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Abstract 

Interaction between proteins and RNA is critical for post-transcriptional regulatory processes. 
Existing high throughput methods based on crosslinking of the protein-RNA complexes and 
polyA pull down are reported to contribute to biases and are not readily amenable for identifying 
interaction sites on non polyA RNAs. We present Protein Occupancy Profile-Sequencing (POP-
seq), a phase separation based method in three versions, one of which does not require 
crosslinking, thus providing unbiased protein occupancy profiles on whole cell transcriptome 
without the requirement of polyA pulldown. Our study demonstrates that ~68% of the total POP-
seq peaks exhibited an overlap with publicly available protein-RNA interaction profiles of 97 
RNA binding proteins (RBPs) in K562 cells. We show that POP-seq variants consistently 
capture protein-RNA interaction sites across a broad range of genes including on transcripts 
encoding for transcription factors (TFs), RNA-Binding Proteins (RBPs) and long non-coding 
RNAs (lncRNAs). POP-seq identified peaks exhibited a significant enrichment (p value < 2.2e-
16) for GWAS SNPs, phenotypic, clinically relevant germline as well as somatic variants 
reported in cancer genomes, suggesting the prevalence of uncharacterized genomic variation in 
protein occupied sites on RNA. We demonstrate that the abundance of POP-seq peaks increases 
with an increase in expression of lncRNAs, suggesting that highly expressed lncRNA are likely 
to act as sponges for RBPs, contributing to the rewiring of protein-RNA interaction network in 
cancer cells. Overall, our data supports POP-seq as a robust and cost-effective method that could 
be applied to primary tissues for mapping global protein occupancies. 

Keywords: POP-seq, occupancy, transcriptome, crosslinking, phase separation, regulatory sites, 
Protein-RNA interaction 
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Introduction 

Interaction of proteins with RNA is crucial for post-transcriptional gene regulation such as 

capping, splicing, polyadenylation and localization which is indispensable for cellular 

homeostasis and survival 1,2. Despite the increasingly appreciated role of protein-RNA 

interactions, the global occupancy profiles of proteins in a cellular environment is not fully 

elucidated. For instance dysregulated expression of RNA binding proteins (RBPs) has been 

associated with a broad spectrum of human pathologies including cancers, neurological and 

hereditary diseases 3-6. Therefore, it is critical to investigate the diverse protein occupancy sites 

and their functional impact on physiology and diseases.  

Experimental approaches such as crosslinking followed by immunoprecipitation (CLIP) have 

been widely used to identify the binding pockets of specific RBPs across the transcriptome 7,8. 

CLIP based methods exploit the stability of crosslinked protein-RNA complexes by ultraviolet 

(UV) irradiation followed by immunoprecipitation and sequencing of the co-purified RNA 9-11. 

However, these methods are reported to contribute to biases in the interaction profiles due to the 

inherent nature of UV crosslinking 12-14. Other methods that employ antibody pulldown of 

protein-RNA complexes such as RIP-seq and DO-RIP-seq 15-17 are difficult to scale up for 

detecting hundreds of RNA interacting proteins at the same time. Methods like POPPI-seq 18 and 

others have enabled the capture of protein-RNA interaction sites by incorporation of 

photoreactive nucleosides in UV irradiated cells followed by poly-A pull down and sequencing 

of the bound RNA. Although, the use of photoreactive nucleosides is known to induce cellular 

stress that may result in non-physiological protein-RNA interactions and thus limits their 

application to only in-vitro cultures 8. In addition, polyA pulldown requirement in these methods 

excludes their application to non-polyadenylated RNAs such as lncRNAs, miRNAs and histone 

mRNAs 18,19. Several methods also employ formaldehyde crosslinking to capture protein-RNA 

complexes, however formaldehyde is also known to introduce biases by capturing non-specific 

interactions 8,20-22. Therefore, there is a need to develop unbiased and cost-effective method that 

can map the global occupancy profiles of protein bound sites in a transcriptome wide manner 

with its application to diverse species of RNA.  

Trizol based phase separation strategy has emerged as a robust technology that has expanded the 

identification of protein binding sites independent of the poly-A capture 23-25. Trizol extraction is 
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deployed as a prevalent method to purify total RNA from the cell lysates . This involves the 

solubilization of biological material by phenol and guanidium isothiocyanate followed by 

chloroform induced phase separation. After the phase separation, proteins migrate to the organic 

phase, RNA migrates to the aqueous phase and the DNA/RNA-protein adducts are trapped in the 

interphase.  

In this study, we propose a method called POP-seq (Protein Occupancy Profile-sequencing) that 

incorporates a multi-step phase separation strategy using trizol, followed by high-throughput 

sequencing of small RNAs, without the requirement of poly-A pulldown. Current study reports 

three versions of POP-seq; NPOP-seq (no-crosslinking), FPOP-seq (formaldehyde crosslinking) 

and UPOP-seq (UV crosslinking), among which NPOP-seq can efficiently capture the 

interactions without crosslinking mediated biases under physiological conditions. Computational 

analysis of POP-seq data revealed a significant enrichment of clinically relevant somatic variants 

in the protein-RNA interaction sites. Further, this study also demonstrates that highly expressed 

lncRNAs act as sponges to titrate the abundance of RBPs thereby altering the protein-RNA 

regulatory networks. Overall, POP-seq is a robust and cost-effective method that can be utilized 

by researchers to capture the protein occupied sites on all RNA types.  
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Results 

POP-seq captures protein bound RNA fragments with three transcriptome wide 

approaches 

We aimed to generate an unbiased transcriptome wide protein-RNA occupancy profiles using a 

trizol based phase separation method, POP-seq (Protein Occupancy Profile-sequencing) in K562 

cells.  Recent studies have demonstrated that phase separation using trizol yields abundance of 

RNA-protein interactions at the interphase 23,24. However, identification of precise protein 

occupied pockets across transcriptome remains obscure.  

POP-seq is employed in three different versions: NPOP-seq (no crosslinking), FPOP-seq 

(Formaldehyde crosslinking) and UPOP-seq (UV crosslinking) in K562 cells (Figure 1A).  POP-

seq employs trizol lysis of cells that generates three phases: aqueous phase, interphase, and 

organic phase. After removal of aqueous and organic phases, interphase is subjected to RNase 

A/T1 digestion, to remove the unprotected RNA from the RNA-Protein complexes trapped in the 

interphase. This is followed by degradation of the bound protein counterpart leaving behind the 

small RNA pockets using proteinase K. Further, DNase treatment ensures the sample quality by 

eliminating any DNA traces that might arise from the interphase. This is followed by removal of 

highly abundant ribosomal RNA (Figure 1B). Implementation of RNase digestion creates a 5’-

hydroxyl, and 3’-phosphate ends in purified RNA making it inappropriate for adapter ligation 

during library preparation. Therefore, we modified RNA ends using T4 Polynucleotide kinase 

(PNK) and Calf intestine alkaline phosphatase (CIAP) to add 5’-phosphate and 3’-hydroxyl to 

the ends (Figure 1B). RNA integrity was assessed by Bioanalyzer QC and small RNA libraries 

were prepared for high throughput short read sequencing by Illumina, next-seq platform (Figure 

1B). Together, this method allows identification of global protein occupancy across 

transcriptome.   

 

POP-seq reproducibly capture the abundance of protein-RNA interactions on the exonic 

regions in a human leukemia cell line 

To characterize the transcriptome wide binding of the proteins, POP-seq libraries (in replicates) 

were sequenced to generate ~20 million reads each. We implemented our NGS pipeline to 

facilitate the analysis of the POP-seq data which includes quality control and read alignment 
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followed by peak calling, resulting in the identification of 319657, 288129, and 320310 unique 

peaks in the respective protocols (Figure 2A). Overall, ~85% of total peaks had length below 50 

bp (Figure 2B). Since reproducibility is an important aspect to estimate the robustness of high 

throughput methods, we compared the aligned reads per 10 kb genome in replicates for each 

protocol using deepTools 26 ‘plot correlation’ command. Our data showed a correlation of ~64% 

(spearman correlation R2 values; 0.65, 0.64, 0.64 for NPOP, FPOP and UPOP respectively) 

between the replicates as shown in Figure S1. Comparison of POP-seq peaks with an end to end 

50% peak overlap the combined eCLIP 27 profile of 97 RBPs from the ENCODE project 28 

revealed support for 68.2%, 67.3% and 66.4% in NPOP, FPOP and UPOP-seq respectively. 

Additionally, we observed that ~64% of the genes exhibited by POP-seq peaks are common 

across the three protocols (Figure 2C). We observed that even the NPOP-seq can capture a 

significant fraction of genes targeted by proteins, while missing ~19% of the total identified 

genes by the other two versions of POP-seq (Figure 2C). 

Next, we examined the distribution of POP-seq peaks across transcript regions annotated by 

HOMER 29  and observed that majority of the peaks were mapped to the exons (~48%) while a 

relatively lower proportion were mapped to intronic regions (~19%) and 3’UTR’s (~16%) 

(Figure 2D). Our observation supporting the higher proportions of the peaks in exonic regions 

was in agreement with the previous reports in MCF7 and HEK293 cell lines 18,19. Next, we 

examined the fraction of gene types exhibiting the POP-seq peaks which revealed that majority 

of the genes (~67.3%) mapped to protein coding followed by ~28.4 % lncRNA and ~ 18.6 % 

snoRNA with respect to the total genes annotated in the human reference genome (hg38) (Figure 

2E). These proportions were generally consistent across all the POP-seq protocols.  

POP-seq illustrates a significant enrichment for protein-RNA interactions  

To rigorously evaluate whether POP-seq identifies any non-RBP binding events, we performed 

three comprehensive analyses as summarized below (i) To estimate non-RBP interactions, we 

compared the POP-seq peaks with ChIP-seq data of 67 proteins and CLIP-seq data of 79 proteins 

available for K562 cells (from ENCODE project). We observed a significantly higher overlap (p 

value < 2.2e-16) of POP-seq peaks with CLIP-seq peaks compared to ChIP-seq peaks as shown 

in Figure S2A, (ii) To estimate the protein-DNA interactions (false positives) that could be 

captured by POP-seq, we systematically compared the POP-seq peaks (and 5 random peak 
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profiles separately) with the binding profile of 18 proteins for which both ChIP-seq and CLIP-

seq data was available in K562 cells (from ENCODE project). Our results showed a significant 

enrichment (Odds ratio > 20 averaged across 5 random controls, p value < 2.2e-26, Fishers Exact 

test) of POP-seq signals overlapping with the CLIP-seq profile than the ChIP-seq profile of these 

18 proteins (Figure S2B), indicating that POP-seq peaks are enriched for protein-RNA 

interactions. Among the 18 tested proteins, NONO (Non-POU domain-containing octamer-

binding protein), which is known to bind both DNA and RNA 30,31, expectedly demonstrated 

relatively similar significance of binding to both DNA and RNA compared to random locations. 

Overall, our analysis shows that irrespective of POP-seq protocols, signals are underrepresented 

in ChIP-seq data while overrepresented in the CLIP-seq data indicating a clear enrichment for 

RNA binding events compared to publicly available protein-DNA maps. (iii) To estimate the 

ribosomal protein interactions captured by POP-seq, we compared the POP-seq peaks with 

publicly available ribo-seq data in K562 cells. Our analysis showed that ~20% of the total POP-

seq peaks (with peak length ≤50 bp) exhibited 50% end-to-end overlap with the ribo-seq peaks 

indicating that some ribosomal protein-RNA interactions are captured by POP-seq.  

Comparison of POP-seq data with Formaldehyde and UV crosslinked RBPs reveals high 

quality of POP-seq peaks 

POP-seq is a technique which provides occupancy levels for proteins on a global transcriptome-

wide scale. The functionality of thousands of binding sites that are generated resulting from this 

method could correspond to scores of RBPs and RNP complexes. Since there are no large-scale 

assays currently available to validate the RNA-protein interaction sites globally, and the low 

throughput assays will not cover large number of interaction sites, therefore, we employed 

orthogonal methods using publicly available data for 24 formaldehyde crosslinked RBPs 32 with 

respect to five random non-peak files (See methods) and eCLIP profile of 97 RBPs 28 in the 

K562 cells from ENCODE (see Methods). Our analysis indicates a significant enrichment of 

POP-seq peaks in both CLIP-seq (Figure 3A for top 24 RBPs, supplementary Figure S3) and 

fRIP-seq profile (Figure 3B) of individual RBP’s compared to 5 random non-peak profiles. 

Confusion matrix for this analysis is documented in supplementary Table S1 and S2. Overall, our 

analysis shows that POP-seq can recover high quality peaks corresponding to specific RBPs 

identified from individual crosslinking protocols.  
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CRISPR knock out RNA-sequencing data of RBPs supports the functionality of POP-seq 

peaks 

Development of targeted genome editing using CRISPR has revolutionized the genomic research 
33, particularly to understand the molecular mechanism involved in gene regulation and 

expression 34,35. A recent study by our research group demonstrated that the functional relevance 

of protein-RNA interactions can be estimated by the expression of the exons upon perturbation 

of RBP binding site in their neighborhood using CRISPR-Cas9 system 36. Therefore, we aimed 

to interrogate the functional impact of POP-seq captured protein-RNA interactions by its 

systematic comparison with the eCLIP profile of RBP’s, for which knockout data is publicly 

available in ENCODE project 28,37. For this analysis, we used two RBPs; a) DGCR8 (DiGeorge 

Syndrome Critical Region 8), which is involved in microRNA processing and is implicated in 

the pathogenesis of cancer 38,39 and b) IGF2BP1 (insulin like growth factor 2 mRNA binding 

protein 1) which is a critical post-transcriptional regulator of various mRNA involved in cancer 

progression 40. First, we identified the POP-seq peaks from the individual protocol that showed 

>50% base-to-base overlap with eCLIP profile of respective RBP (obtained from ENCODE 28). 

Next, we extracted the expression levels of exons ‘proximal’ (<1000 bp) to overlapped peaks 

from CRISPR knock out data set (Material and Methods). We observed that the cumulative 

expression level of ‘proximal’ exons was significantly dysregulated with respect to the non-

targeting control. We observed that there was a significant reduction in the expression of 

‘proximal’ exons in DGCR8 KO and a significant increase in IGF2BP1 KO with respect to their 

non-targeting CRISPR control (Figure 4). However, there could be alternative hypotheses such 

as the contribution of other binding sites from same or different RBPs that could account for the 

compensatory effects in expression levels in our CRISPR analysis, which could explain why not 

all the proximal exon levels are altered. More importantly, RBP binding does not always alter the 

expression of the target exon/transcript but instead may contribute to editing, structure and 

localization of bound RNA. However, despite these alternate possibilities, it is promising to 

observe that the loss of binding sites has a significant impact on the target exons. Overall, this 

analysis suggests that POP-seq can capture the functionally relevant protein bound sites and 

indicates that the dysregulation of exons proximal to the functional binding site occur in an RBP 

dependent manner.  
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POP-seq supports the protein-RNA binding sites across regulatory gene families 

To obtain a detailed perspective of the peaks captured by POP-seq , we examined the occurrence 

of the protein-RNA binding sites across different regulatory genes, classified as RNA binding 

protein, ENO1 (Enolase1) 41, lncRNA MALAT1 (metastasis associated lung adenocarcinoma 

transcript 1) 42 and a transcription factor, Jun 43. ENO 1 is a crucial glycolytic enzyme involved 

in cell growth and is also reported as an oncogene that promotes metastasis by facilitating cell 

proliferation in multiple cancers including colorectal, lung, and prostate cancer 44-48. We 

observed the abundance of protein bound pockets in the genomic loci of ENO 1 across the POP-

seq protocols  (Figure 5A). We also investigated the protein-RNA interactions in MALAT 1, a 

highly conserved lncRNA that governs a variety of functions including regulation of gene 

expression, alternative splicing, neural development and vascular growth 49-51. Several studies 

report the abundant expression of MALAT1 in multiple cancers such as lung cancer, bladder 

cancer, breast cancer, colorectal cancer and others 49,52-55. Therefore, identification of regulatory 

sites targeted by proteins in MALAT1 is crucial for understanding its pathogenesis in cancers. 

Our data suggest that all the three protocols can capture the abundance of regulatory sites 

targeted by proteins in the genomic boundary of MALAT1 (Figure 5B). We observed relatively 

enhanced signals for protein occupancy sites in MALAT1 locus in UPOP-seq compared to the 

NPOP-seq and FPOP-seq (Figure 5B). To our observation, NPOP-seq also captured the 

physiologically relevant protein-RNA interactions in MALAT1 suggesting its application for 

unbiased protein occupancy profiling (Figure 5B).  

We further explored the regulatory binding sites in AP1 transcription factor subunit ‘Jun’ which 

is a proto-oncogene actively involved in cell proliferation, apoptosis, inflammation and 

carcinogenesis 56-60. We found the occurrence of POP-seq peaks in Jun’s genomic boundary 

across all the three protocols (Figure 5C) consistent with the observations in ENO1 and 

MALAT1.  Overall, the results demonstrate that POP-seq can capture the protein-RNA 

interaction sites across the regulatory gene families.  

POP seq identifies germline and somatic variants that potentially contribute to altered post 

transcriptional regulation 

Single nucleotide polymorphisms (SNPs) are reported as the most common form of somatic 

variations and are widely associated with metabolism, cell cycle regulation and DNA mismatch 
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repair 61,62. In past years, SNPs has emerged as a potential diagnostic biomarker for several 

cancer types 63-66. Therefore, it is imperative to investigate the somatic variations arising due to 

SNPs and their effect on transcriptome wide protein RNA interaction sites.   

In order to detect the somatic variations captured by POP-seq, we calculated the proportion of 

known somatic variations (see Materials and Methods) occurring in the equivalent genomic loci 

of the peaks. We tested the enrichment of genomic variations from GWAS catalog 67 and 

Ensembl Variation database 68 (PhenVar, ClinVar and somatic variations) in POP-seq peaks than 

expected by chance (i.e. 5 random non-peak profiles) using Fisher’s exact test. For this analysis, 

random ‘non-peak’ files were generated as described previously. Our results indicate a 

significant enrichment for each SNP cohort with relatively lesser enrichment for GWAS SNP 

(averaged odds ratio=1.45, 1.42, 1.35 for NPOP, FPOP and UPOP-seq respectively, p 

value<2.2e-16). Similar test for other genomic variations including PhenVar, SomaticVar and 

ClinVar indicated relatively higher enrichment (Odds ratio ~ 22 averaged across 5 random 

controls for each cohort, p value < 2.2e-16, Fishers Exact test) in POP-seq peaks compared to 

non-peaks (Figure 6A). This observation provides support for the enrichment of both germline 

and somatic SNPs including those reported with clinical significance to be prominent on protein 

RNA interaction sites, implying the need for deeper understanding of their functional 

consequences. Indeed, we identified the occurrence of two clinically relevant genetic risk loci 

from GWAS; rs45461499 in CDC20 (Cell-division cycle protein 20) and rs7578199 in HDLBP 

(High Density Lipoprotein Binding Protein) genes that are reported in acute and chronic 

lymphoblastic leukemia respectively 69,70 (Figure 6B and C) to harbor protein-RNA interaction 

sites. Thus, our implementation of POP-seq in K562 cells demonstrate a novel and robust 

approach to elucidate the occurrence of somatic variants in leukemic patients. 

Highly expressed lncRNAs exhibit abundance of POP-seq peaks in K562 cells 

Long non-coding RNAs (lncRNAs) have been widely documented with diverse roles in the 

transcriptional and post-transcriptional regulation of gene expression 71,72. Aberrant expression of 

lncRNA is associated with the pathogenesis of various diseases including cancer 73 and have 

been profoundly recognized as pivotal targets in cancer therapeutics 74. However, the mechanism 

underlying lncRNA regulation is not well elucidated 75. Therefore, we speculated that associating 

the expression of lncRNA with the occurrence of POP-seq peaks would provide an insight into 
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the transcriptome wide regulation of lncRNAs. We observed that the highly expressed lncRNAs 

exhibit abundance of regulatory binding sites in K562 cells (Figure 7A, Materials and Methods), 

suggesting that lncRNAs dynamically interact with RBPs in pathological conditions. In general, 

highly expressed RNAs are expected to be more available for binding by proteins and therefore 

exhibit higher RNA binding events. Therefore, we tested the association between the expression 

levels (high and low) with the number of POP-seq peaks per unit length for both lncRNA and 

non-lncRNA genes across the technical replicates. We found that the replicates exhibited a 

reproducibility in the trend (Figure S4A), irrespective of the POP-seq protocols. To test whether 

such a trend can also be observed for non-lncRNA, we carried out the same analysis across the 

replicates. We observed that there is tendency for even non-lncRNAs to exhibit higher 

expression with more binding sites, however the trend is not as robust with lower significance 

(Figure S4B) compared to lncRNA as shown in Figure S4A.  

Several studies have reported that the majority of the lncRNAs exhibit a ‘sponge effect’ to titrate 

the abundance of regulatory proteins such as RBPs in a cell type specific manner 76-78. These 

studies proposed that lncRNA sponges can extensively rewire the post-transcriptional gene 

regulatory networks by altering the protein–RNA interaction landscape in cell-type and 

phenotype specific manner. Based on this finding we tested the hypothesis that highly expressed 

lncRNAs could sponge the regulatory RBPs that would further provide an insight into lncRNA 

mediated regulation of RBPs in disease context. We uncovered RP11−301G19.1, a highly 

expressed lncRNA in leukemia 79,80, to illustrate the ‘sponge effect’ in K562 cells. We found an 

abundance of this lncRNA in AML patients from TCGA 81  compared to its expression level in 

normal whole blood from GTEx cohort 82 (Figure 7B, inset). In order to predict whether the 

expression of this lncRNA contributes to the survival of AML patients, we employed Kaplan-

Meier survival analysis 83 for RP11−301G19.1. We found that this lncRNA exhibits a significant 

(False Discover Rate (FDR) < 0.00059) prognostic impact in AML patients (Figure 7B).  Next, 

we interrogated the regulatory sites captured by POP-seq in the genomic loci of RP11−301G19.1 

and observed a consistent occurrence of peaks across all POP-seq protocols. Our results 

demonstrate that majority of the POP-seq peaks overlapped with the eCLIP profile of multiple 

RBPs (Figure S5) which further supports the “sponge effect” for RP11−301G19.1. A subset of 

highly expressed RBPs in K562 cells illustrates a general agreement of their eCLIP profile with 

POP-seq peaks in RP11−301G19.1 gene (Figure 7C). To further elaborate the sponge effect, we 
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investigated a well-studied lncRNA MALAT1 which has been shown to interact with numerous 

RBPs 84-88. As illustrated in Figure 7D, we observed that POP-seq captured peaks were sparsely 

distributed along the length of MALAT1 in contrast to the fairly uniform distribution of total 

RNA-seq reads showing higher expression of MALAT1 in K562 cells. We also included a track 

of ENCODE eCLIP peaks for RNA binding proteins HNRNPA1 and PTBP1 with known  

binding to  MALAT1 84  shown in Figure 7D.  The results suggest that HNRNPA1 and PTBP1 

are most likely being sponged by highly expressed lncRNA MALAT1 in K562 cells. 

Additionally, we also observed that other RBPs with transcriptome wide interaction maps 

available from ENCODE project exhibited several binding sites overlapping with POP-seq peaks 

along the length of the MALAT1 and NEAT1 lncRNAs (Supplementary Figure S6A and B). 

Overall, the results suggest that POP-seq can capture the occupancy sites of RBPs on lncRNAs 

and thus advance our understanding of lncRNA regulation in diseases.   

Discussion 

Protein-RNA interaction is a vital phenomenon regulating crucial transcriptional and post-

transcriptional processes starting from intercalation of the DNA-RNA juncture to RNA 

metabolism, translation and decay 89,90. RNA binding proteins have been widely recognized as 

the key regulatory proteins for these processes 91. Although the past few decades have seen a 

surge in the number of methods for capturing protein-RNA interaction sites occupied by RBPs 

on a transcriptome-wide scale 18,19,21. Majority of these protocols employ UV or formaldehyde 

cross linking and poly-A pull followed by sequencing of RNA. However, this excludes their 

application to non-polyadenylated RNAs and so far, a systematic analysis to depict the effect of 

crosslinking on the captured interaction sites has not been investigated. 

In this study, we present POP-seq to assess the protein bound RNA fragments using trizol based 

phase separation.  POP-seq can uniquely map the protein bound RNA pockets in a transcriptome 

wide manner. We implemented three versions of POP-seq to generate an unbiased profile of 

protein-RNA interactions in K562 cells. We demonstrated that POP-seq captured peaks generally 

agreed with the eCLIP profile of several RBPs. The abundance of protein-RNA interactions 

captured by POP-seq was mostly observed in exonic followed by intronic regions, with 

consistent overlap across the POP-seq protocols in K562 cells. Further analysis of publicly 

available CRISPR KO dataset of RBPs from ENCODE project 92, illustrate that POP-seq can 
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capture the functionally relevant protein bound pockets implying that the dysregulation of exons 

proximal to the functional binding site occur in RBP dependent manner. POP-seq also enables 

the identification of clinically relevant somatic variations associated to leukemia. Further, POP-

seq provides a comprehensive evidence of the potential protein binding sites in most of the 

regulatory gene families such as TFs, RBPs and lncRNAs.  

Since ribosomal protein complexes constitute the basic translation machinery and hence are 

expected to be highly abundant in cells. To evaluate the prevalence of ribosomal protein 

occupied sites in our data, we compared POP-seq peaks with publicly available ribo-seq data 93 

in K562 cells. We observed that ~20% of the total POP-seq peaks (with peak length ≤50 bp) 

exhibited 50% end-to-end overlap with the ribo-seq peaks and this fraction was significantly 

reduced with increase in % peak overlap as shown in supplementary Table S3. These 

observations suggest that a fraction of POP-seq peaks correspond to the regions occupied by 

ribosomal complexes indicating a potential for further optimization of the protocol to enhance 

the stringency for selectively capturing sites occupied by regulatory RBPs under physiological 

conditions 

Interestingly, POP-seq provides evidence for the ‘sponge effect’ depicted by lncRNA on 

multiple RBPs thus advancing our understanding of the post-transcriptional regulatory 

mechanism controlled by lncRNAs interacting with RBPs in cancer. In summary, POP-seq is a 

cost-effective and robust approach to elucidate the binding sites of proteins in a transcriptome-

wide manner. Thus, it should stand as a generic framework for mapping the global protein-RNA 

interactions, widening the scope and application of this technique to primary tissues for rapid 

profiling of protein occupancies.  

Materials and methods 

Cell culture 

K562 cells were obtained from the American Type Culture Collection (ATCC). Cells were 

cultured in Dulbecco’s minimal essential medium (DMEM, Gibco) supplemented with 10% 

heat-inactivated fetal bovine serum (FBS, Atlanta Biologicals) along with 1% antibiotics 

(penicillin 5000 Units/ml, Streptomycin 5000 μg/ml). All cells were maintained at 37°C and 5% 
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CO2 in a humidified incubator and fresh media was replenished every alternate day until 

confluent.  

Crosslinking  

Cells were cultured in T-175 flask until a maximum of 90% confluency was reached. A total of 

20 million cells per replicate of each sample were used for UV, formaldehyde, and no-

crosslinking approaches. Cells were washed twice with 1X PBS, the supernatant was removed by 

pipetting and cells were resuspended in 1X PBS. For UV crosslinking, cells in PBS suspension 

were transferred to 100 mm dishes and UV irradiated at 254 nm with 400 mJ/cm2 dosage (UV 

Stratalinker 1800). Immediately after crosslinking, cells were collected in 15 ml tubes and 

pelleted at 1500 rpm for 5 min. Supernatant was discarded and cells were lysed in 1 ml trizol 

reagent (Life Technologies) by pipetting up and down to obtain a homogenous cell lysate.   

For Formaldehyde crosslinking, cells were first washed in 1X PBS twice until all the media is 

removed. Next, cells were resuspended in 30 ml PBS and crosslinked with 0.5% formaldehyde 

for 10 min by gentle shaking at room temperature. To stop crosslinking, 1 M Glycine was added 

to the cell suspension for 5 min by gentle shaking at room temperature. Cells were pelleted down 

at 1500 rpm for 5 min, lysed in 1 ml trizol and homogenized by pipetting up and down. For non-

crosslinked samples, cells were pelleted down, washed in 1X PBS and immediately lysed in 

trizol for phase separation.  

Guanidinium Thiocyanate–Phenol–Chloroform (TRIZOL) extraction 

Trizol lysed cells were incubated at room temperature for 5 min to dissociate the weak RNA-

protein interactions. Phase separation was achieved by adding 200 µl chloroform and thoroughly 

mixed by vortexing, followed by incubation at room temperature for 5 min. Samples were then 

centrifuged at 12000 g for 10 min at 4° C to obtain three phases: aqueous phase (top), interphase 

(middle) and organic phase (bottom).  The aqueous layer was discarded by pipetting and the 

organic layer was discarded by passing the tip through the interphase leaving behind up to 100 µl 

of the organic layer. The interphase was resolubilized in trizol followed by phase separation with 

chloroform three times. After the third phase separation, the interphase was precipitated by 

adding 1 ml methanol, spun down to remove supernatant containing methanol. 

POP-seq strategy 
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Following the trizol lysis and phase separation, POP-seq was implemented on the three versions 

in replicates. Interphase pellet was subjected to RNase A/T1 (Thermo Scientific) degradation in 

RNase buffer (10 mM Tris-HCl, pH 7.5, 300 mM NaCl and 5 mM EDTA, pH 7.5). 2 µg of 

RNase A/T1 mix was added to the interphase pellet, mixed by pipetting, and incubated at 37°C 

for 1 h. Interphase-RNase mixture was resolubilized in trizol reagent to recover the RNA-protein 

complexes. The aqueous and organic layers were discarded as described previously. Interphase 

pellet was precipitated in 1 ml methanol. Next, the interphase was mixed with Proteinase K 

(Ambion) in appropriate buffer (0.1M NaCl, 10 mM Tris-HCl, pH 8, 1 mM EDTA, 0.5% SDS 

and 200 µg/ml proteinase K) and incubated at 50° C for 2 h. After proteinase K digestion, free 

RNA was recovered from the aqueous layer by trizol extraction as described previously.   

Purified RNA concentration was estimated using Nanodrop and up to 1 µg of RNA was 

incubated with DNase I, 1U (Thermo Scientific) at 37°C for 30 min to remove any traces of 

DNA contamination. 1 µl of 50 mM EDTA was added to the reaction mixture and incubated at 

65° C for 10 min to terminate the reaction. RNA was purified using trizol extraction from the 

aqueous layer. At this point, r-RNA depletion was performed with 1 µg input RNA using Ribo-

cop kit (Lexogen) as per manufacturer instructions. Further, the ends of r-RNA depleted RNA 

were modified by treating with Calf intestine alkaline phosphatase (CIAP, Invitrogen) and T4 

polynucleotide kinase (T4 PNK, Thermo Scientific) as per manufacturer protocol. The end 

modification enabled the library preparation of these RNA fragments.   

RNA integrity, library preparation and sequencing 

RNA purity and concentration were assessed at each step using Nanodrop, based on the 

absorbance ratio 260/280 >2. RNA integrity was evaluated using Agilent 2100 bioanalyzer 

system. At least 50 ng of r-RNA depleted RNA was used to generate sequencing libraries using 

the True-seq small RNA library prep kit (Illumina). All libraries were barcoded and sequenced in 

parallel on a Next-seq platform for 400 million reads to obtain 75 bp single end reads.  

Data processing and statistical analysis of POP-seq peaks  

We implemented NGS data processing pipeline to facilitate the analysis of the POP-seq data as 

shown in Figure 2A. Firstly, we investigated the quality of sequenced reads using FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and deployed FASTX-toolkit 
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(http://hannonlab.cshl.edu/fastx_toolkit/) for removal of adapters and low quality read fragments 

wherever applicable. Next, we aligned the high quality reads onto human reference genome 

(GRCh38.p12) using HISAT 94 followed by post processing using Samtools 95. To ensure the 

reproducibility between the replicates, we compared the aligned reads per 10 kb genome using 

deepTools ‘plot correlation’ module 26. We employed Piranha 96 for peak calling with default 

parameters and obtained the resulting POP-seq peaks in bed format. Source code of the POP-seq 

data processing pipeline is accessible at GitHub (https://github.com/Janga-Lab/POP-seq). We 

merged the replicate bed files of respective POP-seq  protocols and used several tools such as 

bedtools 97, HOMER 29 (annotatePeaks.pl), and R (https://www.r-project.org/) for annotation, 

statistical testing and other downstream analysis. We also downloaded the publicly available 

formaldehyde RNA ImmunoPrecipitation (fRIP-seq) data 32 for 24 RBPs from GSE67963 and 

raw ribo-seq data 93 from GSE125218, both generated in K562 cells and processed them using 

the same pipeline and identified the peaks. Next, we computed the fraction of POP-seq peaks 

overlapping with the identified peaks from both the datasets independently using bedtools 97.  

Similarly, we  downloaded the eCLIP 98 profiles of 97 RBPs from ENCODE project 28 and 

concatenated the unique coordinates into a bed file. Resulting coordinates of the binding sites of 

RBPs were compared with the POP-seq peaks using bedtools 97. All POP-seq data have been 

deposited under Gene Expression Omnibus (GEO) accession number GSE142460. We also 

downloaded the raw FATSQ reads of total RNA (accession no. ENCLB822JYE from ENCODE 

project) and processed using the standard NGS pipeline as described in below section. 

Comparison of POP-seq peaks with publicly available CLIP-seq and ChIP-seq data 

We downloaded the ChIP-seq and CLIP-seq profile of available proteins for K562 cells from 

ENCODE project 28. We computed the overlap of POP-seq peaks with CLIP-seq peaks and 

ChIP-seq peaks using bedtools 97.  This dataset also includes 18 proteins for which both ChIP 

and CLIP-seq data is available for K562 cells. We generated 5 random peak profiles for each 

POP-seq protocols using bedtools ‘shuffle’ function. Each random peak profile contains equal 

but “non-peak” locations (with consistent peak width distribution), within the gene boundary. 

Then, we compared the POP-seq derived peaks (and the random peaks separately) with the ChIP 

and CLIP-seq profile of 18 proteins. We employed Fisher’s exact test to estimate the level of 
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significance for the enrichment of POP-seq in protein bound DNA(ChIP-seq)/RNA(CLIP-seq) 

locations compared to non-peaks.  

Integrated data analysis of POP-seq peaks with the CRISPR knock out studies 

CRISPR/Cas9 Knock Down (KD) followed by expression profiling on several RBPs have been 

conducted as part of the ENCODE project 28 to facilitate the understanding of downstream 

biological processes associated to loss of function of the respective RBP. We downloaded the 

raw RNA-sequencing dataset of CRISPR experiments of DGCR8 (n=6), IGF2BP1 (n=2) where 

gRNAs were used to deplete the functional form of RBPs and their non-specific CRISPR control 

(n=8) in K562 cells 92.  We processed the raw sequencing reads using standard NGS data 

analysis pipeline (as described previously). Briefly, we filtered the low-quality reads (Phred 

Score < 30) using FASTQC tool and aligned them onto human reference genome (hg38) using 

HISAT 94. After post processing (using samtools), we used StringTie 99 to quantify the 

expression levels in Transcripts Per Million (TPM) reads for all the genes annotated in human 

genome (hg38). Thereafter, we used an ad-hoc script to calculate the exon levels from the 

resulting gtf files of StringTie and converted the resulting files into an exon expression matrix. 

To further investigate the functional relevance of protein-RNA interactions, we identified the 

POP-seq peaks from the individual protocols that exhibited at least 50% overlap with an eCLIP 

profile of the respective RBP (as described previously). Next, we extracted the expression levels 

of exons, proximal (<1000 bp) to overlapped peaks, from exon expression matrix of the knock 

down experiments. We compared the distribution of the expression levels of these proximal 

exons in non-targeting control to that in respective KD and statistically examined the condition 

specific expression differences using Wilcoxon test 100. 

Identification of somatic variants in protein-RNA interacting sites 

Several studies suggest that single nucleotide variations (SNVs) play an important role in gene 

regulation via riboSNitches’ 101 i.e. by altering RNA secondary structure or TAM (Transcript 

associated mutation) 102 that further contribute to transcriptome complexity in higher eukaryotes. 

Therefore, it is imperative to investigate the genomic variations occurring in protein-RNA 

interaction sites identified by POP-seq protocols. Hence, we downloaded the somatic variants 

reported in the GWAS catalog 67 and Ensembl Variation database 68 including phenotype and 
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clinically associated somatic variations (ftp://ftp.ensembl.org/pub/release-

97/variation/vcf/homo_sapiens/). In order to detect the somatic variations captured by POP-seq, 

we tested the enrichment of genomic variations from GWAS catalog 67 and Ensembl Variation 

database 68 (PhenVar, ClinVar and somatic variations) in POP-seq peaks than expected by 

chance (i.e 5 random non-peak profiles) using Fisher’s exact test. For this analysis, random ‘non-

peak’ files were generated as described previously. To gain disease specific understanding of the 

role of SNPs in impacting protein-RNA interactions, we also investigated the POP-seq peaks 

overlapping with SNPs associated with leukemia (from GWAS) and generated genomic tracks in 

Integrative Genomics Viewer (IGV) 103 for CDC20 and HDLBP genes. 

Comparative analysis of POP-seq peaks across lncRNAs and their association with lncRNA 

expression 

We mapped the protein-RNA interaction sites captured by POP-seq protocols onto known 

lncRNAs using bedtools. For each lncRNA, the number of POP-seq peaks normalized by 

respective gene length was calculated. To obtain the expression levels, we processed the raw 

RNA sequencing dataset (paired end reads, n=5, in replicates) of K562 cells from ENCODE 

using a standard NGS data analysis pipeline described earlier and generated a gene expression 

matrix. TPM values of known lncRNAs 104 were extracted from the resulting matrix and 

averaged for each lncRNA across the replicates. Further, we binned all the expressed lncRNAs 

into two groups based on their median TPM value. We compared the number of POP-seq peaks 

(normalized per unit length of the lncRNA) mapped to the two groups of lncRNAs categorized 

based on low and high median expression in K562 cells.  The difference in normalized peak 

counts between the two groups was statistically tested using Wilcoxon test 100.  

Additionally, we downloaded the raw RNA sequencing dataset of ‘whole blood’ cohort from 141 

individuals from the GTEx 105 and 174 AML patient samples from The Cancer Genome Atlas 

(TCGA) 81.  We processed the dataset using the NGS data processing pipeline, to generate 

expression levels for all human genes annotated in the human genome (hg38). We extracted the 

expression level of lncRNA - RP11−301G19.1 (ENSG00000227706) from the two groups; AML 

and GTEx ‘whole blood’. The difference in expression levels was statistically examined between 

the two groups using Wilcoxon test. We also calculated the patient’s survival over time using the 

expression levels of this lncRNA in AML patients using the Kaplan-Meier method implemented 
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in ‘The survival’, an R package 83. We generated a genomic track for this lncRNA using IGV 

and illustrated the regulatory sites identified by POP-seq. We re-investigated the genomic 

coordinates of this gene in SliceIt 36 and added a panel to enable all the possible regulatory sites 

captured by eCLIP of RBPs in ENCODE project 28. 
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Data Availability 

All POP-seq data have been deposited under Gene Expression Omnibus (GEO) accession 

number GSE142460. Source code of the POP-seq data processing pipeline and genome track 

browser shots were made available in GitHub (https://github.com/Janga-Lab/POP-seq). 
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Figure legends: 

Figure 1. Experimental workflow of POP-seq in K562 cells (A) Three versions of POP-seq, 
No-crosslinking (NPOP-seq), UV crosslinking, 254 nm (UPOP-seq) and formaldehyde 
crosslinking (FPOP-seq) generate three phases (aqueous, interphase and organic phase) upon 
trizol lysis, (B) Cell lysates from the POP-seq are digested with RNase A/T1 mix, Proteinase K 
and DNase followed by r-RNA depletion, RNA quality check and library preparation for short 
read Illumina sequencing.  

Figure 2. Statistical analysis of POP-seq dataset (A) Workflow for POP-seq data processing 
and downstream analysis (B) A density plot showing the distribution of POP-seq peaks length 
(bp) (C) Venn diagram showing the overlap of genes exhibiting POP-seq peaks across the 
protocols. (D) Proportion of POP-seq peaks in genomic elements (E) Fraction of gene types 
captured by POP-seq. 

Figure 3. Comparison of POP-seq peaks with RBP centric peaks derived from orthogonal 
assay. Bar plot showing the enrichment of POP-seq peaks in (A) eCLIP and (B) fRIP-seq 
profiles of individual RBP in K562 cells, compared to 5 random peak profiles and statistically 
tested using Fisher’s exact test. 

Figure 4. Comparison of POP-seq data with CRISPR knock out RNA-sequencing data of 
RBPs. Box plot showing the cumulative exon expression levels proximal (<1000 bp) to POP-seq 
peaks overlapped (50% end to end peak overlap) with the eCLIP profile of DGCR8 and 
IGF2BP1 in K562 cells (ENCODE project). The exon expression levels of respective RBP 
CRISPR Cas9 knock out was compared with respective non-targeting Crispr control and 
statistically tested using Wilcoxon test. 

Figure 5. Genomic tracks showing the POP-seq peaks spanning the genomic loci of 
regulatory genes; (A) RBP – Enolase1 (ENO1) (B) LncRNA – MALAT1 and (C) Transcription 
factor – Jun. Total RNA-seq data (from K562 cells) is included in the track as a background 
control (Y-axis adjusted to POP-seq scale). 

Figure 6. Somatic variation captured in POP-seq peaks (A) Bar plot showing the enrichment 
(odds ratio) of genomic variations (GWAS, PhenVar, ClinVar and somatic variations) in POP-
seq peaks, statistically tested using Fisher’s exact test. Genomic tracks showing the POP-seq 
peaks spanning the genetic risk loci (GWAS SNP) associated to (B) acute myeloid leukemia in 
CDC20 and (C) chronic myeloid leukemia in HDLBP. 

Figure 7. Comparative analysis of POP-seq peaks with lncRNA expression (A) Violin plot 
showing the number of POP-seq peaks (normalized per unit length of the lncRNA) binned in low 
and high expression group of LncRNAs in K562 cells.  The difference in normalized peak counts 
between the two groups was statistically tested using Wilcoxon test. (B) Kaplan-Meier plot 
showing the association of lncRNA RP11−301G19.1 expression with the survival of AML 
patients (in days). An inset showing the expression of RP11−301G19.1 in whole blood (GTEx) 
cohort and AML patients (from TCGA) where the difference between the two groups was 
statistically tested using Wilcoxon test (C) Genomic tracks showing the distribution of POP-seq 
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variant peaks in RP11−301G19.1 along with the eCLIP profile of highly expressed RBPs in 
K562 cells. (D) Genomic tracks showing the distribution of POP-seq peaks in MALAT1 along 
with the eCLIP profile of HNRNPA1 and PTBP1 in K562 cells. Total RNA-seq data (from K562 
cells) is included in the track as a background control (Y-axis adjusted to same POP-seq 
coverage scale).  
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