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Abstract8

Humans have elegant bodies that allow gymnastics, piano playing, and9

tool use, but understanding how they do this in detail is difficult because10

their musculoskeletal systems are extraordinarily complicated. Nonetheless,11

although movements can be very individuated, some common movements like12

walking and reaching can be stereotypical, with the movement cost a major13

factor. A recent study has extended these observations by showing that in14

an arbitrary set of whole-body movements used to trace large-scale closed15

curves, near-identical posture changes were chosen across different subjects,16

both in the average trajectories of the body’s limbs and in variations within17

trajectories. The commonality of that result motivates explanations for this18

generality. One could be that humans also choose trajectories that are eco-19

nomical in energetic cost. To test this hypothesis, we situate the tracing20

data within a fifty degree of freedom dynamic model of the human skele-21

ton that allows the computation of movement cost. Comparing the model22

movement cost data from nominal tracings against various perturbed trac-23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.29.424756doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/


ings shows that the latter are more energetically expensive, inferring that24

the original traces were chosen on the basis of minimum cost. Moreover,25

the computational approach used to establish minimum cost principle sug-26

gests a refinement of what is known about cortical movement representations.27

28

Keywords: Posture analysis, whole body movement, virtual tracing, kine-29

matic representation, movement variation costs30
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Author Summary31

Although motor cortical areas have been extensively studied, their basic32

response properties are still only partially understood, and it remains con-33

troversial whether neural activity relates to muscle commands or to abstract34

movement features. We provide a new perspective of how movements may35

be resented in the brain by showing that humans chose trajectories with36

minimum energy cost while accomplishing goal-directed tasks. Furthermore,37

most of the current neural control studies are experimental. Our compu-38

tational methodology coupled with a minimum energy principle suggests a39

refinement of the brain’s storage of remembered movements.40

1. Introduction41

Advances in the speed of computing and novel formulations of the dy-42

namic equations of motion have engendered a new methodology for un-43

derstanding human movement fundamentals. Large-scale human musculo-44

skeletal models have be built with the objective of understanding human45

real time goal-oriented behaviors [1, 2]. These newer models linearize the46

dynamic equations and use feed-forward integrations that are much better47

conditioned than previous methods.48

However, including all the complexity of the human musculoskeletal sys-49

tem, with over 600 muscles controlling a complex skeletal system with over50

300 degrees of freedom can be daunting, espicially if the goal is to generate51

movements as compared to analyze their properties. Moreover, to achieve its52
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control complexity, the brain coordinates several cooperating neural subsys-53

tems. In addition to its vast cortical motor memory system, the forebrain54

coordinates specialized subsystems such as the Basal Ganglia, and Thalamus55

and Cerebellum in realizing continuous real-time movement [3]. The upshot56

is that research progress tends to be specialized [4] and there are many open57

problems [5].58

In the face of these challenges, one modeling route is to forego the level59

of detail that includes muscles and model more abstract versions of the hu-60

man system that still use multiple degrees of freedom but summarize mus-61

cle effects through joint torques. The computation of the dynamics of such62

multi-jointed systems recently has also experienced significant advances. The63

foremost of these, use a kinematic plan to directly integrate the dynamic64

equations. Several different systems exist, such as MuJoCo, Bullet, Havok,65

ODE and PhysX, but an evaluation by [6] found them roughly comparable66

in capability, and only MuJoCo [7] has been applied to human modeling.67

Thus there is a place for a exclusively human movement based model68

that could be used to inform laboratory experiments[8], clinical studies e.g69

[9] and also verify experiments that have only qualitative results[10, 11]. Our70

human dynamic model has a singular focus on human movement modeling71

and features a unique approach to integrating the dynamic equations. We72

have developed a direct dynamics integration method to extract torques from73

human subjects in real time [12, 13, 14] based on a unifying spring constraint74

formalism.75
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Our focus is the principles behind large-scale arbitrary movements, partic-76

ularly with respect to variations between different subjects. Thus we eschew77

common movements such as reaching and walking [15, 16, 17] and also stud-78

ies of small-scale grasping movements [18, 19]. Another peripheral issue is for79

us that that many movement tasks can have objectives that discourage low80

energetic solutions but can be readily analyzed with decision-making tech-81

niques [20, 21, 22, 23] that focus on repeatability; movements are committed82

to memory with precedence based on the probability of use.83

Our experimental setting starts with measuring the kinematics of a move-84

ment. The model divides anatomical parts into discrete segments that have85

their own inertia and are interconnected to other segments by joints that86

are mostly rotary. Thus a movement can be described as the time course87

of the coordinates of the joints. The The model’s state is indexed by fifty88

three-dimensional coordinates of a motion capture suit. The time course89

of these coordinates provides an equivalent representation of a movement’s90

kinematics.91

To refer to the kinematics at a specific time we use the term posture.92

Classically, posture classically is used for particular poses such as sitting or93

standing, but we use it for arbitrary body orientations.94

Although computing torques in the inverse dynamics using kinematics is95

an advance, the study of the kinematics of arbitrary body movements is in96

itself challenging to study owing to their variation. Bernstein’s famous well-97

known phrase characterizing repeated movements in terms of “ repetition98
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without repetition,” emphasizes that repeated movements are never exactly99

the same [24]. However repeated movement variations are never completely100

random. Informed by task goals, subjects can shape the variations in different101

parts of the body by co-contracting muscles to achieve desired dynamics in102

different sections of a trajectory [25]. Thus in looking for regularities in103

movements one has to deal with both that the trajectories will vary owing104

to muscle co-contraction and that the amount of co-contraction itself can be105

modulated throughout the movements.106

These variations, we developed specialized aggregation methods for data107

analysis that extracted similarities of posture sequences in the face of kine-108

matic variations [26]. The task studied had subjects tracing large-scale three109

dimensional curves in virtual reality that required a series of whole-body110

movement sequences. Subjects could freely choose their starting posture111

and also were given no instructions as to how to comport themselves during112

the tracing process. Their postures were continuously recorded using the113

motion-capture system.114

The main result was that although the locations tracing data exhibits pos-115

ture variations, both in repeated of a single subject and in trials by different116

subjects, the average postures show marked regularities in several aspects of117

the data that was subject to analysis. A t-test between a proximal relative118

posture and distal relative posture showed that the difference is significant119

at the 0.0001 level. Also, the variances in the subjects’ postures were cor-120

related. If at a point on the curve the variance of a trace calculated from a121

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.29.424756doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/


subject was relatively large, the average of the variance of all the repeated122

trials from all subjects would be relatively large also.123

The obvious inference from all the observed common movements is that124

energetic cost should be similar and moreover, these observations arise from125

a minimum cost principle. To test this hypothesis we computed the cost126

of dynamic models of different subjects’ curve traces and compared these127

results with the cost of tracing under two different perturbations. In one,128

the trajectories’ cost were computed with small perturbations in the model129

kinematic positions. In the other the original curves that were displaced in130

five-centimeter increments. The result of both of these comparisons was that131

the means the energetic cost of were higher than those of the original curve.132

These results strongly suggest that that movements can be selected on the133

basis of predicted minimum cost.134

The human system has a broad dichotomy into a lateral system, which135

includes the cortical component commands, and a medial system, which in-136

cludes the vestibular component commands. Crudely one can think of the137

lateral sustem as handling predictions and the medial feedback system han-138

dling feedback.139

Our model also exhibits these two components. The dynamic calculations140

are good enough to handle the majority of the torques required, but various141

inaccuracies in the model require a residual torques such as that would be142

produced by a vestibular system. Our residual system, is unsophisticated as143

described in the sections section, but it does an essential job in achieving144

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.29.424756doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/


balance.145

2. Background146

A general principle of human movement is that our nervous system prefers147

trajectories that are economical in energetic cost [27, 28]. It has been estab-148

lished for decades and has been well studied. For example, in locomotion,149

there are a number of experiments showing that humans’ walking speed [29],150

step frequency/length [30, 31, 32, 33, 34, 35, 36], and step width [37, 38]151

are all corresponding with the minimum metabolic cost,e.g., energetic cost152

exhibits a U-shaped dependence on step frequency while walking at a con-153

stant speed and the minimum of the U-shape curve is consistent with the154

self-selected or preferred walking frequency [17, 34]. Furthermore, new ev-155

idences [39, 40, 41] show the nervous system can adapt preferred gaits to156

minimize energetic cost.157

In the past, a common way to address this minimization principle was to158

conduct experiments comparing walking or running with many other strange159

and unpractised gaits [42, 43]. Nowadays, there are three commonly used160

methods to study energy optimization.161

The most straightforward and frequently used method is to measure the162

metabolic cost, e.g., subjects breath through a mouthpiece to measure rates163

of oxygen consumption (VO2). For example, subjects were required to walk164

under different circumstances, and the results showed that the metabolic cost165

was minimum while subjects walked at the condition which was ”comfort-166
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able” for them [29, 30, 31, 32, 39, 40, 41].167

Measure the changes in muscle coactivation and stiffness using Elec-168

tromyographic (EMG) is considered a common way to reflect metabolic169

changes. An experiment [44] proved that that subjects’ metabolic cost re-170

duced during the learning process of arm reaching tasks, and their muscle171

activities and coactivation would parallel changes in metabolic power.172

The third method is to build a mechanics-based model and determine if173

the predicted minimum mechanical cost correlates with people’s preferences.174

A basic understanding of trajectory choice can be obtained by calculating175

energy cost by using minimal dynamic models, such as two-link or three-link176

arm models [45, 46], inverted pendulum walking models [33, 34, 35, 37],177

bounce running models [47]. For example, use the inverted pendulum model178

to predict the optimal step length and compare it with the subjects’ real step179

length. However, most of the experiments used two-dimensional models and180

studied human part-body motions in the sagittal plane, such as study leg181

motions using an inverted pendulum model or arm reaching using a 3-link182

model.183

We conducted a whole-body virtual tracing experiment showing that both184

the movement’s posture trajectories and its kinematic variations showed185

striking commonalities across subjects [26]. One possible principle of ex-186

planations for this generality could be that humans choose trajectories that187

are economical in energetic cost. To prove it, we need to compute the cost of188

virtual tracing movements. One possible way is to use the VO2 method to189
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measure the metabolic cost or use the EMG to measure the music coactiva-190

tion and stiffness directly. However, subjects had already worn a VR helmet191

on their face during the tracing tasks. Besides, motion-capture suits cov-192

ered their whole body thus there was no exposed skin for EMG electrodes.193

Another possible way is to build a dynamic model. However, as we men-194

tioned above, those models were built to simulate part of the human body195

in two-dimensions.196

We further searched for methods to build a dynamic bipedal robot by197

modeling the whole body with a skeleton of rigid segments connected with198

joints. The simplest bipedal robot uses three links to represent the torso and199

two legs in the sagittal plane [48, 49]. Five-link biped robots extend the200

model using two links to represent each leg [50, 51, 52, 53], while seven-link201

biped robots further extend it by adding feet to it [54, 55]. Those models202

have three different states: (1) open-linked – one foot on the ground, (2)203

closed-linked – two feet on the ground, (3) both feet in the air. Each state204

corresponds to a different set of motion equations. Most researchers use205

open-linked models [48, 49, 50, 51, 52, 53, 54, 55]. They assumed that once206

one foot laid to the ground, the other foot would be lifted immediately.207

Recently, 3D modeling of biped robots [56, 57] have been developed as208

well, however, they are still not sophisticated enough compared with a real209

human body. A real human can be considered as a 21 hierarchical link210

humanoid robot with 48 degrees of freedom. Furthermore, because the model211

can have three different states during a continuous motion, such as running,212

10
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it is hard for an optimization algorithm performing gradient descent for three213

different sets of equations that happened alternatively. Therefore, The third214

method described above is also not fitting for our problem: 1) it is too215

expensive to build a dynamic model with motion equations, 2) it is too hard216

to use an optimization algorithm to predict the optimal path for a model217

with three different dynamic states that happened alternatively.218

We developed a novel way to compute the energy cost of human move-219

ments by building a dynamic human model [58, 13] on the top of a physical220

engine – Open Dynamic Engine (ODE)1. This dynamic human model works221

as follows:222

1. Forward kinematics: it simulates human motion by following the mo-223

tion capture data224

2. Inverse kinematics: it calls the ODE built-in functions to compute the225

joint angles and joint angular velocities at each frame.226

3. Forward dynamics: it simulates human motion based on the computed227

joint properties.228

4. Inverse dynamics: it calls the ODE built-in function to compute the229

required joint torques.230

At each joint, instantaneous power was computed from the product of231

net joint torque and joint angular velocity. The work performed at each232

1https://www.ode.org/
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joint were determined by numerically integrating the instantaneous powers233

over the entire tracing task. In this way, given motion capture data, we234

can compute the energy cost without building a humanoid biped robot with235

motion equations. The validation of this dynamic model has been proved in236

the paper [58, 13].237

While doing the virtual tracing experiment, subjects could freely choose238

their starting posture and were given no instructions on how to comport239

themselves during the tracing process. Therefore, we could consider subjects240

traced curves under the conditions which were ”comfortable” for them. Ac-241

cording to the previous experiments [29, 30, 31, 32, 39, 40, 41], the metabolic242

cost of movements with those trajectories should be the minimum. To prove243

it, we perturbed the trajectories and computed the energy cost. As expected,244

the metabolic cost increased more or less.245

3. Results246

Using the kinematic data from [26], we scaled the dynamic model to each247

of the nine subjects and had the models trace of the nine curves of variations248

of difficulty that are shown in Fig. 1. The energy cost of tracing paths showed249

marked regularities in the following aspects of the data that was subject to250

analysis:251

1. Analysis of the joints’ power while tracing path1 across different sub-252

jects showed that although the absolute cost of the movements may253

12
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Figure 1: The nine 3-dimensional paths in the virtual environment that were
used in the experiment. They are ordered by their complexity. For reference, colors
denote common segments and points. For the subjects, the paths were all rendered in
black, The scale is in meters.

vary between subjects, the cost is qualitatively very similar. (See sec-254

tion 3.1, Figure 2);255

2. The computation of average energy cost while tracing path1 showed the256

corresponding residual forces were relatively small. (See section 3.1,257

Figure 3 and Figure 4);258
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3. The costs of tracing each path by each subject, normalized by body259

weight, are very similar and scaled with the length of the paths. (See260

section 3.2 and Figure 5);261

4. Although there are variations in the cost across the repeated traces,262

the cost of using the perturbed model parameters is significantly higher263

than the original. (See See section 3.2, Figure 6 Figure 7, and Figure 8);264

5. The increment of energy cost while using perturbed model parameters265

distributes more on the joints’ cost than on the residual component.266

(See section 3.2 and Figure 9);267

3.1. Energy cost analysis of tracing path1268

The mean of total power across different participants. As an initial269

analysis we established the variations in the costs of each curve exhibited270

by different subjects. A representative result is shown in Fig.2 for path271

one. The plot shows the total power at each frame for each subject. The272

trace reveals that the subjects have to put more effort into the trace at the273

same times. Thus although the absolute cost of the movements may vary274

between subjects, the costs during the traces are qualitatively very similar.275

[58] showed different participants used similar postures sequence while tracing276

the same curves from kinematic perspective. Here, the similarity of the power277

pattern along frames across different subjects reinforces this conclusion from278

a dynamics perspective[59].279
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Figure 2: The mean of power at each frame Nine subjects traced path1 for 5 times
each. The plot shows the joints’ power at each frame of different subjects. The small stan-
dard deviation means that different subjects had similarity power patterns while tracing
the same curve, which shows that the curve has points of difficulty in tracing shared by the
subjects. Psth 1 is a simple so it can be traced quickly, but the observation of correlated
effort representative of patterns in tracing other curves

Average energy cost of five repetitions. Although there are qualitative280

similarities in the difficult points on the curve, the totalled costs of the traces281

differ across different subjects. This result is shown in in Fig. 3, which282

reports the cost per subject. The total energy of joints including the residual283

components is shown in blue and the residual component is shown separately284

in orange. When reporting the costs of the traces, we always use the total285

cost shown here in blue, which includes the orange residual component.286

As shown in Fig. 3, the by far largest cost of the tracing movement is287

the component owing to the joint torques that are producing the kinetic288
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Figure 3: The average energy cost of tracing and residual force component Each
subject traced path1 with 5 repeats. The horizontal labels indicate the corresponding
subjects, e.g. ”S1” represents the subject1. The total cost is shown in blue and the
portion of that cost due to residual forces is shown in orange, A low cost in residual forces
usually signifies that the dynamic model is a good match for that subject’s kinematic data.

trajectories, and the additional cost of the residual from the inverse dynamic289

calculation is small. In the human system, this residual is most prominently290

due to the vestibular system but just how the vestibular connects to the291

muscular system is not modeled by the human dynamic model. Instead we292

implemented a provisional system of torques referred to a coordinate system293

positioned and the center of mass to maintain balance.294

Residual forces. All our subjects’ costs are derived from the same inverse295

dynamics technique [14], which combines measured kinematics and external296

forces to calculate net joint torques in a rigid body linked segment model. A297

feature of the dynamic method is that it can reduce potential errors, both298

in the matches of the motion capture suit and the model. Analogous to299
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Figure 4: Residual torque magnitudesErrors in the calculation of joint torques from
the inverse dynamics require additional torques for stabilization. Shown here are the
magnitude of the torques seen in pitch roll and yaw axes. )

the human body’s ligament structure to join joints, some leeway is allowed300

in the ,model joints in the integration process.Nonetheless, even after these301

adjustments, some errors remain. In the model, the main source of the302

residual forces is usually attributable inaccuracies in the matches between the303

motion capture suit makers and their match with their corresponding points304

on the model. This is commonly resolved by introducing ‘residual forces’305

which compensate for this problem . This resolution with a dichotomy of306

forces is analogous to the human system which combines feed forward lateral307

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.29.424756doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.29.424756
http://creativecommons.org/licenses/by-nc-nd/4.0/


pathway forces with medial pathway feedback forces308

The temporal cost of such residuals is small as shown in Fig. 4 that309

shows the distributions of magnitudes of the residual in orange in Fig. 4310

for the nine subjects tracing tracing path1. For the model, roll torques311

are the largest, with pitch torques second. Both pitch and roll torques can312

exploit the background of the skeleton’s inverse pendulum construction for313

walking. These torques are necessary, but their magnitudes are small and not314

a factor in distinguishing original and perturbed costs. Residual torques are315

applied at the figure’s waist, which is next to the center of mass. The small316

magnitudes measured for the residual, together the observation that that317

the residual is similar for the original and perturbed paths argues against318

the residual torques being a factor in the analysis.319

3.2. Energy cost analysis of tracing individual paths320

Energy cost of tracing nine paths. Although there are similar costs per321

subject in the sample trace, this arrangement does not carry over to the322

comparison between paths, which has larger differences. We hypothesized323

that the cost should scale as the length of the path a as shown in Figure 5,324

which shows the average energetic cost of tracing the nine different paths.325

The paths differ in tracing cost, but the costs of tracing each path by each326

subject, normalized by body weight, are very similar and scale with the327

length of the paths.328
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Figure 5: Cost of tracing These results portray the possibility that the costs vary across
the best-fit five subjects. The statistics show that each path traced has a unique cost that
distinguishes it from the rest.

Tracing perturbation. Given these regularities, The next step is to evalu-329

ate the significance of perturbations in the tracing protocol. The hypothesis330

is that if the tracing postures are chosen to be of minimum energy, chang-331

ing the configuration away from the original tracing situation should incur332

a cost, and that is what happpens. The first perturbation tests changes in333

model marker parameters. A marker is changed by a small delta and this is334

a constraint that is satisfied while the model traces the paths. The way this335

is implemented is to have the model’s right finger follow the cue on the curve336

as before. The kinematics is as it was for the unperturbed trace, but there337

is enough freedom so that the dynamics can adapt to follow the perturbed338
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Figure 6: Cost of tracing perturbed model Cost of tracing each of the nine paths with
a perturbations in the model elbow parameter. The elbow was moved up 3.5cm. This
shows that for all the paths and the averages across subject tracers, the original path is
always the least expensive. moreover the differences are highly significant

For in each trace the elbow marker is raised by 5 cm. The rest of the340

system can adapt is the way dictated by the dynamic constraints. The result341

is shown in Fig.6. Each subject traced each path five times and the resultant342

costs are averaged. It is seen that although there are variations in the cost343

across the repeated traces, the cost of using the perturbed model parameters344

is significantly higher that the original. Note that outside of the changes,345

the rest of the model solves the inverse dynamic model with the unperturbed346

parameters, and thus the model has very large degrees of freedom at its347
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proposal.348

In the model perturbation experiment, the system must followed the orig-349

inal paths used in the nominal case. The second case makes adjustments in350

the traced path. Some effects in a displaced can be intuited. For example, if351

a subject has to reach over their head during the trace, it cam be expected352

that lowering the traced path would result in a cost savings. For this reason,353

we chose path perturbations in the horizontal plane. Two such perturba-354

tions were used: a 5centimeter dis[placement and a 5 centimeter rightward355

displacement.356

Figure 7 shows the result of averaging the traces across the displaced paths357

averaged across each subject normalized by body weight. Each original path358

is seen to be the lowest cost.359

Here again the results are striking. Although there is some overlap, for all360

curves, the originally more economical than the displacements. The observa-361

tion that the averages of all the perturbed costs are more than the average362

cost of their original progenitors strongly suggests that energy cost is the363

factor in the choice of tracing postures. Figure 8 shows that all the three364

sets of tests are significant to the p=0.01 level.365

Given the dynamics dichotomy, a natural question that rises concerns366

the magnitude of the extra torques in the perturbation cases. Are the extra367

costs carried by the dynamic model or the residual? This is easily answered368

by interrogating the simulation, and it turns out that that dynamics models369

contribution is overwhelming. This is shown in Fig 9.370
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Figure 7: Cost of tracing perturbed paths Each of the nine paths have the two
perturbations of 5 cm: left in green, right in red. This main result shows that for both
averages across subject traces, the original path is always the least expensive.

If the constraints on the dynamics were extremely stiff then the model371

would have no course other than tracing an exact copy of the unconstrained372

trajectory and let the residual torques contribute the need difference. How-373

ever, the markers on the body for these experiments are limited to 15∼18374

of key points, leaving the extra degrees of freedom to be determined by the375

dynamics. Moreover the torque computation, to model the reality of muscles376

[60] uses uses spring constrains at each joint degree of freedom. Finally the377

figure is forced to contact the displaced path, and the large features of the378

movement such as footfalls are the same, leaving the dynamics to fill in the379

rest.380
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Figure 8: Cost of tracing perturbed paths. Each of the nine paths have three perturbations.
(a) Perturbed model marker. (b) curve perturbed 5 cm to the left (b) curve perturbed 5
cm to the right. This main result shows that for both averages across subject traces, the
original path is always the least expensive. All three manipulations are different with a
significance at the p=0.01 level.
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right perturbations in
the traced path summed
over five repeated traces

Discussion381

Given that the cost of the movements is are a significant fraction of a382

human’s caloric budget [61] one might expect that humans would exhibit383

common low cost postures. This turns out to be the case for stereotypical384

situations such as reaching or walking on a planar surface, but arbitrary whole385

movements have been less studied so the expectations are more open. Thus it386

was a surprise to measure arbitrary movements in a large scale tracing task387

and find markedly common posture sequences used by all tested subjects388

[26]. An obvious possibility for the similar posture sequences is energetic389

cost, especially since there were no complex constraints in the movements390

and no constraints in the time to perform the traces.391

Our stimulations extend the kinematic finding to show that tests of hu-392

man dynamics provide evidence that movements are chosen on the basis of393
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economic energetic costs. The initial measurements were unsurprising. The394

cost of tracing scales monotonically with the length of a traced path as ex-395

pected and the necessary residual forces, as would be expected from the396

human’s vestibular system and others, given that the subjects had to choose397

their movements, were relatively small.398

The main substantive results are that subjects’ traces of each of nine space399

paths all have minimal costs with respect to local perturbations. One manip-400

ulation introduced perturbations in their kinematic variables. The subjects401

traced the path but their model with small displacements in kinematic mark-402

ers. The other experiment used local horizontal displacements of the paths.403

Vertical were not used as they can be equivocal as the displacements can404

interact with the different body sizes as when a short subject has to reach405

up to an uncomfortable height. But outside of this caveat, the all the data406

can be interpreted as the the tracing posture sequences are selected on the407

basis of energetic cost.408

The hypothesis that humans use minimum cost movement trajectories409

was tested by the use of a human dynamic model that leverages a major410

innovation in dynamics computation that allows the the recover torques411

from kinematic data. The model also provides a fresh perspective for dif-412

ferent interpretations of the representations of movements in the brain’s mo-413

tor cortex. The motor cortex has been extensively researched over many414

decades [62], providing many different perspectives as to its complex struc-415

ture [63, 64, 65, 66], and the computational modeling cannot be expected to416
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be definitive but it can endorse certain perspectives, which we attempt to417

do here. The focus is in presenting that our model endorses the use cortical418

area M1 as the site of kinematics representing posture changes in multiple419

joints.420

Our perspective follows from computer science’s classic dichotomy be-421

tween tables and functions in computation. Computing something as simple422

as a trigonometric sine function, one has the option of pre-computing sine423

values at some resolution and memorizing them in a table for instant acess or424

computing them on line using the slower series expansions for computing the425

values as needed. These differences are placed in sharper relief in the human426

system as the on-line aspect is much more formidable owing to the brains427

relatively slow circuitry. In silicon, processing times are over million faster428

so the trade-off tends to favor computed functions. In human biology, the429

vastly slower computations favor pre-computation and tabular formats. the430

torques for a posture change in an online fashion or pre-compute descriptions431

ahead of time and save them in memory until needed. The dynamics models432

advance informs this choice.433

These broad computational realities favor memorization, they can also434

evaluate the different suggestions that have been proposed for motor cor-435

tex. The neurobiology of motor cortex also exhibits memorization but also436

adds another between what we will call local and global memories. Local437

memories have been the standard ever since [67] who showed body maps of438

local movements and somatosensation. Homunculus maps reflect the reality439
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of local stimulation, but eschew any larger picture. The global picture owes440

its discovery to [68] who show that cortical stimulation could larger posture441

movements directed to external goals. In this organization the neural maps442

produce cooperative movements reflective of the animal’s task. This orga-443

nization has been refined by [69]. Using larger amplitude altering current444

stimulation, Graziano produced large global posture movements that he was445

able to classify in into five behaviors. A similar point made with very dif-446

ferent methodology hasbeen made by [70]. Studies using a balance platform447

show that humans use muscles is stereo-logical groups.448

The global movement data together with the modeling complexity of449

generating the movements makes it likely that they are pre-computed and450

save in motor cortex in some form, but what exactly does this take?451

The dynamic model argues for parsing the information that can be pre-452

planned and has reliable generality such as kinematics [71] and stiffness [72].453

These parameters are distinguished by having to be pre-planned. Before the454

movement, many of the details of the movement, such as surface properties455

are not known and have to be only estimated. Thus the invariant components456

of the movement are most likely to be memorized.457

In contrast, the torques are likely left for the spinal cord. There are many458

reasons for this. 1) The spinal cord contains a vast store of programmable459

reflexes that handle the fastest responses. 2 The spinal cord integrates the460

commands from the brain’s lateral system used by the cortex and medial461

system used by the residual torques like those from the vestibular system.462
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3) While footfalls can be estimated kinematically, the complex interactions463

to handle the contact with an uncertain surface need use feedback loops464

given an kinematic estimate just as a starting point. 4) Given the torques465

are implied by the kinematics, any manipulation with a kinematic correlate466

e.g.[73] may have kinematics as its interpretation 5) It has been shown that467

the extraction of a movement by the cortex has its own dynamic process468

which is not instantaneous [74], but nonetheless is decoupled with the mea-469

sure of muscle activation with electromyography. This obversation, together470

with another that shows supplementary motor cortex is correlated with the471

timing of movement onset [75], suggest that the motor cortecies, may be fo-472

cused on the overhead in movement planning than the fine-grained movement473

dynamics.474

4. Methods475

4.1. Virtual tracing experiment476

For the original kinematic data capture we designed a virtual whole-body477

tracing experiment to elicit natural movements under common goals [26].478

Subjects wore a virtual-reality helmet, Oculus Rift [76], to see a virtual three479

dimensional interior room with a dojo backdrop via stereo video. They were480

required to trace a series of paths positioned at fixed locations in the virtual481

environment. The movements of their bodies and variables relevant to the482

tasks were simultaneously recorded using the PhaseSpace motion capture483

system [77]. The WorldViz Vizard software package [78] both controlled the484
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virtual tracing protocol and the recording of the motion capture data. Fig485

10 shows the virtual environment setup. Fig 1 shows the nine paths that486

subjects traced.487

Data pos-processing. For some frames the motion capture system is un-488

able to determine the 3-dimensional location of some markers, thus raw mo-489

tion capture data usually contains some segments of signal loss (dropouts).490

Dropouts are relatively infrequent in practice but can occur over significant491

temporal intervals, which makes linear interpolation a poor choice for recon-492

structing the raw motion capture data. In this experiment, trajectory-based493

singular value threshold was implemented to reconstruct missing marker data494

with a minimal impact on its statistical structure. The data for each subject495

was interpolated using a separate matrix completion model.496

In addition to the data interpolation process if a participant did not trace497

the path successfully, e.g. their index fingers were too far behind the tracing498

points at a certain frame, or a recording of a tracing trial failed, e.g. too499

many markers were off during a tracing which leads to a extremely large500

joint torques, we would consider this tracing invalid and the data would not501

be used.502

4.2. Human dynamic model503

To compute the energy cost of subjects tracing paths, we used our human504

dynamic model [58]. By replaying the virtual tracing experiment’s kinematic505

data, we can compute can the joints’ properties, e.g. torques and angles, at506
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(a) Before tracing (b) After tracing

(c) A subject doing the tracing task (d) The skeleton plot of the subject

Figure 10: the virtual environment setup. (a) shows a full view of a path, denoted by a
black path, and the starting position, denoted by a large white sphere. The small white
sphere on the path at the end of a red segment is the tracing target sphere. (b) depicts the
scene when a trial is finished. The green path is the actual tracing trajectory generated by
a subject. (c) illustrates a subject in the act of tracing a path in the laboratory’s motion
capture 2 x 2 x 2 meter volume. and (d) shows the lab coordinate system. The scale on
the graph is in meters. The the subject’s skeleton and the traced path in the 3D space
are plotted. The color dots correspond to a subset of the fifty active-pulse LED markers
on the suit and the virtual-reality helmet. Related to Figure 2.
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frame rates. The human dynamic model is built on top of the ODE physics507

engine [79]. It consists of a collection of rigid bodies connected by joint.508

Each joint connects two rigid bodies with anchor points (center of rotation)509

defined in the reference frame of both bodies. The locations of these anchor510

points determine the segment dimensions (bone lengths) of the character511

model. Fig. 11 shows the number of body segments and topology of the512

human dynamic model.513

B

Joint Part 1 Part 2 DOF/joint Total DOF
Cervical Head Neck 3 3
Thoracic Neck Upper Torso 3 3
Lumbar Upper Torso Lower Torso 3 3
Sacral Lower Torso Pelvis 3 3
c.Clavicle Upper Torso c.Collar 3 6
c.Shoulder c.Collar c.Upper Arm 3 6
c.Elbow c.Upper Arm c.Lower Arm 2 4
c.Wrist c.Lower Arm c.Hand 2 4
c.Hip c.Pelvis c.Upper.Leg 3 6
c.Knee c.Upper Leg c.Lower Leg 2 4
c.Ankle c.Lower Leg c.Heel 2 4
c.Tarsal c.Heel c.Sesamoid 1 2

Figure 11: The 48 internal DOFModel A. Four ball-and-socket joints connect five
body-segments along the spine from the head to the waist. Ball-and-socket joints are also
used at the collar-bone, shoulder, and hip. B. A summary of the joints used in the model.
c. = chiral: there are two of each of these joints (left and right). Universal joints are
used at the elbows, wrists, knees, and ankles. Hinge joints connect the toes to the heels.
All joints limit the range of motion to angles plausible for human movement. Our model
assumes that joint DOFs summarize the effects of component muscles.

Fig. 12 shows a interface that allows the simulation of human movements514

via a multi-purpose graphical interface for analyzing movement data cap-515

tured through interaction with the virtual environment. With this tool, it516
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is possible to interactively fit a model to motion capture data, dynamically517

adjust parameters to test different effects, and visualize the results of kine-518

matic and dynamic analysis, such as the example in Fig 13, which shows519

a four stages in a tracing sequence made originally by a participant of the520

virtual tracing experiment and recreated by applying the inverse dynamics521

method using this tool.522

Figure 12: Our analysis tools use the physics engine to compute inverse kinematics and
inverse dynamics. They also support various visualizations of relevant data and control
for analyzing and producing physically-based movements. The programmed parameters of
the model consist of its joints and its 3D marker positions. For example, the right column
represents the positions of the markers relative to their corresponding body segments, e.g.
the first row shows the information of marker1: 1) ”1” represents the marker index, 2)
”head” means marker 1 is attaching to the ”head” body segment, 3) the remaining three
float numbers are marker1’s relative position.
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(a) (b)

(c) (d)

Figure 13: Model capability illustration. Four points in a tracing sequence reproduced
with physics-engine-based inverse dynamics using recorded motion capture data from a
human subject.
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Model fitting. The quality of the fit between the data and the model can523

significantly influence the energy computation. The technique for fitting524

a model to data begins with a character model that serves as a template,525

Fig. 12, providing the number of body segments and topology of the model.526

We further require that labeled markers used in motion capture be assigned527

to specific model segments. It may be straightforward to derive these using528

a technique such as in [80, 81]. However, it is also not difficult to do by529

hand. It would become tedious if one had to go through the process for530

many different models. Fortunately, the motion capture suit typically puts531

the markers on the same body segments, even if they are in slightly different532

places and the body segments have different dimensions.533

4.3. Energy cost computation534

The centerpiece of the analysis depends critically on the definition of a535

posture. At each frame, posture is defined as a vector of the joint torques536

and angles of each of N joints (N = 22 in our dynamic human model). The537

posture p at a frame is a 6n-dimensional column vector presenting the joints538

properties of the i th participant, thus539

p = [j1, j2, ..., jN] (1)

ji = (τi, ai) (2)

where τi = (τix , τiy , τiz) and ai = (aix , aiy , aiz) represents the torques and540

angles of the i th joint at a frame respectively and i = 1, 2, ..., N . For the541
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joints whttps://www.overleaf.com/project/5f25a6a28109fa0001d5233chich have542

less than three dimensions, e.g. hinge joints, universal Joints, the values at543

unused dimension were assigned zero.544

The power W of ith joint at a frame t is a scale and equals to the inner545

product of its torque τi and its angular velocity ωi, thus546

ωi(t) = ai(t) − ai(t− 1) (3)

Wi(t) = τi(t) · ωi(t) (4)

Therefore the power of a posture at frame t is presented as:547

W (t) =
N∑
i=1

Wi(t)

Assuming it takes a participant T frames to trace a path, then the total548

energy cost E of the participant tracing a path is:549

E =
T∑
t=1

W (t)

The energy cost analysis is naturally organized into three separate stages.550

Initially, we analyze the subjects energy cost and residual torques of tracing551

path1 which is the simplest path. Next, we computed the tracing cost of all552

nine paths. To compare the energy cost of tracing a path across subjects, we553
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computed the average energy cost for all five repeated traces of each subject.554

Finally, we measured the tracing cost of perturbed participant’s trajectories555

and perturbed paths.556
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