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Abstract 

Background: IDH wild-type glioblastoma (GBM) is the most aggressive tumor in the 

central nervous system in spite of extensive therapies. Neoantigen based personalized 

immune therapies achieve promising results in melanoma and lung cancer, but few 

neoantigen based models perform well in IDH wild-type GBM. Unlike the neoantigen 

load and occurrence that are well studied and often found useless, the association 

between neoantigen intrinsic features and prognosis remain unclear in IDH wild-type 

GBM.  

Results: We presented a novel neoantigen intrinsic feature-based deep learning model 

(neoDL) to stratify IDH wild-type GBMs into subgroups with different survivals. We 

first calculated a total of 2928 intrinsic features for each neoantigen and filtered out 

those not associated with survival, followed by applying neoDL in the TCGA data 

cohort. Leave one out cross validation (LOOCV) in the TCGA demonstrated that 

neoDL successfully classified IDH wild-type GBMs into different prognostic 

subgroups, which was further validated in an independent data cohorts from Asian 

population. Long-term survival IDH wild-type GBMs identified by neoDL were 

found characterized by 12 protective neoantigen intrinsic features and enriched in 

development and cell cycle. 

Conclusions: Our results provide a novel model, neoDL, that can be therapeutically 

exploited to identify IDH wild-type GBM with good prognosis who will most likely 

benefit from neoantigen based personalized immunetherapy. 
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Background 

Glioblastoma is the most common aggressive primary brain tumor associated with 

profound genomic heterogeneity and high recurrence rate, which has limited therapy 

development[1-3]. Currently, the standard therapy for GBM is surgical resection, 

followed by radiotherapy and adjuvant chemotherapy[4, 5]. Although the survival 

status of GBM patients has improved with the advancement of modern combination 

therapies, the overall prognosis of the majority of GBM patients remains poor and 

clinical outcomes vary considerably among patients[6]. GBM still has the worst 

5-year overall survival rates among all human cancers[7], with a dismal median 

duration of 14 months[8, 9]. 

 

Tumor neoantigens, classically regarded as being derived from mutation-containing 

proteins that generate novel immunogenic epitopes[10]. High nonsynonymous coding 

mutational loads harbor more neoantigens that are presented to CD8+ T cells on 

restricted HLA-I subtypes[11-13], leading to stronger immunogenicity and better 

overall survival in selected tumor types such as melanoma[14], lung cancer[15], and 

colorectal tumors[16]. However, in gliomas, higher mutational load means increased 

tumor aggressiveness[17]. Neoantigens are the attractive targets in personalized 

immunetherapies, promoting tumor-specific T-cell responses and affecting antitumor 

immune responses in a number of preclinical models[18, 19]. Additionally, optimized 

high-quality neoantigens model has been applied recently for the identification of 

GBM patients, which performed optimally in providing a more accurate prediction of 
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anti-tumor immunity and identified patients with the longest survival[20]. Although 

the occurrence and characterization of neoantigen in pan-cancer has been studied, 

showing that all positions in neoepitopes of all lengths containing more hydrophobic 

residues than the wild-type sequences[21], the comprehensive features of neoantigens 

associated with prognosis and immunoreaction in IDH wild-type GBM remain 

elusive. 

 

Deep learning models data by learning high-level representations and could learn 

features from noisy and raw data[22, 23]. It has outperformed traditional machine 

learning methods, especially in image and natural language processing[24-26]. The 

remarkable flexibility and adaptability of deep learning models have led to the 

proliferation of their application in bioinformatics research, such as protein structure 

prediction, biomedical imaging, and biomedical signal processing[26]. In recent years, 

image-based deep learning model has been widely used in cancer study and has 

shown excellent level-accuracy in precise diagnosis and prognostic stratification, such 

as colorectal[27], prostate[28, 29], melanoma[30], and gliomas[31]. Deep learning has 

also demonstrated its strong ability in prediction. Glioma grading[32], glioma genetic 

mutation[33] or survival[34] have all be predicted in previous researches. Recently, it 

also demonstrated that the application of neoantigen-based machine learning could 

successfully predict neoantigen immunogenicity in colon and lung 

adenocarcinomas[35].  
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In this manuscript, we present a deep learning model, which was designed based on 

the intrinsic features of neoantigens and could successfully stratify IDH wild-type 

GBM patients of TCGA into subgroups with different survival. This model was 

further validated in an independent data from Asian population, demonstrating its 

powerful predictive effects in some higher-grade glioma subtypes, including Classical, 

Classical-like, Glioblastoma, IDH wild-type, Mesenchymal-like. The features-based 

deep learning model informed a cohort of patients with better clinical prognosis, 

which generally exhibits biological processes such as development, and cell cycle. 

Our model for IDH wild-type GBM has important implications in diagnosis and 

prognosis, and also helps in identify patients who most likely benefit from neoantigen 

based personalized immunetherapy.  

 

Data Description  

Mutations and clinical information were downloaded from the ATLAS-TCGA 

pan-glioma study[36]. Gene expression microarray data with Agilent chip (G4502A) 

at level 3 were downloaded from TCGA Data portal. We termed the data from TCGA 

as TCGA cohort. Mutations, RNAseq gene expression data, and clinical information 

in Asian population were collected from a recently published cohort[37], designated 

as Pri cohort. The samples that were not diagnosed as IDH wild-type GBM or did not 

have clinical information were removed, resulting in 268 and 46 samples in the two 

cohorts, respectively.  
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A neoepitope with strong affinity for MHC (𝐼𝐶50 equal or less than 500 nM ) may be 

a more robust neoantigen candidate if the paired wild-type epitope has a poor affinity 

for MHC (𝐼𝐶50 greater than 500 nM)[38]. The neoantigens for each sample in both 

TCGA cohort and Pri cohort were from our previous study[20], which used missense 

mutations to generate all possible 9-mer peptides and defined the mutant 9-mer 

peptides as neoantigens when the 𝐼𝐶50 of mutant-type 9-mer peptides was less than 

500 nM and the corresponding wild-type binder more than 500 nM. All the 

downstream analyses were based on the inferred neoantigens (the mutant peptides) 

and their corresponding wild-type peptides. 

Analyses 

Identification of sequence features of neoantigens associated with the overall 

survival of IDH wild-type GBMs 

Tumor mutational burden has been described as a predictor of tumor behavior and 

immunological response[39-41]. Recent researches showed that tumor mutational 

load correlated with improved survival and immunotherapy response in some tumors, 

including melanomas[42], ovarian[39], and bladder carcinoma[43]. To estimate the 

relationship between missense mutational load and overall survival, we calculated 

missense mutational load for 262 and 42 IDH wild-type GBMs in TCGA and 

Pri-cohort, respectively. Kaplan-Meier analysis demonstrated that there were no 

statistically significantly different overall survival between higher and lower mutation 

loads of IDH wild-type GBMs in both TCGA cohort and the Pri cohort (Figure 1A-B), 
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consistent with the previous research[20]. Similarly, patients in different glioma 

subgroups containing high (above mean) or low (below mean) mutational loads had 

similar prognosis with Astrocytoma, Codel, OligoAstrocytoma, IDH MT-codel, IDH 

MT-noncodel having higher mutation loads related to worse clinical outcome 

(Supplementary Figure S1). High missense mutational load was predicted to harbor 

more short peptides including the mutation, leading to more neoantigens, rendering 

them more susceptible T-cell targets[44]. The absolute number of neoantigens, which 

was calculated by adding up all the mutant peptides for one sample, also failed to 

predict the survival of IDH wild-type GBMs (Figure 1C-D) and different glioma 

subgroups (Supplementary Figure S2). DAI, defined as difference between binding 

affinity of wildtype and mutant-type peptides for MHC class I, was reported to be a 

better indicator of immunogenicity than mutant affinity and a predictor of survival in 

advanced lung cancer and melanoma[45]. We calculated the average DAI of each 

sample in both the TCGA and Pri cohort, finding that DAI model failed in predicting 

the overall survival of IDH wild-type GBMs (Figure 1E-F, Supplementary Figure S3).  

 

Recent researches emphasize the importance of structural and physical changes 

relative to self in neoepitope immunogenicity for ovarian cancer[46], and an 

immunogenic neoantigen must possess structural and physical properties distinct 

enough to promote efficient recognition by T cells[47]. We first calculated a total of 

2928 features for each peptide, mainly including physical-chemical properties, amino 

acid features, and amino acid descriptors at each absolute position and 
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composed-dipeptide and tripeptide, the site of mutation and the dipeptides and 

tripeptides related to the mutation site, and complete sequence (Figure 2A). In 

addition, the Shannon entropy and the AA composition were also calculated. To 

understand the prognostic effect of each feature, we performed Cox regression to 

estimate the association between the feature values and overall survival in IDH 

wild-type GBMs of TCGA. 189 peptide features were predicted to be statistically 

significantly associated with overall survival (Figure 2B). Among the 189 prognostic 

features, the most significant positive associations were changes in the absolute site 4 

to an aliphatic amino acid (Mutated peptide 4 Aliphatic), ST-scales4 descriptors of site 

3 and 4 compose-dipeptide (Mutated peptide 3-4 ST4), and changes in the absolute 

site 4 to a nonpolar amino acid (Mutated peptide 4 Non.polar). And, the most 

significant negative associations were theVHSE-scales6 descriptors at the absolute 

site 4(MT.peptide 4 VHSE6), PP1 descriptors at the absolute site 4(MT.peptide 4 PP1), 

and polar amino acid at position 4 (MT.peptide 4 polar). To determine the similarities 

among the 189 prognostic features, we examined their correlation in the TCGA cohort, 

discovering highly correlated feature modules (Figure 2C). The correlation heatmap 

of valid features for other glioma subtypes in the TCGA cohort was also calculated, 

revealing that the correlated feature modules were consistent across different glioma 

subtypes(Supplementary Figure S4). 

 

To find out whether these valid features identified from the TCGA database were also 

of prognostic significance in an independent data of Pri cohort, we conducted Cox 
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regression analysis upon the 189 valid features. A total of 22 features were found to be 

significantly associated with the overall survival(Figure 2D). The most significant 

positive associations were VHSE-scales6 at the 7 sites (Mutated peptide 7 VHSE6), 

changes in the absolute site 5 to a basic amino acid (Mutated peptide 5 basic), 

VHSE-scales5 at the 6 site(Mutated pep 6 VHSE5). The most significant negative 

associations were mainly related to the characteristics of the positions 3 and 4 

composed-dipeptide, including protFP2 value, VHSE-scales2 value, and molecular 

weight. Among those features, 12 features were of particular interest as they had 

shown correlation, and mainly associated with the molecular weight and molecular 

size/volume of the position 3,4 composed-dipeptide, and molecular electrostatic of the 

position 2-4 composed-tripeptide(Figure 2E). The 12 features were statistically 

significant protective factors (hazard ratio < 1) in IDH wild GBMs of the TCGA 

cohort (Figure 2F) with similar trends observed in Pri cohort (Supplementary Figure 

S5), demonstrating that neoantigens from long-term survival patients exhibited higher 

character values. 

Deep learning model using sequence features of neoantigens predicted IDH 

wild-type GBMs with better survival 

Deep learning methods model data by learning high-level representations with 

multilayer computational models, and rely on algorithms that optimize feature 

engineering processes to provide the classifier with relevant information that 

maximizes its performance concerning the final task[22]. Thus, deep learning model 
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is advantageous in learning high-dimensional datasets. Recurrent neural 

networks(RNN) is a function of all the previous hidden states, but may meet 

vanishing gradient problem[48, 49]. Long short-term memory(LSTM) can avoid such 

problem[49], and has the ability to remember all the previous data may help in 

prediction. To stratify IDH wild-type GBMs using the 189 features, we constructed a 

deep learning model including three hidden layers (two LSTM layers and one fully 

connected layer) with 128, 32, 8 nodes, respectively(Figure 3A). We chose the 

Sigmoid function as neuron activation function for fully connected layer, MSE as the 

loss function and Adam as the iterative optimizer. Considering the relationship 

between the number of iterations and the loss function of the model, the final number 

of iterations was selected as 1000(Supplementary Figure S6). Initially, the connection 

weights and biases of each layer were randomly generated. The samples in the TCGA 

cohort were used as training data, while the samples in Pri cohort were used as 

external testing data. 

 

To validate the reliability of the deep learning model, we performed 300 random trials 

with each splitting the samples into training set and internal testing set at the ratio of 

six vs four. In each trial, the parameters learned in the training set were applied in the 

internal testing set. In 275 out of 300 trials, IDH wild-type GBMs in TCGA were 

successfully separated into two prognostic subgroups with the overall survival 

significantly different (P < 0.05) (Figure 3B left ), demonstrating the high stability of 

our model. The optimal parameter settings were determined from the 275 successful 
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trials and applied to randomly selected 60% of IDH wild-type GBMs in TCGA. In 

299 of 300 randomly selected 60% of IDH wild-type GBMs in TCGA, the deep 

learning model with the optimal parameter successfully separated patients into two 

significantly prognostic subgroups (Figure 3B right), demonstrating that the model we 

built can predict IDH wild-type GBMs with better survival in TCGA stably and 

reliably. With the use of the optimal model, all IDH wild-type GBMs in TCGA were 

separated into two significantly prognostic subgroups (P<0.0001, Figure 3C). We 

applied the optimal model in an independent data (Pri GBM cohort), finding that 

patients in Pri GBM cohort were successfully separated into two subgroups with 

statistically significant overall survival (P = 0.037) (Figure 3D). We also applied the 

optimal model to subgroups in the TCGA pan-glioma cohort, revealing that in GBM, 

IDH wildtype, Classical, Classical-like, Mesenchymal-like subtypes, patients grouped 

by the model demonstrated a significant difference in overall survival (P < 0.05) 

(Supplementary Figure S7).  

                                            

The prognostic characteristics of 12 protective sequence features 

To characterize the 12 protective sequence features in the molecular weight, 

molecular size of dipeptide, and molecular electrostatic potential of tripeptide, we 

compared their distributions in the short- and long-term survival IDH wild-type 

GBMs. In comparison with the short-term survival IDH wild-type GBMs, the 

long-term survival patients exhibited statistically significantly higher molecular 
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weight of dipeptide at the site 3 and 4 (P<0.05; Figure 4A; Supplementary Figure 

S8a), molecular size-related features (Kidera Factors 2, Z-scale 2, T-scale 1, protFP2, 

VHSE-sclae 2, VHSE-sclae 3, VHSE-sclae 6, ST-scale 1) (P<0.05; Figure 4B; 

Supplementary Figure S8b) and the electrostatic potential related features (the 

BLOSUM2 value and the MESHIM1 value) (P<0.05; Figure 4C; Supplementary 

Figure S8c) in both TCGA and Pri-cohort. 

 

Univariate and multi-variate Cox regression analysis demonstrated that two of twelve 

sequence features (VHSE2 value and protFP2 value) were associated with the overall 

survival in both IDH wild-type GBM of TCGA cohort and Pri cohort (Supplementary 

Table S1-S4). Kaplan Meier analysis demonstrated that there was statistically 

significantly different overall survival between the low-value (below mean) and 

high-value (above mean) groups of IDH wild-type GBMs stratified by the two 

features. The patients with high value (above the mean values) had a significantly 

longer overall survival (for protFP2 value: P = 0.002 in TCGA cohort and P=0.03 in 

Pri cohort; for VHSE2 value: P = 0.018 in TCGA cohort and P=0.11 in Pri cohort) 

(Supplementary Figure S9a-b). Furthermore, the two feature-based stratification of 

the IDH wild-type GBMs were found independent of age and mutational load. In 

addition, the two features exhibited strong correlations (R = 0.87, P < 2.2e-16 for 

TCGA; R= 0.91, P < 2.2e-16 for Pri Cohort) (Supplementary Figure S9c). 

 

The distributions of amino acid residue for 9-mers between long- and short-term 
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survival groups of IDH wild-type GBMs were examined, revealing that the ratios of 

amino acid residues at positions 3 and 4 were significantly different (Figure 4D-G). At 

the site 3, the patients with neoantigens containing a lower frequency of L and S 

amino acid and a higher frequency of R amino acid survived longer than those with 

the opposite frequencies in both the TCGA cohort and Pri cohort. The enrichment of 

residues R and S at site 4 of neoantigens were evident in the long-term survival of 

IDH wild-type GBMs. The ratios of L and G at site 4 of neoantigens increased in the 

short-term survival patients. 

Tumor Purity and functional annotation of gene expression in GBM 

Recent researches showed that the tumor purity estimated from the DNA, RNA and 

methylation-based methods had high concordance among most cancer types[31][48]. 

To compare the difference of tumor purity between long-term and short-term survival 

groups of IDH wild-type GBMs, we calculated the tumor purity values for each 

patient in both TCGA and Pri cohorts. No significant difference in tumor purity was 

observed between long- and short-term survival of IDH wild-type GBMs (Figure 5A, 

Figure 5B). We also found that there was no significant difference in regards to 

immune scores and stromal scores between long- and short-term survival groups 

(Supplementary Figure S10a-b), suggesting that immune cell infiltrations were 

prognostic in IDH wild-type GBMs. No correlations were discovered between purity 

levels and mutational burden (Supplementary Figure S10C).   
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To understand the mechanisms in transcriptomic architecture, Gene Set Enrichment 

Analysis (GSEA) was conducted between long- and short-term survival group of IDH 

wild-type GBMs in both TCGA and Pri cohorts, respectively. Enrichment map 

analysis of deregulated GO terms in TCGA data demonstrated that GO terms related 

to nervous development, glial cell development, epidermis development, cell cycle, 

muscle tissue development, and kidney development were highly enriched in 

long-term survival patients (Figure 5C, Supplementary Table S5-S6). For Pri cohort, 

the most significant biological processes enriched in longer-survived patients were 

development associated GO terms such as epidermis development, cell cycle, which 

were also identified in IDH wild-type GBMs in the TCGA cohort (Figure 5D). 

Discussion 

In this paper, we provided a prognostic prediction method based on neoantigen 

peptide-intrinsic features. Although several survival prediction models have been 

reported based on the expression of a few genes [50-52]or medical images [53, 54] 

with successfully predicting survival in patients with glioblastoma, those features 

used in the methods are not related to immune response. Therefore, the above 

predictions could not predict immunoreaction. Since characters extracted from 

noeantigens are associated with tumor-specific T-cell responses and anti-tumor 

immune responses, the method we provided in this article can help predict the 

prognosis of IDH wild-type GBM patients who will likely benefit from neoantigen 

based personalized immunetherapy. 
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An LSTM model was proposed to improve predictive performance by integrating 

neoantigen features into deep learning model, and applied to the survival prediction of 

IDH wild-type GBM patients. Results showed the model obtained better predictive 

performance in two data cohort, and performed excellent prediction in some 

higher-grade glioma subtypes, including Classical, Classical-like, Glioblastoma, 

IDHwildtype, Mesenchymal-like. Additionally, we also identified two correlated 

neoantigen features, which stratified patients into a high- and low-value group with 

significant survival difference with independent of other clinical and pathological 

features. 

 

The analysis of valid features demonstrated their internal connections. Among these, 

12 features associated with better survival status were analyzed, mainly including 

amino acid molecular weight, molecular size/volume, and electrostatic 

potential/polarity. Additionally, the 12 features performed close relation with the 

amino acid properties at the absolute positions 3 and 4 of the mutant peptide, which is 

also confirmed using the amino acid distributions between the different survival status 

groups. The features at the site 3 and 4 of the neoantigen may therefore have potential 

effect on the survival of GBM patients and immunotherapy response, and they are 

worthy of further investigation. 

 

The LSTM network originated from RNN and developed by exploding and vanishing 

gradients while training traditional RNN networks. It could learn potentially effective 
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information from valid neoantigen features defined with remarkable flexibility and 

adaptability and help predict prognosis. The model informed a cohort of patients who 

have better clinical prognosis result, which generally exhibits biological process such 

as development and cell cycle. It is well known that GBM typically lacks a significant 

number of T lymphocyte infiltrates[55]. Lymphocyte depletion and 

immunosuppressive microenvironment are distinctive features of malignant 

gliomas[56]. Thus, we also did tumor purity analysis. On the opposite to feature 

correlations analysis, tumor purity analysis showed no significant relation with 

different survival status group, indicating that patients survival status are independent 

of broad immune cell infiltration. 

 

Comparing to traditional cytological identification of cancer, the LSTM model is 

superior because it won’t be influenced by diagnostic instruments, and machine 

learning is more effective in the analysis of complex data. Our models are still facing 

some limitations. For instance, we mainly focused on protein primary structure in this 

study, but did not place enough emphasis on secondary and tertiary protein structure. 

Thus, more features might be integrated into the model to promote prediction 

accuracy. Those issues shall be resolved in the future. The deep learning method could 

be used to augment the prognostic evaluation and improve decision-making in glioma. 

To predict the patients’ outcome, more studies related to generalizability test are still 

in need. 
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Methods 

Feature calculation for neoantigens 

For the purpose of extracting features from neoantigens, the samples with detected 

mutant peptides remained in the downstream analysis, including 262 samples in the 

TCGA cohort and 42 samples in Pri cohort. A total of 2928 features were extracted 

from 2263 neoantigens (2081for TCGA cohort; 182 for Pri cohort) in the downstream 

analysis. Specifically, features used in the calculation were derived using the R 

package "Peptides"(v2.4.2) including 66 amino acid descriptors and 

physical-chemical properties (aliphatic, auto-correlation, auto-covariance, Boman 

index, theoretical net charge, cross-covariance, hydrophobic moment, hydrophobicity, 

instability, molecular weight). Additionally, the "aaComp" command was also used to 

describe amino acid features including Tiny, Small, Aliphatic, Aromatic, Non-polar, 

Polar, Charged, Basic, Acidic. Variables were derived by the presence (1) or absence 

(0) of each feature. Characteristic variables were performed in four conditions 

respectively, including the complete sequence, the site of mutation along with each 

antigen and the dipeptides/tripeptides related to the mutation site, each absolute 

position along each antigen and related dipeptide/tripeptide composition, and the 

difference of each feature in the mutated versus reference antigen. 

 

The features, described overall content of a protein, for example, amino acid 

composition, were significant. Variables demonstrating presence(1) or absence(0) of 
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each amino acid type following, including the first or last 3 amino acid residues or 

middle residues of each antigen, the first or last amino acid residues of each antigen, 

the first or last 2 amino acid residues or middle residues of each antigen. 

 

To measure the complexity at the protein and residue level, we computed Shannon 

entropy of a protein and entropy of each type of residues using the following 

equations： 

HS = −� 𝑝𝑖𝑙𝑜𝑔2
20

𝑖=1
𝑝𝑖 

𝐻𝑅𝑖 =  −𝑝𝑖𝑙𝑜𝑔2𝑝𝑖 

where HS is Shannon entropy of a protein sequence and 𝐻𝑅𝑖 is the entropy of a 

residue type i. p𝑖 is the probability of the existence of a given amino acid in the 

sequence. We calculated the Shannon entropy of the mutant peptides and the 

difference of Shannon entropy in the mutant antigen versus reference antigen. Cancer 

is characterized by the accumulation of mutations, so the analysis of mutant positions 

is valid. Therefore, the Shannon entropy of the dipeptides/tripeptides related to the 

mutation site and the entropy difference of mutations process were performed. The 

entropy of a residue type was also calculated for the mutant peptides and reference 

peptides.  

Prognostic feature selection 

The features were calculated for all detected 9-mer mutated peptides and wild 

peptides. There were multiple types of mutations in each patient, resulting in a large 
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number of mutant peptides in total. Thus, each feature value calculated in all the 

peptides detected in a patient was averaged as the final value. Univariate Cox 

regression analysis was performed here to predict the impact of each feature on 

prognosis. The threshold of P-value was set as 0.05, which means all the features with 

P-value lower than or equal to 0.05 were deemed as statistically significant (termed as 

valid features). A correlation matrix of the valid features was conducted, and 

visualized through heatmaps using the package ‘pheatmap’ in R language. 

Hierarchical k-means clustering 

Hierarchical k-means clustering was applied upon the Z-Score-transformed valid 

features to stratify patients into two clusters. Hierarchical k-means was performed 

using the "hkmeans" command of the R package ‘factoextra’ (version 1.0.7). The 

overall survival differences between two clusters of patients were compared through  

Kaplan-Meier survival analysis. 

Deep-learning model construction 

The grouping results derived from hierarchical k-means clustering were used as labels, 

marking 0 and 1. The valid features in the TCGA cohort were used as training data to 

train the deep learning model. The input data were Z-Score-transformed valid features, 

in order to avoid gradient disappearance problem. The LSTM deep learning model 

was built with three hidden layers, including two LSTM layers and one fully 

connected layer, each layer containing 128, 32, and 8 nodes, respectively. Sigmoid 
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function was chosen as neuron activation function for fully connected layer, MSE as 

the loss function and Adam as the iterative optimizer. The maximum number of 

iterations was set as 1000. The initial connection weights and biases of each layer 

were randomly generated, and end up reaching stable parameters through training 

iterations.    

Leave one out cross validation (LOOCV) 

After determining the framework of the model, cross validation was a necessary step. 

Specifically, the training data was separated into two sections randomly with 

proportion of training and testing sets as 6 to 4. The training set was used to train the 

model to determine the unknown parameters, while the test set was used to validate 

the effect of the predicted parameters. To obtain the optimal model, the above process 

was carried out 300 times. Kaplan-Meier survival analysis was operated each time to 

see if the model can divide the samples into two groups with a statistically significant 

survival difference. Only groups with P-value lower than or equal to the threshold of 

0.05 were regarded as statistically significant. Among 300 times trial, the more 

significant stratifications, the more stable our model is. 

Independent validation 

A model with fixed parameters corresponding to the lowest P-value was selected as 

the optimal model. To test the performance of the optimal model, Pri cohort was used 

as an external test data. The optimal model divided patients in the Pri cohort into 

long- and short-term survival clusters. Kaplan Meier analysis was conducted between 
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the long- and short-term survival clusters in Pri cohort to test the predictive 

performance of the optimal model for IDH wild-type GBMs. Besides, other glioma 

subtypes from TCGA data were also tested by the model, including Astrocytoma, 

Classical-like, Classical, Codel, Glioblastoma, G-CIMP-high, IDH-MT-codel, 

IDH-MT-noncodel, IDH-MT, IDH-WT, Mesenchymal-like, Mesenchymal, Neural, 

Oligodendroglioma, Proneural and OligoAstrocytoma. 

Tumor purity estimation 

Tumor purities were estimated by ESTIMATE[57] from gene expression profiles. 

There were a total of 242 and 29 IDH wild-type GBMs in the TCGA cohort and Pri 

cohort with gene expression profiles available, respectively. The purity score was 

performed for each sample, using the R package ‘estimate’(version 1.6.7). Meanwhile, 

the immune score and the stromal score were also estimated.  

GO enrichment analysis 

To identify differential genes expression between different groups, GO enrichment 

analysis was conducted using Gene Set Enrichment Analysis (GSEA 4.0.3)[58], with 

17814 and 23491 genes available in the TCGA cohort and Pri cohort, respectively. 

The GO terms were collected from the Molecular Signatures Database 

(c5.all.v6.2.symbols.gmt), including cellular component, molecular function, and 

biological process. Number of Permutations was set to 1000 and gene set size filters 

were 15-500. Gene sets with FDR < 0.05 were considered as differentially expressed, 
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and visualized using Cytoscape[59]. The grouping results of GO terms were shown in 

Supplementary Table S5-S6. 

Statistical Analysis 

All statistical analyses were performed using R software, version 4.0.0. Continuous 

variables between groups were compared by the unpaired T test. Correlations between 

continuous variables were evaluated by Pearson correlation analyses. For all statistical 

analyses, the P value of 0.05 was taken as the significant threshold in all tests. 

Kaplan-Meier survival analysis curves were compared using a log-rank test and 

Multivariate survival analysis was performed by Cox regression model using R 

package "survminer" and "survival". All analyses were conducted in R language and 

Python language. 

 

Availability of Source Code and Requirements 

Project name: Neoantigen-intrinsic feature based Deep Learning Model 

Project home page: https://github.com/zhangjbig/neoDL 

Operating system: Platform independent 

Programming language: Python, R 

Other requirements: Python 3.8 or higher, R 3.3 or higher 

License: GPL-2 
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Availability of Supporting Data and Materials 

All data used for this article are available at the following websites or accession 

numbers: (i) Mutations and clinical information in the TCGA cohort[36]. (ii) Gene 

expression microarray data with Agilent chip (G4502A) at level 3: TCGA Data portal. 

(iii) Mutations, RNAseq gene expression data, and clinical information in the Pri 

cohort[37]. (iv) The intrinsic features of neoantigens for each sample in both TCGA 

cohort and Pri cohort are available at github (https://github.com/zhangjbig/neoDL).  

 

Additional Files 

Supplementary Figure S1. Survival of glioma patients stratified according to missense 

mutational load. 

Supplementary Figure S2. Survival of glioma patients stratified according to absolute 

number of neoantigens. 

Supplementary Figure S3. Survival of glioma patients stratified according to 

differential agretopicity index(DAI). 

Supplementary Figure S4. Heatmap representing Spearman correlation between each 

valid feature.  

Supplementary Figure S5. Forest plot for 12 peptide features in Pri cohort. 

Supplementary Figure S6. Relationship between the number of iterations and 

loss/accuracy. 

Supplementary Figure S7. Survival of TCGA glioma patients stratified by deep 

learning model.  
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Supplementary Figure S8. Comparison of the similarity of valid feature values 

between long-term survival and short-term survival groups of IDH wild-type GBM in 

two cohorts. 

Supplementary Figure S9. Survival of glioma patients stratified according to 2 feature 

values，and analysis of the correlations between these features in two cohorts. 

Supplementary Figure S10. Comparison of the similarity of immune score and 

stromal score between two groups and the correlation analysis between purity and 

mutation load. 

Supplementary Table S1. Multivariate Cox regression analysis including position 3-4 

composed-dipeptide VHSE-scale 2 value, mutation load and age for TCGA IDH 

wild-type GBM (n=262).  

Supplementary Table S2. Multivariate Cox regression analysis including position 3-4 

composed-dipeptide VHSE-scale 2 value, mutation load and age for Pri IDH 

wild-type GBM (n=42).  

Supplementary Table S3. Multivariate Cox regression analysis including position 3-4 

composed-dipeptide protFP 2 value, mutation load and age for TCGA IDH wild-type 

GBM (n=262).  

Supplementary Table S4. Multivariate Cox regression analysis including position 3-4 

composed-dipeptide protFP 2 value, mutation load and age for Pri IDH wild-type 

GBM (n=42). 

Supplementary Table S5. Functional annotation for the lists of genes differentially 

expressed analyzed by GSEA in TCGA cohort. 
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Supplementary Table S6. Functional annotation for the lists of genes differentially 

expressed analyzed by GSEA in Pri cohort. 

 

Abbreviations 

GBM: glioblastoma; LSTM: Long short-term memory; RNN: Recurrent neural 

networks; GSEA: gene set enrichment analysis. 
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Figure legends： 

Figure 1. Missense mutational load, absolute number of neoantigens and DAI fail to predict 

survival of GBM IDH wild-type. A and B, Stratification of survival according to missense 

mutational load.A, TCGA cohort; B, Pri cohort. red line: high mean mutational load ; blue line: 

low mean mutational load. C and D Stratification of survival according to absolute number of 

neoanigens; C, TCGA cohort; D, Pri cohort. red line: high mean absolute number of neoantigen ; 

blue line: low mean absolute number of neoantigen. E and F Stratification of survival according to 

DAI; E, TCGA cohort; F, Pri cohort. red line: high mean DAI ; blue line: low mean DAI. n is the 

number of patients. P-value was determined using log-rank test. 

 

Figure 2. Peptide features associated with the prognosis of patients. A, Summary of the major 

classes of peptide-intrinsic features identified for each antigen, including amino acid sequence and 

characteristics at each absolute position, dipeptide, tripeptide, Mutant position, Mutant position 

dipeptide&tripeptide. Red numbers in position row demonstrate absolute positions of amino acids 

in peptide. B and D, Volcano plots representing log2(HR) (x-axis) and -log10(pvalue) (y-axis) for 

each peptide feature as a predictor for prognosis. B, all features in TCGA cohort; D, valid features 

in Pri cohort . Horizontal dashed line represents the pvalue is equal to 0.05 and the vertical dashed 

line represents HR is equal to 1. Spot with color represents p-value magnitude lower than 0.05, 

with the red representing HR above 1 and blue representing HR below 1. C and E, Heat map 

representing Spearman correlations between each valid feature. C, TCGA cohort; E, Pri cohort. 

Magnitude of the correlation coefficient represented by color. F, forest plot for 12 peptide features 

in TCGA cohort.· p-value<0.1;* p-value<0.05;** p-value<0.01. HR value and pvalue were 
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derived by cox regression. 

 

Figure 3. Deep learning model predict better survival in GBM. A, deep learning model diagram. 

B, Left, pvalue distribution representing -log(pvalue)(x-axis) and times(y-axis) for 300 times in 

cross validation. The data used for verification was 40% and 60% of TCGA samples, respectively. 

Right, survival of 60% TCGA patients stratified according to the final model. C, Survival of 

TCGA cohort patients stratified according to the final model. D, Survival of Pri cohort patients 

stratified according to the final model. red line, the deep learning model prediction label is 0; blue 

line, model prediction label is 1. P-value was performed using log-rank test. n is the number of 

patients. 

 

Figure 4. Annotation of features associated with prognosis. A-C, Comparison of the similarity 

between valid features value in long-term survival and short-term survival groups of IDH 

wild-type GBM in two cohorts. A, molecular weight of dipeptide composed with the site 3 and 4. 

B, VHSE-scales2 of dipeptide composed with the site 3 and 4. C, BLOSUM2 of tripeptide 

composed with the site 2 and 4. The upper and the lower row contain the TCGA cohort and Pri 

cohort, respectively. P value was calculated by unpaired T test. D-G, Comparison of the amino 

acid occurrence frequency for each absolute position between the two groups predicted by deep 

learning model. D, long-term survival patients in TCGA cohort; E, short-term survival patients in 

TCGA cohort; F, long-term survival patients in Pri cohort; G, short-term survival patients in Pri 

cohort. the higher the occurrence, the taller the letter. 
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Figure 5. Tumor Purity and functional annotations of gene expression in GBM. A and B, 

Comparison of the similarity between tumor purity in long-term survival and short-term survival 

groups of IDH wildtype GBM in two cohorts. A, TCGA cohort. B. Pri cohort. P value was 

calculated by T test. C and D, Enrichment map network of statistically significant GO categories 

in the patient cohort with p-value<0.05. C, TCGA cohort. D. Pri cohort. Nodes represent GO 

terms and lines represent their connectivity. Node size is proportional to the number of genes in 

the GO category and line thickness indicates the fraction of genes shared between groups. 
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Figures： 

 

 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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