning in 67 excitatory (E)
cells at randomly selected grid locations (see section Model Details). Both center and surround
orientations are varied from preferred minus 40◦ to preferred plus 40◦ in increments of 10◦. (A)
Average surround modulation map. For each cell, the map is obtained by dividing center-surround
responses by the corresponding center-only responses, each row has its minimum value subtracted.
(B) Histogram of the difference between the orientation of the surround that maximally suppresses
the cell’s firing rate, and the center stimulus orientation. The data is pooled over all cells and
center orientations. (C) Orientation of the surround that maximally suppresses the cell’s firing
rate plotted against the center stimulus orientation, averaged over all cells. (D) Whisker plot
of orientation of the surround that maximally suppresses the cell’s firing rate against the center
stimulus orientation, the box extends from quantile Q1 to Q3, the orange line is the median. The
upper whisker extends to last datum less than Q3 + k*IQR, similarly, the lower whisker extends to
the first datum greater than Q1 - k*IQR, where IQR is the interquartile range (Q3-Q1) and k=1.5,
the circles represent the outlier data. In (A), (C), (D), orientations are shown relative to preferred.

cell. This makes suppression targeted to cells preferring the center stimulus more potent than423

suppression targeted to cells preferring the recorded cell’s own preferred orientation.424
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Result 3: Feature-Specific Surround Suppression425

Surround suppression in V1 is not blind to the center stimulus, as we have just seen. This also426

manifests in the feature-specificity of surround suppression (Trott and Born, 2015): if multiple427

stimuli are present in the cell’s center, the surround more strongly suppresses the response428

component driven by the center stimulus whose orientation matches the surround’s. We test429

whether V1 lateral connections can mediate such computation. We follow the procedure430

described in Trott and Born (2015).431

We record the firing rate of a small population of neurons to each of two oriented gratings.432

For each stimulus, we fit the average response vs. preferred orientation across the population433

with a Von Mises function, call these functions P1 and P2 (Fig. 8A). We then record the434

population’s firing rates to a center plaid stimulus, the superposition of the two individual435

gratings. If the two gratings differ by, e.g., 60◦, we will call this a 60◦ plaid or a plaid angle436

of 60◦. We fit the population’s response to the plaid stimulus as a linear combination of the437

two components, Rplaid= w1 P1 + w2 P2.438

We then introduce a surround stimulus whose orientation matches the second component439

of the plaid center stimulus, and measure the new values of w1 and w2. We repeat the same440

procedure as we rotate the plaid, each time matching the surround stimulus to the orientation441

of the 2nd plaid component. For responses to a 60◦ plaid alone, w1 and w2 on average have442

about equal strength, but the addition of a surround stimulus matched to the second plaid443

component suppresses w2 much more than w1 (Fig. 8B,C).444

We carry out this experiment for different plaids, with plaid angles [-60◦, -30◦, 0◦, 30◦,445

60◦, 90◦]. The mean values of w1 and w2 across all of these plaids cluster around w1=w2446

for the plaid stimulus alone (Fig. 9A), but are heavily shifted towards w1 when the surround447

stimulus matched to the second plaid component is added (Fig. 9B). In Fig. 9C we show448

the mean values of data points in Fig. 9A,B for each plaid angle. In the absence of a sur-449

round stimulus there is no difference between w1 and w2. When a surround stimulus with450

orientation matching the plaid’s second component is introduced, both components of the451

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 2, 2021. ; https://doi.org/10.1101/2020.12.30.424892doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424892


plaid are suppressed, however, we clearly see that the second component is suppressed more.452

Hence, the surround stimulus suppress mostly the center stimulus component that has sim-453

ilar feature. In our model, this phenomena emerges because long range lateral connections454

connect cells with similar preferred orientations. The surround stimulus mostly excite cells455

with preferred orientation close to its orientation. These cells in turn will mostly suppress456

the cells at the center which have similar preferred orientation. Finally, we point out that457

the results remain the same if we repeat the same experiment and record from a single cell458

rather than from a small local population.459
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Figure 8: Feature-specific surround suppression (A) The firing rate of a small population
of neurons in response to a center stimulus. The neurons are binned in 5◦ bins according to their
preferred orientation. The dots are the data points, and the lines are the Von-Mises-function fits
to the data. The medium gray points and dashed line are the population response to the first
component of the plaid (P1). The light gray points and dashed line are the population response
to the second component of the plaid (P2). The dark gray points and solid line are the population
response to the plaid. The black points and solid line are the population response to the plaid in the
presence of a surround stimulus whose orientation matches the plaid’s second component. (B,C)
values of w1 and w2 (the weightings in fitting the plaid population response to a weighted sum of the
two component responses), for a 60◦ center plaid stimulus, shown for 12 different plaid rotations
(every 10◦), recorded from five different populations (indicated by colors). The populations are
centered around randomly selected grid locations (see section Model Details). Missing data points
imply that we can not find a good fit of the data for certain stimulus configurations. The star
symbols are the mean values of w1 and w2 for each location. (B) Responses to plaid center stimulus
only. (C) Responses to plaid center stimulus in the presence of a surround stimulus with orientation
equal to the plaid’s second component. Dashed lines are unit diagonals, along which w1=w2
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Figure 9: Feature-specific surround suppression (A,B) Mean w1 is plotted against mean
w2 for plaid angles [-60◦, -30◦, 30◦, 60◦, 90◦] from 80 populations, centered around 80 randomly
selected grid locations (see section Model Details). The mean values of w1 and w2 are obtained
from averaging data for different rotations of the plaid (A) for plaid center stimulus only (B) for
plaid center stimulus in the presence of surround stimulus with orientation equal the plaid’s second
component. (C) Mean values of the data points in (A) and (B) for different plaid angles, we also
include the data for plaid angle 0◦, error bars are the s.e.m.

Result 4: Activity Decay Time460

While exciting V1 with a visual stimulus, Reinhold et al. (2015) abruptly silenced the tha-461

lamic input to V1, by silencing the lateral geniculate nucleus (LGN) through optogenetic462

stimulation of the thalamic reticular nucleus (TRN). They showed that, after thalamic si-463

lencing, the cortical activity in V1 exhibited a fast decay, two orders of magnitude faster464

than the decay after visual stimulus offset. The authors called this decay time after thalamic465

silencing the cortical decay function (CDF). The CDF across all V1 layers was of the order466

of 10 ms, in particular for multiunits the CDF + s.e.m. was L2/3: 9.8±1.7 ms, L4: 9.0±2.2467

ms, L5a: 8.9± 1.3 ms, L5b: 15.7± 2.5 ms and L6: 7.6± 1.5 ms. The CDF was almost the468

same in awake and anesthetized mice. Furthermore, the authors found that the CDF was469

independent of the stimulus contrast.470

We test if the dynamics in our network are in agreement with what has been reported.471

Since we only model layer 2/3 in V1, silencing LGN is equivalent to the removal of the472

feedforward input in our model. We record the activity of a cell for two stimulus sizes 2◦ and473

10◦, each at two contrast levels, high contrast (C=17) and low contrast (C=9). In all cases,474
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the feedforward input is removed at 200 ms. To obtain the activity decay time constant, we475

fit the decaying activity with an exponential function. We find the decay time constant for476

the excitatory cells to be roughly 10 ms, which is in agreement to what has been reported477

in Reinhold et al. (2015) as we show in Fig. 10. For 50 excitatory cells at randomly selected478

grid locations, the activity decay time constant (mean ± s.e.m.) for a 2◦ stimulus at high479

contrast is 10.04 ± 0.01 ms and at low contrast is 9.99 ± 0.02 ms, and for a 10◦ stimulus at480

high contrast 9.75 ms and at low contrast 9.76 ms (when we do not report it, the s.e.m. is too481

small). The activity decay time constant is almost independent of the stimulus contrast level482

and size. It is roughly given by the excitatory cells’ time constant in the model. Similarly, the483

activity decay time scale for the inhibitory cells is roughly given by the inhibitory cells’ time484

constant. For 2◦ stimulus at high contrast the inhibitory cells activity decay time constant485

is 6.93±0.01 ms and at low contrast 6.73±0.04 ms, and for the 10◦ stimulus at high contrast486

it is 6.69± 0.03 ms and at low contrast 6.98± 0.05 ms.487
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Figure 10: Activity decay time The time response of an excitatory (E) cell at a randomly
selected grid location (see section Mode Details) for various stimulus conditions. (A) and (B) 2◦

size stimulus at high contrast (C=17) and low contrast (C=9) respectively. (C) and (D) 10◦ size
stimulus at high contrast (C=17) and low contrast (C=9) respectively. The feedforward input is
removed at 200 ms. The activity decay time constant is obtained by fitting an exponential function
to the decaying activity. The activity decay time constant is roughly independent of the stimulus
contrast level and size.
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Result 5: Conductance-based Spiking Model488

To test whether our results depend on the neuron model, we replace the rate units in the489

network with conductance based spiking units (Eq. 7 in section Model Details). To make490

the model more biologically realistic, we assume the excitatory and the inhibitory cells have491

spontaneous activity levels of 1.5 Hz and 3 Hz respectively. We first show how the input492

currents to a cell and its firing rate change with external drive (Fig. 11A,B). The net input493

current a neuron receives increases rapidly as a function of external current for weak external494

input, but sublinearly for stronger external input (Fig. 11A). The network input becomes495

increasingly inhibitory with increasing external drive (Fig. 11C).496

Most of our key findings in the rate model also hold in the spiking model. Both excitatory497

cells and inhibitory cells are surround suppressed, the excitatory cells are more strongly498

surround suppressed than the inhibitory cells as we see from the length tuning curves for499

6 E cells (Fig. 12 top panel) and 6 I cells (Fig. 12 lower panel), and the average size tuning500

across 30 E cells and 30 I cells at the same grid locations (Fig. 13 A,B). The strength of501

surround suppression increases with increasing stimulus contrast (Fig. 12 and Fig. 13 A,B).502

To compute the suppressive index (SI), we fit the cells responses with a double Gaussian503

function. The mean SI is 0.45 ± 0.07 for the excitatory cells and 0.098 ± 0.054 for the504

inhibitory cells at C=10, and increases to 0.65± 0.09 and 0.14± 0.06 at C=100.505

We also show the distribution of the summation field sizes of the 30 E cells selected above506

for two contrast levels C=100 and C=10 in Fig. 13C. The summation field size decreases with507

increasing contrast (Fig. 13D).508

To test wether surround suppression in the spiking network is also accompanied by a509

decrease in excitation and inhibition, as reported by Ozeki et al. (2009), we plot the excitatory510

conductance values (Fig. 14A) and the inhibitory conductance values (Fig. 14B) for the same511

30 E cells for a large stimulus for which all the cells are suppressed against their values for512

a small stimulus around which the cells respond maximally (we pick the size of the small513

stimulus using the same method described in Result 1). Both excitatory and inhibitory514
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conductances are smaller for the large suppressive stimulus.515

The results for feature-specific surround suppression are qualitatively similar to what we516

observe in the rate model, Fig. 15B is the same as Fig. 9A,B. For surround tuning to the517

center orientation, even though we can see a trend in some cells similar to that we observe in518

the rate model, overall the phenomenon is weak for the center stimulus orientations that give519

a response above the spontaneous activity level, Fig. 15A shows the surround modulation520

map in the spiking model. We point out that we do not optimize the model parameters, so a521

different set of values of the connectivity profile parameters, such as the width of connectivity522

in orientation space and the length of connections, may lead to better results as we have523

observed in a few simulations. Also, the conductances values are not fine tuned, so a different524

set of values can for example give larger SI indexes while still producing result 3.525
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Figure 11: Conductance-based spiking model (A) Input currents to an excitatory (E) cell
at a randomly selected grid location (see section Model Details) vs external input current. The
recurrent excitatory current Iexc−recurrent = 〈gE(RE − V )〉t, the recurrent inhibitory current is the
absolute value of Iinh = 〈gI(RI − V )〉t and the external current Iext = 〈gin(RE − V )〉t where 〈 〉t
denotes time average. The net current is (Iext + Iexc−recurrent + Iinh), note that Iinh is negative
in the spiking model. All currents are normalized to the peak value of the recurrent excitatory
current. Stimulus contrast level corresponding to the external current is shown on the bottom axis.
(B) Firing rate of the cell in (A) vs contrast. (C) Iexc−recurrent/(Iexc−recurrent + |Iinh|) vs contrast
for the cell in (A) and an inhibitory cell at the same grid location. In these experiments we use a
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Figure 12: Conductance-based spiking model, surround suppression Length tuning curves
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contrast levels C=100 and C=10. The error bars are the s.e.m.

Discussion526

In previous work (Ahmadian et al., 2013; Rubin et al., 2015) we showed that the stabilized527

supralinear network motif (SSN) can explain normalization and surround suppression if528

combined with simple connectivity profiles, in which connection strength decreases with529

increasing distance across cortex or between preferred features. In Rubin et al. (2015) we530

presented a 2-d SSN model of V1 as a proof of principle and showed that the model can531

generate surround suppression. Ozeki et al. (2009) found that an iso-oriented surround532

stimulus reduces the values of both excitatory and inhibitory conductances of surround533

suppressed cells in cat V1. We have found that, unlike in the simpler models studied in534

Rubin et al. (2015), the 2-d model did not show this phenomena.535

In this paper we built a rate-based model of layer 2/3 of V1 of animals with orientation536

maps and showed that lateral connections are capable of generating consistently a set of537

phenomena that have been observed in V1, including surround suppression, surround tuning538

to the center orientation and feature-specific suppression. We also showed that surround539
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Figure 13: Conductance-based spiking model, surround suppression The average firing
rate of 30 excitatory (E) cells at randomly selected grid locations (see section Model Details), and
of 30 inhibitory (I) cells at the same grid locations, after normalizing each cell’s rates so that its
peak rate is 1.0, vs. stimulus size at contrast C=100 (A) and contrast C=10 (B). (C,D) Summation
Field Sizes. (C) The distribution of summation field size of the 30 E cells used to produce panels
(A) and (B) at contrasts C=100 (dark red color) and C=10 (light red color). (D) The distribution
of the ratio of the summation field sizes in (C). The summation field size of all cells, is smaller at
the higher contrast stimulus.
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Figure 14: Conductance-based spiking model, surround suppression Excitatory and in-
hibitory conductances values of the 30 excitatory (E) cells used in Fig. 13. (A) Excitatory conduc-
tance values of the E cells for a large suppressive stimulus are plotted against their values for a
small stimulus size around which the cells respond maximally. (B) same as (A) but for inhibitory
conductances. Stimulus contrast C=100.

suppression is accompanied by a decrease in the excitatory and inhibitory inputs. As far as540

we know, this is the only spatially extended model of V1 that has shown this phenomena.541

The activity decay time constant for the excitatory cells in the model is fast, about the same542

as the single-cell time constant, as in Reinhold et al. (2015). Finally, we showed that our543

key results hold in a conductance-based spiking network.544

The model gives insight into the circuit mechanisms that may underly the above observed545

phenomena. The network is a stabilized supralinear network, it has specific connectivity high-546

lighted by dense, strong local excitatory connections that are broadly tuned in orientation547

space, and long range patchy excitatory connections that are biased toward inhibitory cells548

at longer distances. The network is in a strongly nonlinear regime quantified by ΩE < 0 < ΩI549

(Ahmadian et al., 2013). The requirement that the local connectivity be broadly tuned in550

orientation space is essential to obtain surround tuning to the center orientation, but not to551

obtain surround suppression and feature-specific suppression. We note that the parameters552

we used, such as connectivity profile, input profile, and the underlying orientation map, were553

chosen without tuning them to any of the phenomena we study.554
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Figure 15: Conductance-based spiking model, surround tuning to the center orien-
tation and feature-specific surround suppression (A) Surround tuning to the center ori-
entation, average surround modulation map, the data is from 23 excitatory (E) cells at randomly
selected gird locations (see section Model Details), same plot as Fig. 7A. (B) Feature-specific sur-
round suppression, the data is from 56 populations centered around 56 randomly selected grid
locations (see section Model Details), same plot as Fig. 9A,B.
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