
 1 

scMomentum: Inference of Cell-Type-Specific Regulatory Networks 

and Energy Landscapes 

Larisa M. Soto1, +, Juan P. Bernal-Tamayo1, +, Robert Lehmann1, Subash Balsamy1, Xabier 

Martinez-de-Morentin2, Amaia Vilas-Zornoza4,9, Patxi San-Martin4, Felipe Prosper4,5,9, David 

Gomez-Cabrero1,2,3, Narsis A. Kiani6,7, Jesper Tegner1,7,8* 

1 Biological and Environmental Science and Engineering Division, Computer, Electrical and 

Mathematical Sciences and Engineering Division, King Abdullah University of Science and 

Technology (KAUST), Thuwal, Saudi Arabia.  

2 Mucosal and Salivary Biology Division, King's College London Dental Institute, London, United 

Kingdom.  

3 Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Pública de Navarra, Navarra, 

Spain.  

4 Centro de Investigación Medica Aplicada, Navarra, Spain.  

5 Clínica Universidad de Navarra, Navarra, Spain.  

6 Algorithmic Dynamics Lab, Department of Oncology-Pathology & Center of Molecular 

Medicine, Karolinska institutet, Stockholm, Sweden. 

7 Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, 

Karolinska Institutet, Karolinska University Hospital, L8:05, SE-171 76, Stockholm, Sweden. 

8 Science for Life Laboratory, Tomtebodavagen 23A, SE-17165, Solna, Sweden.  

9 Centro de Investigación Biomédica en Red (CIBERONC).  

+ These authors conducted the work at King Abdullah University of Science and Technology but 

are now part of the Department of Human Genetics at McGill University, Montreal, QC H3A 0C7, 

Canada. 

* Correspondence to: jesper.tegner@kaust.edu.sa 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.30.424887doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424887
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 

Recent progress in single-cell genomics has generated multiple tools for cell clustering, annotation, 

and trajectory inference; yet, inferring their associated regulatory mechanisms is unresolved. Here 

we present scMomentum, a model-based data-driven formulation to predict gene regulatory 

networks and energy landscapes from single-cell transcriptomic data without requiring temporal 

or perturbation experiments. scMomentum provides significant advantages over existing methods 

with respect to computational efficiency, scalability, network structure, and biological application. 

Availability 

scMomentum is available as a Python package at https://github.com/larisa-msoto/scMomentum.git  
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The utilization of single-cell RNA sequencing (scRNA-seq) technologies in several research 

contexts, such as the Human Cell Atlas (HCA), has shown that different cell types have 

characteristic transcriptomic signatures [1,2]. The characterization of cell types from scRNA-seq 

data has been a constant challenge. Although, it is known that reconstructing gene-regulatory 

networks (GRNs) is a critical step towards understanding the establishment of cellular identity. 

The idea of modeling transcriptomes with systems biology approaches has generated numerous 

methods using bulk measurements [3]. However, remaining hurdles include extensive data 

requirements and interpretability of the resulting networks. Single-cell genomics offers the 

opportunity to resolve such challenges, enabling the ability to model developmental progressions 

with classic paradigms [4], such as the Waddington landscape [5]. 

Although scRNA-seq profiling produces many samples (cells), thus increasing statistical power, 

there are inherent limitations such as missing transcripts that complicate the distinction of signal 

from noise [6]. Several existing methods rely on identifying an accurate time progression of cells 

(pseudotime) [7,8,9]. Such an ordering limits their applicability to time-series experiments and 

induces potential error sources when inferring pseudotime on non-temporal datasets. A common 

strategy is to use perturbation experiments to sample cause-effect events [10,11], but these 

methods are not scalable to interrogate different cell types en masse.   

Here we explore the assumption that regulatory signals are specific and similar among cells 

belonging to the same cell type, as they would be confined to move around within their quasi-

stable attractor. This enables us to use a linear approximation while still accounting for a non-zero 

velocity in the quasi-stable state. This formulation ensures computational efficiency and 

scalability. In such a linear model, every gene expressed in a given cell type could affect all the 

other genes and vice versa. The model takes advantage of RNA velocity [12] as the gene-level 

outcome of the expression of all the genes regulating it, weighted by a directed interaction matrix 

(the inferred GRN) and their corresponding degradation rate (Figure 1a). With both the weights 

and directions in hand, we can estimate an energy function [13] such that individual cellular 

energies capture their developmental potential. When projecting such energies on a two-

dimensional grid, one can get a robust estimation of the developmental energy landscape recovered 

by those cells (Figure 1a).  
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To evaluate this idea, we simulated expression profiles for 500 genes in 20,000 cells using Dyngen 

[14]. We constructed two independent branching trajectories and used scVelo to estimate RNA 

velocity and degradation rate (Figure 1b). The inferred GRNs were used to derive the associated 

energy (Figure 1c). The cells from the branch starting at cluster 1 go towards a lower energy state, 

and the endpoint clusters are all at a lower energy state than that of their starting point. This agrees 

with Waddington's classical proposition that cells will go "downhill" on the landscape as they 

differentiate. On the other hand, the branch starting at cluster 0 follows an upward trend, indicating 

the need for external inputs to progress along that branch instead of being in a poised state. To 

further explore the directionality of cells in the landscape, we projected the velocities on top of the 

energy landscape (Figure 1d). We found a flow from a high to a low energy state. Moreover, the 

branching is captured both by the velocities and by the energies (Figure 1d).  

To assess the performance of scMomentum, we benchmarked it against GENIE3 [15] and 

GRNOOST2 [16].  Since there is a lack of a widely accepted gold standard, we designed a metric 

that quantifies the extent of biological signal preservation. We assume that similar cell types have 

relatively close expression profiles (expression-derived distance). Consequently, if the derived 

networks are accurate enough, they would also be similar (network-derived distance). Thus, we 

test the correlation between cell type distance matrices using a Mantel test to account for the 

matrices' spatial arrangement (symmetry and row-column relationships). scMomentum showed 

the highest correlation (Figure 1e), although GENIE3 and GRBOOST2 also had significant 

correlations in this controlled setting. Thus, we found this to be a reasonable metric to assess the 

performance of different methods. 

We evaluated scMomentum in an in-house-generated human hematopoiesis study and five public 

data sets (see Methods), totaling more than 200K cells (see supplement for details on the pre-

processing steps). We found that the inferred networks preserved the distances between cell types 

in all the datasets that captured multiple developmental stages at once (dynamic behavior) (Figure 

2a). As a negative control, we showed that this was not true for a non-dynamical dataset (mBA18, 

see Methods), highlighting the need for cellular dynamics when computing RNA velocity and 

using it to infer GRNs. We benchmarked our approach on the human hematopoiesis dataset and 

found that scMomentum was better at preserving cell type distances than existing methods (Figure 

2b). Although the difference between the coefficients was relatively small, scMomentum holds a 
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significant advantage in network structure and computational efficiency. We could predict GRNs 

for ~100K cells expressing 1,000 genes in ~1 minute on a machine with a 3.1 GHz Dual-Core Intel 

Core i5 processor, while GENIE3 and GRNBOOST2 were unable to finish within a day.  

To assess our networks' ability to capture cellular dynamics, we looked at cellular differentiation 

and response to targeted perturbations. The network distance matrix recovered trajectories on a 

Multidimensional Scaling projection (MDS) that resemble cell progressions along hematopoiesis 

(Figure 2c), suggesting that the networks capture cell-type-specific properties underlying their 

developmental progressions. Moreover, this result was robust to cellular noise and information 

loss (see Supplementary material). Then, we took a gene-centered approach and removed 30% of 

the genes with the largest eigenvalue's centralities (see Methods) and found that the correlation 

between distance matrices was lower than that of a random perturbation (Figure 2d). This result 

shows that our networks detected a set of essential network regulators, a common feature of 

biological networks. This was not the case for other methods. 

To investigate the developmental potential captured by our networks, we reconstructed an analog 

of the Waddington landscape for the lymphoid lineage (Figure 2e and f). Interestingly, HSC and 

CLP landscapes have the highest energy and lack steep regions, highlighting their pluripotency 

and tendency to continue differentiating. The Pro-B cell landscape has a deep basin that contains 

the vast majority of cells (see Supplementary material), suggesting that they are "trapped" at this 

stage and might only progress along a confined path. The next stage is Immature B cells, which 

have the lowest energy and are positioned right underneath the basin of Pro-B cells, showing a 

possible direction of differentiation. Thus, our networks allow the reconstruction of energy 

landscapes capturing the corresponding cells' biology [17]. 

 

A significant advantage of our approach is the extraction of weights and directions within the 

networks. To further assess its biological relevance, we computed an activator/repressor score by 

adding up all the positive/negative outgoing edges of every gene in the cells along both 

hematopoietic lineages (Figure 3). Notably, we analyzed Prothymosin Alpha (PTMA), a protein-

coding gene involved in immune function modulation [18]. The expression and velocity of PTMA 

follow similar trends in both lineages. Although, it has a strong activator score in CLPs and a 

strong repressor score in GMPs. This observation raises the intriguing possibility that some of the 
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expression changes previously associated with alterations of PTMA [19] might be the effect of 

altered cellular development, rather than expression changes alone. The inferred weights are also 

useful to discover genes with dynamic properties within the network, providing insights on 

possible cell reprogramming undetectable by gene expression or velocity alone. 

Here we showed that incorporating RNA velocity into the inference of cell-type-specific GRNs 

allows us to model the regulatory mechanisms underlying dynamic developmental processes. The 

resulting networks harbor cell-type-specific regulatory properties that made it possible to 

reconstruct an interpretable Waddington landscape analog. Conceptually, these networks capture 

different states corresponding to different cell types, each with momentum to move in a landscape. 

This interpretation, constructed from the information within GRNs, opens up the possibility to 

study how regulatory processes shape cellular development in multiple contexts [20]. Moreover, 

scMomentum has a significant computational advantage over previous approaches, which would 

facilitate its application to the vast compendium of existing scRNA-seq datasets and open the 

prospect of building a Cell Regulatory Atlas. To our knowledge, this is the first cell-type-specific 

GRN inference method that scales to large datasets and recovers directed, signed, and weighted 

GRNs in a data-driven manner. 
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Figure 1 scMomentum captures cluster-specific properties and branching points in a simulated 

dataset. (a) Analysis pipeline upstream of scMomentum. (b) Cell-velocity map; cells are colored according 

to each cluster. (c) Energy landscape; cells are colored in the same way as (b); the grayscale of each 

landscape sheet represents the grid's energy. (d) PCA projection of cell velocities on top of the 

corresponding energy grid shown in grayscale. (e) Methods' benchmark based on the preservation of cluster 

distances. Here each point represents the distance between a pair of clusters; r-squared values show the 

Mantel correlation of expression and network distances for each method, according to the color legend at 

the bottom right. All correlations were significant at a p-value cut-off of 0.05. 
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Figure 2 scMomentum recovers relevant biological features of cell types in multiple real datasets.  

(a) Mantel correlations of distance matrices were derived for five real datasets (description in Methods); all 

correlations were significant at a p-value cut-off of 0.05. (b) Methods' benchmark based on the preservation 

of cluster distances; see Fig 1e caption for a detailed description; all correlations were significant at a p-

value cut-off of 0.05. (c) MDS map inferred from the network-derived distance matrix. (d) Mantel 

correlations for each inference method under each perturbation setting (shown in the x-axis); for the method 

"random" error bars show the standard deviation of 10 independent perturbations). (e) Cell-velocity map of 

the mBD20 dataset; annotations are shown for cell types belonging to the Lymphoid lineage (HSC, CLP, 

ProB, and Immature B), the remaining cells in the dataset are colored in gray. (f) Energy landscape of cell 

types from the Lymphoid lineage; Surface colors correspond to the annotations in (e).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.30.424887doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424887
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 scMomentum uncovers the dynamics of transcriptional regulation of PTMA during 

hematopoiesis. Panels a-d order in the x-axis corresponds to the cell-types order along each lineage. Both 

start with HSC; the progression in the Lymphoid lineage is (2) CLP, (3) ProB, (4) Immature B; and in the 

myeloid lineage is (2) CMP, (3) GMP, (4) Monocyte. e-f shows the UMAP embedding containing all the 

cells in the dataset. In (e), each cell is colored by the corresponding value of velocity for PTMA only. In 

(f), the color scale represents PTMA's expression.  
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Network inference  

 

We derive networks in a cell-type-specific manner. Therefore, the method can readily be combined 

with a user-defined choice of appropriate clustering and annotation pipelines to process the data. 

For specific pre-processing details, see Supplementary Methods. For each cell type, we re-define 

the change in gene expression over time as the contribution from all the other genes expressed in 

the cluster have on its mRNA expression and the level of degradation of its mRNA as follows: 

 

𝑉 =   𝑊𝑋 −  𝛾 

 

Where 𝑋 is the cell-by-gene expression matrix, and 𝑉 is the cell-by-gene velocity matrix. The 

diagonal matrix 𝛾 contains gene-specific degradation constants (both 𝑉 and 𝛾 are retrieved from 

scVelo). 𝑊 is the gene by gene weighted and directed adjacency matrix (inferred GRN). Then we 

solve for 𝑊 , obtaining the final model: 

 

       𝑊 =  𝑋+𝑉 +  𝛾                                                            (1) 

 

Since we solve Eqn.1 as an overdetermined system using least squares, the network's size is 

bounded by the number of cells in each cluster.  

 

Calculation of distances between clusters and between networks 

 

For every cluster in the data set, we calculate the Euclidean distance with all the remaining clusters. 

In the expression-derived mode, for every pair of clusters, the distance between them is defined 

as: 

 

𝐷𝑒 = 𝑑(𝐶𝑖 , 𝐶𝑗) = |𝑐𝑖 − 𝑐𝑗|
2
                                                (2)  

 

Where 𝑐𝑖 and 𝑐𝑗 are the mean expression vectors of clusters 𝐶𝑖 and 𝐶𝑗, respectively. This is used as 

a reference distance matrix.  
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In the network-derived mode, we define the distance between every pair of clusters as: 

 

𝐷𝑛 = 𝑑(𝐶𝑖 , 𝐶𝑗) = |𝑊𝑖 − 𝑊𝑗|
2
                                             (3) 

 

Where 𝑊𝑖 and 𝑊𝑗 denote the adjacency matrices derived from clusters 𝐶𝑖 and 𝐶𝑗, respectively.  

To test the accuracy of the inferred networks, we calculate  

 

𝑟𝑚 = 𝑚𝑐𝑜𝑟𝑟(𝐷𝑒 , 𝐷𝑛)                                                     (4) 

 

Where 𝑚𝑐𝑜𝑟𝑟 refers to the Mantel correlation of distance matrices, which accounts for the inherent 

symmetry and row-column relationship of 𝐷. Although 𝑊𝑖 and 𝑊𝑗 have the same dimensions; they 

might not have the same genes. To accommodate this when computing the correlations, we use 

the set of genes 𝐺 in each network to find 𝐺𝑖 ∪ 𝐺𝑗, the universal set of genes 𝐺𝑢. The uniform 

distribution is used to sample the entries of 𝑊𝑖 corresponding to 𝐺𝑖
𝑐 ∩  𝐺𝑢 and those of 𝑊𝑗 

corresponding to  𝐺𝑗
𝑐 ∩  𝐺𝑢. 

 

Selection of genes  

 

A critical step in any single-cell analysis is choosing the appropriate set of genes. We tested six 

different approaches to rank and select varying numbers of genes within each cluster, and 𝑟𝑚 (Eqn. 

4) to rank them. The ranking schemes were based on absolute gene velocity, signed gene velocity, 

velocity variance, expression and expression variance. We tested their combination with different 

network sizes, ranging from 50 to 500 genes in steps of 50. In each data set, we selected the 

combination of ranking and sized with the highest, 𝑟𝑚 value.  

 

Landscape reconstruction  

 

For every network 𝑊𝑖, an energy landscape is reconstructed using the Discrete Hopfield Network 

(DHN) formalism [1]. A DHN is formed by  𝑛 neurons 𝒙 = {𝑥𝑖}𝑖=1
𝑛  that can be in two different 
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states ON or OFF. At each discrete time step, a subset of these neurons change state depending on 

the influence of all other neurons weighted by the interaction network 𝑊𝑖: 

 

𝑥𝑖(𝑡 + 1) = 𝑠𝑖𝑔𝑛 (∑ 𝑊𝑖𝑗𝑥𝑗
𝑛
𝑗≠𝑖 (𝑡))                                              (5) 

 

In the original paper [1] Hopfield demonstrated the existence of an energy function such that 

 

𝐸(𝒙) = ∑ ∑ 𝑥𝑖𝑊𝑖𝑗𝑥𝑗
𝑛
𝑗≠𝑖

𝑛
𝑖=1                                                      (6) 

 

If the interaction matrix 𝑊𝑖𝑗 is symmetric, after evolving the system according to Eqn. 5 the system 

would move to the states corresponding to local minima of the function. 

 

The original bottom-up idea underlying the DHN is that the 𝑊 matrix can be constructed so that 

it stores certain fates, corresponding to local minima of the energy function to which the system 

would evolve.  

 

Our top-down approach corresponds to analyzing the structure of the energy landscape after taking 

the GRN as interaction matrix for a DHN where each gene corresponds to a neuron. To analyze 

the energy of a cell, its expression must first be discretized to the ON and OFF states. To 

accomplish this is to consider a gene to be ON or OFF depending if it is above or below a certain 

predefined threshold for each gene. This threshold can be taken as the mean value of that gene 

over all the cells, the median of the gene expression over all the cells, or other values that might 

be biologically important.  

 

𝑥𝑖
𝑗

= 𝑠𝑖𝑔𝑛 (𝑔𝑖
𝑗

−
1

𝑛
∑ 𝑔𝑖

𝑘𝑛
𝑘=1 )                                                    (7) 

 

The landscape is displayed over a two-dimensional space for visualization purposes. Therefore, 

we use PCA or any embedding algorithm where an inverse exists for the data over two dimensions. 
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First, the two-dimensional embedding, 𝑇: ℝ𝑛 → ℝ2, is calculated and used to project the cells. A 

square containing all the projected cells is gridded into 𝑁 × 𝑀 grid-points, {𝑝𝑖}𝑖=1
𝑁×𝑀 , which are 

then pushed back to the high-dimensional space with the inverse of the embedding, 𝑞𝑖 = 𝑇−1𝑝𝑖 ∈

ℝ𝑛. These points are then discretized as in equation (7), and the energy for each point is calculated. 

In this way, the energy of each grid-point is calculated and can be plot as a surface over the 2d 

space containing the projections of the cells, for which the energy is also calculated and plot on 

top of the grid.  

 

Network perturbations  

 

For every network 𝑊𝑖 , we calculate a vector of eigenvalues 𝜆𝑖 , and remove from 𝑊𝑖 all the entries 

of the genes with the top 30% eigenvalues in 𝜆𝑖. Then, we estimate the distance 𝐷𝑛,𝑝 between the 

perturbed networks to calculate  𝑚𝑐𝑜𝑟𝑟(𝐷𝑒 , 𝐷𝑛,𝑝), and use 𝑟𝑚,𝑝 as a measure of network 

robustness.                             

 

Gene-specific network scores  

 

For a gene 𝑔𝑘 in a network 𝑊𝑖 where 𝑘 goes from 1, … , 𝑁𝑖  and 𝑁𝑖 is the number of genes in 𝑊𝑖, 

we compute an activator score 𝑎𝑐𝑡 as 

 

𝑎𝑐𝑡(𝑔𝑘) =  ∑ 𝐸𝑘,𝑞
𝑁𝑖
𝑞=1    𝑖𝑓  𝐸𝑘,𝑞 ≥ 0                                              (7) 

 

Where 𝐸𝑘,𝑞 refers to the outgoing edge from 𝑔𝑘 to 𝑔𝑞 . Similarly, we calculate a repressor score 

𝑟𝑒𝑝 as 

 

𝑟𝑒𝑝(𝑔𝑘) =  ∑ 𝐸𝑘,𝑞
𝑁𝑖
𝑞=1    𝑖𝑓  𝐸𝑘,𝑞 < 0                                               (8) 

 

Benchmark framework  

 

We defined the best-performing set of genes as previously described to infer cell-type-specific 

manner using GENIE3 [2], GRNBOOST2 [3] and PIDC [4] in the simulated and the in-house 
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generate data sets. We discarded PIDC since often the clusters did not contain enough cells to meet 

its data requirements. We benchmarked the methods using the set of 𝑟𝑚 values estimated by 

comparing the networks derived from each method to the same 𝐷𝑒 matrix. 

 

Data  

 

Simulated 

 

We simulated a dataset with Dyngen v0.4.0 [5], using backbone_disconnected with left and right 

backbones set to backbone_consecutive_bifurcating. Models were initialized with the following 

parameters: num_cells 20.000, num_tfs 50, num_targets 200, num_hks 250. 

 

Public 

 

Human fetal forebrain (hFB18) 

Human fetal forebrain cells from 10-week fetal tissue were generated in La Manno et al., 2018. 

This dataset is accessible from the SRA under the accession code SRP129388 [6]. 

 

Human PBMCs (hPB20) 

10X Genomics 5K PBMC dataset downloaded from the company's website [7].  

 

Mouse developing spinal cord (mSC19) 

Mouse embryos from stages E9.5 to E13.5 from Delile et al., 2019. Raw sequencing files were 

retrieved from the database ArrayExpress under the accession E-MTAB-7320 [8]. 

 

Mouse brain atlas (mBA18) 

Adult mouse nervous system data set generated by Zeisel et al., 2018. It is deposited in the SRA 

under the accession code SRP135960 [9]. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.30.424887doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424887
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Human embryonic hematopoiesis (hED19) 

Human embryonic sections were collected from the Carnegie at stage 12 to 14. The data generated 

in Zeng et al., 2019 is available at NCBI's Gene Expression Omnibus (GEO) with the accession 

code GSE135202 [10]. 

 

Human hematopoiesis - In house (mBD20) 

Cell sorting was performed using a FACSAria (BD Biosciences) and analyzed with FACSdiva 

software (BD Biosciences). Standard, strict forward scatter width versus area criteria were used to 

discriminate doublets and gate only singleton cells. Viable cells were identified by staining with 

7-AAD (BD Bioscience). HSC cells were extracted from the bone marrow using CD34+ 

membrane marker. According to the manufacturer's instructions, the transcriptome of the cells was 

profiled using Single Cell 3' Reagent Kits v3 (10X Genomics). 

 

Sequenced libraries were demultiplexed, aligned to the human transcriptome (GRC3h8/hg20) and 

quantified using Cell Ranger (3.0.1) from 10X Genomics. The output of the pre-processing 

pipeline consisted of UMI-derived expression matrices per cell. Quality control filters applied for 

filtering the cells were: the number of detected genes, the number of UMIs, and the proportion of 

UMIs mapped to mitochondrial genes per cell. The thresholds for each of the single-cell libraries 

were selected based on the distribution of the variables enumerated. Count-based matrices were 

subjected to normalization, identification of highly variable genes, and removal of unwanted 

sources of variation using Seurat3 [11] Next, cells were labeled to the different cell populations 

shown using SingleR [12]. The annotation was conducted using as a reference an In-house bulk 

RNA-seq from the enumerated populations. 
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