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ABSTRACT 15 

Background: Prokaryotic viruses referred to as phages can be divided into virulent and temperate 16 

phages. Distinguishing virulent and temperate phage-derived sequences in metavirome data is 17 

important for their role in interactions with bacterial hosts and regulations of microbial communities. 18 

However there is no experimental or computational approach to classify sequences of these two in 19 

culture-independent metavirome effectively, we present a new computational method DeePhage, 20 

which can directly and rapidly judge each read or contig as a virulent or temperate phage-derived 21 

fragment. 22 

Findings: DeePhage utilizes a “one-hot” encoding form to have an overall and detailed representation 23 

of DNA sequences. Sequence signatures are detected via a deep learning algorithm, namely a 24 

convolutional neural network to extract valuable local features. DeePhage makes better performance 25 

than the most related method PHACTS. The accuracy of DeePhage on five-fold validation reach as 26 

high as 88%, nearly 30% higher than PHACTS. Evaluation on real metavirome shows DeePhage 27 

annotated 54.4% of reliable contigs while PHACTS annotated 44.5%. While running on the same 28 
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machine, DeePhage reduces computational time than PHACTS by 810 times. Besides, we proposed 29 

a new strategy to explore phage transformations in the microbial community by direct detection of the 30 

temperate viral fragments from metagenome and metavirome. The detectable transformation of 31 

temperate phages provided us a new insight into the potential treatment for human disease. 32 

Conclusions: DeePhage is the first tool that can rapidly and efficiently identify two kinds of phage 33 

fragments especially for metagenomics analysis with satisfactory performance. DeePhage is freely 34 

available via http://cqb.pku.edu.cn/ZhuLab/DeePhage or https://github.com/shufangwu/DeePhage. 35 

 36 

INTRODUCTION 37 

In a microbial community, phages are the major component of the viral genetic materials. It is 38 

estimated that the number of phages is on average ten times higher than that of bacteria. They may 39 

destroy bacteria, meanwhile in some situations benefit populations of bacteria, and thus crucially 40 

impact the microbial community [1]. With the development of the high-throughput sequencing 41 

technology, a large number of novel phages are discovered from untargeted metagenomes and 42 

viromes, in which viral particles are first enriched before sequencing [2,3]. However, the analysis of 43 

these phage sequences is a great challenge since the reference genomes of phages are very limited 44 

in view of the fact that most of the phages cannot be cultured independently. The complete phage 45 

genomes in current databases are much less than that of bacteria, therefore a large number of 46 

sequences from virome data cannot find regions with homology to the known phages [2]. In addition, 47 

unlike bacteria, phages lack the universal marker genes such as 16S rRNA [4], so that many species 48 

identification strategies designed for bacterial analysis are not applicable to phages. Moreover, for 49 

mobile elements such as phages, the sequence assembly is often poorer than that of bacteria, usually 50 

because the mobile elements carry repetitive regions like insertion sequences and share sequences 51 

that occurred among different genomes [5]. As a result, the large number of short fragments in 52 

metagenomic data also increases the difficulty of the analysis.  53 

To overcome these difficulties, several computational tools focusing on two major tasks have been 54 

developed to analyze the phage sequences from metagenome or virome. One of the tasks is to 55 

identify phage fragments in untargeted metagenomic data, such as the tools VirSorter [6], VirFinder 56 

[7], MARVEL [8], virMine [9], and PPR-Meta [10]. Especially, PPR-Meta is a tool with high 57 

performances developed by us and demonstrates much better accuracy than the related tools. 58 
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Another task is to assign the host for a given phage contig, such as the tools WIsH [11], 59 

VirHostMatcher [12], and Hostphinder [13]. However, these tools cannot answer the question about 60 

how the discovered phages interact with their hosts. According to the interaction mode, which is also 61 

referred to as the phage lifestyle, phages can be divided into the virulent phages and the temperate 62 

phages [14]. When a virulent phage infects its host, it will produce many progenies as soon as the 63 

phage’s DNA is injected into the host cell and then cause the death of the host through bacterial lysis 64 

[14]. In contrast, temperate phages can undergo the lysogenic cycle and lytic cycle. In the lysogenic 65 

cycle, a temperate phage will integrate its genome into the host chromosome, which is also referred 66 

to as prophage, and then copies its genome together with the host chromosome [15]. While induced 67 

by appropriate conditions, especially the nutritional conditions and the number of co-infecting phages, 68 

temperate phages will go into the lytic cycle, following by releasing the viral particle and killing the 69 

host through bacterial lysis [16]. Such different processes have a significant influence on the 70 

microbiota especially in the human gut, which could be highly correlated with human diseases or the 71 

treatment of human disease. Although some kinds of hotspots, such as phage therapies that making 72 

use of the virulent phages in the context of therapeutic use [17], have been investigated, limited by 73 

current bioinformatics tools, people still knew little about these different lifecycles for their prevalence 74 

in the human gut [18]. Therefore, it is important to distinguish virulent and temperate phages for 75 

further understanding of phage-host interaction. 76 

Although the classification strategy of this issue for virome data has not been investigated yet, 77 

there are several noteworthy works that help to characterize the virulent and temperate phages. Even 78 

phages lacking marker genes, those studies show that they may have some functional genes, which 79 

are high-frequency genes and can tell us whether a given phage is virulent or temperate in a relatively 80 

credible way. For example, Emerson et al. found there were some functional genes for temperate 81 

phages, such as integrase and excisionase [19]; Schmidt et al. found that the leucine substitution in 82 

DNA polA gene had a strong connection with temperate phages [20]. Notably, McNair et al. designed 83 

a computational tool called PHACTS to identify whether a phage with a complete or partial proteome 84 

is virulent or temperate [14]. This tool employs all the sequence information of proteins from a phage 85 

genome and uses the random forest as a classifier to make the judgment. Researchers further found 86 

that the existence of some kind of genes helped PHACTS present good results. For example, virulent 87 

phages usually have genes related to phage lysis, nucleotide metabolism, or structural proteins, while 88 
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temperate phages usually contain genes related to toxins, excision, integration, lysogeny, or 89 

regulation of expression [14]. Unfortunately, such kind of strategies may not apply to metagenomic 90 

data. To date, it is still a difficult task to reconstruct complete genomes of all organisms in the 91 

metagenomic data. Therefore, only a few DNA fragments may contain those functional genes that can 92 

help to make the judgment. According to the report of PHACTS, this tool can achieve accuracy over 93 

95% if at least 25 proteins are provided from a phage genome. However, if fewer proteins are 94 

obtained, the accuracy of PHACTS reduces obviously. When only five proteins from a phage, 95 

PHACTS only achieves an accuracy of about 65%; if only two proteins from a phage, PHACTS 96 

appears to produce random results with an accuracy below 55%. Considering that most of the DNA 97 

sequences in metagenomic data are short fragments that only contain a few genes or even 98 

incomplete genes, it is essential to develop a tool, which does not depend on using information from 99 

sufficient proteins with functional genes level, while to make judgment directly for each short DNA 100 

fragment in metagenomic data. 101 

In this paper, we present a two-class classifier DeePhage to identify whether a DNA fragment is 102 

derived from a virulent phage or a temperate phage. Using the information of every nucleotide without 103 

manually feature extracted, DeePhage encodes sequences in “one-hot” form. Such representations 104 

are suitable for the Convolutional Neural Network (CNN) model to detect helpful motifs for 105 

classification, which are common used on biological sequence identification. Together with other 106 

kinds of neural network layers, DeePhage learns different features between virulent and temperate 107 

sequences and then outputs a score indicating the possibility to be a certain kind of phage sequence. 108 

Tested on the same data, DeePhage can significantly outperform the best of available methods 109 

PHACTS on computational efficiency by using only 1/810 computation time that PHACTS uses. 110 

Simulation studies on five-fold validation show that DeePhage precedes by approximately 30% 111 

compared with PHACTS. DeePhage’s evaluations on real metavirome data of bovine rumen are 112 

better than PHACTS with much more accurate results, which use annotations of the BLAST method 113 

as a reference. Meanwhile, we present a new strategy to conveniently detect the phage 114 

transformation by tracing specific phage contigs, which can explore the influence of phages that 115 

contribute to human diseases. DeePhage can be used to analyse the virome data and untargeted 116 

metagenomic data directly. While handling the metagenomic data, users need to firstly identify the 117 
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phage sequences using related software, such as PPR-Meta [10] as we mentioned above, and then 118 

use DeePhage to further annotate the phage sequences.  119 

 120 

MATERIAL AND METHODS 121 

Data construction 122 

Considering that there is no real virome data with the reliable lifestyle annotation for each sequence 123 

as a benchmark, we constructed artificial contigs extracted from well-annotated complete phage 124 

genomes as the benchmark to train and test the algorithm. We downloaded 227 complete phage 125 

genomes with lifestyle annotations from McNair dataset, including 79 virulent phages and 148 126 

temperate phages [14]. Among these phages, we removed two virulent phages from the dataset: 127 

mycobacteriophage D29 (accession: NC_001900) and lactococcus lactis bacteriophage ul36 128 

(accession: NC_004066), because the lifestyle of these two phages may be ambiguous. Although 129 

these two phages are annotated as virulent phages, researchers found that they both contained 130 

functional integrases, indicating that they can integrate their genomes into host chromosomes like 131 

temperate phages [14]. Besides, D29 is very similar to the temperate phage L5 [21], while ul36 has 132 

46.6% homology with the temperate phage Tuc2009 [22]. Therefore, 77 virulent phages and 148 133 

temperate ones are used in the current study. In general, the unbalanced size between positive and 134 

negative samples may have an impact on the accuracy of the machine learning-based algorithm [7]. 135 

In the McNair dataset used in this work, it is thus obvious that the number of positive samples is less 136 

than that of negative samples. However, we found that the genome length of each positive sample is 137 

generally longer than that of each negative sample. It is probably because temperate phages can 138 

integrate their genomes into host chromosomes and may discard some non-essential genes. What is 139 

more, genes on host chromosomes may be served as compensation. As a result, based on the bases 140 

counts, the dataset size between positive samples and negative samples are similar. For 141 

convenience, herein the virulent phages are referred to as the positive sample and the temperate 142 

phages as the negative sample. 143 

We further used MetaSim (v0.9.1) [23] to extract artificial contigs from the complete phage 144 

genomes. Considering that the length of contigs in real metagenomes may cover a wide range, we 145 

divided the artificial contigs into four groups according to their length: the length range in Group A is 146 

100-400 bp; Group B is 400-800 bp; Group C is 800-1200 bp while Group D is 1200-1800 bp. Those 147 
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four groups may cover the length of raw reads and the average length of assembled contigs from the 148 

next-generation sequencing technology. We would evaluate the performance of DeePhage on 149 

different groups respectively. 150 

We also used real virome data to estimate the reliability of DeePhage qualitatively. We 151 

downloaded virome data of bodily fluid in the bovine rumen [24] from MG-RAST [25]. They were 152 

downloaded as raw reads (accessions: mgm4534202.3 and mgm4534203.3). We used SPAdes 153 

(v3.13.0) [26] to assemble the raw reads and obtained 118918 contigs with the N50 of 291 bp. 154 

 155 

Mathematical model of phage sequences 156 

To evaluate the feasibility of using sequence signature used for classifying virulent and temperate 157 

phages, we first analysed the distribution of k-mer frequencies, which have been widely used to 158 

distinguish genomes from different species, among virulent phage genomes and temperate phage 159 

genomes. We used 4-mer frequencies to characterize each phage genome in our dataset. The 160 

Principal Component Analysis (PCA) [27] revealed that the 4-mer frequencies between virulent and 161 

temperate phage genomes have different distribution (Figure 1), showing that they have different 162 

sequence signatures to characterize these two categories of phage genomes. 163 

 164 
Figure 1. The PCA of 4-mer frequencies distribution among virulent and temperate phage genomes. 165 

 166 

Although k-mer frequencies have shown their ability to classify virulent and temperate phage 167 

genomes, using such frequencies to characterize short DNA fragments will usually be disturbed with 168 

the noise (11). Also, as global statistics that may miss some local information, k-mer frequencies are 169 

difficult to detail characterize mobile elements that contain mosaic structure [28]. To describe the local 170 
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sequence information in detail, we consider the one-hot encoding form, which can represent every 171 

base continuously and entirely. For each sequence, we used the “one-hot” encoding form to represent 172 

each base in a sequence. Specifically, bases A, C, G and T were represented by [0,0,0,1], [0,0,1,0], 173 

[0,1,0,0], and [1,0,0,0]. 174 

 175 

Algorithm structure of DeePhage 176 

Deep learning algorithms are recognized as an extremely effective method in many fields including in 177 

the biology field. Comparing with the Recurrent Neural Network (RNN), the Convolutional Neural 178 

Network (CNN) models are faster to train and more efficient in sequential spatial correlations [29]. 179 

Specifically, CNN is a universal network for extracting local patterns in terms of biology, which in the 180 

current context can be used as a motif detector of DNA sequences. In DeePhage, we presented a 181 

deep learning algorithm with CNN models to handle the input sequences represented by the one-hot 182 

encoding form. The network contained eight layers: a 1D convolutional (Conv1D) layer, one 1D 183 

maximum pooling (Maxpooling) layer, one 1D global average pooling (Globalpooling) layer, two batch 184 

normalization (BN1 and BN2) layer, a dropout (Dropout) layer, and two dense (Dense1 and Dense2) 185 

layers.  186 

Conv1D layer takes a sequence encoded by an Lൈ4 matrix 𝑋 (L is the length of the sequences, 187 

equals 400, 800, 1200, and 1800) as the input and generates total F feature maps as output by 188 

corresponding F convolutional kernels. Using ReLU (Rectified Linear Unit) [30] as the activation 189 

function, the Conv1D layer output an LൈF matrix 𝑌஼and computes for the f th feature map at the lth 190 

location like this: 191 

𝑌l,f
஼ ൌ   ReLUሺ ෍෍𝑊௠,௡

୤ 𝑋l൅௠,௡

ଷ

௡ൌ0

M-1

௠ൌ0

൅ 𝑏୤
େሻ, 192 

for l ൌ 1,2,3, . . . , L െ 1, f ൌ 1,2,3, . . . , F െ 1. 193 

The 𝑊୤ and 𝑏୤
େ are an Mൈ4 weight matrix and a bias of the f th kernel. The mentioned ReLU function is 194 

defined as [30]: 195 

ReLUሺ xሻ ൌ   ቄx      if x ൒ 0
0      if x ൏0

 196 

As a traditional nonlinear function, the ReLU function is easier to train and achieves better 197 

performance, which can rectify the shortcomings of sigmoid functions. Those kernels scan a 198 
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sequence one after another to extract the valuable features for the classification and the ReLU 199 

function achieves a nonlinear transformation.  200 

Such a combination is followed by the Maxpooling layer to downsample the input representation 201 

by taking the maximum value over an input channel with a pooling size S1 and a stride size S2. The 202 

window is shifted along with each channel independently and can generate F new channels with the 203 

size of L′ ሺL′ ൌ L S2⁄ ሻ. The Maxpooling layer outputs an L′ ൈF feature matrix 𝑌ெ and one of the pooling 204 

operation for a specific channel at the lthlocation defines like this: 205 

𝑌l,f
୑ ൌ maxሺ 𝑌୪ൈS2,f

େ ,𝑌୪ൈS2൅1,f
େ ,𝑌୪ൈS2൅2,f

େ , . . . ,𝑌୪ൈS2൅S1-1,f
େ ሻ ， 206 

for l ൌ 0,1,2, . . . , L′ െ 1 ,  f ൌ 0,1,2, . . . , F െ 1 ,   207 

Its main function is to reduce the dimensions of each input channel using final summarised features, 208 

which can also adapt to location variations of valuable features.  209 

Features from the Maxpooling layer are passed to the BN1 layer to scale the inputs. At each 210 

batch, it usually transforms inputs to have a mean close to 0 and a standard deviation close to 1, 211 

which can avoid the vanishing gradient problem and accelerate the convergence rate of the model. 212 

So the output feature matrix 𝑌B1of the BN1 layer is also an Lᇱ ൈF matrix as 𝑌୑ but being scaled.  213 

The next is a Dropout layer, which randomly drops a certain proportion (denoted as P) of input 214 

elements by setting them to zero during training (29). The output 𝒀Dp is formulated as: 215 

𝒀Dp ൌ  𝚱⊙𝒀B1, where 𝚱 ∼ 𝐵ሺ1, Pሻ. 216 

The drop mask 𝐊 denotes a Bernoulli distribution with n equals 1 and p equals P. It could effectively 217 

reduce overfitting especially in our small dataset [31].  218 

After a dropout layer, the Globalpooling layer takes the 𝒀Dp as input and reduce features from the 219 

same channel into one dimension by using the average value of those features, which can integrate 220 

global spatial information. More formally: 221 

𝑦୤
ୋ ൌ

1
L′
෍𝑌௟,୤

Dp
୐′ିଵ

௟ୀ଴

, for f ൌ1,2,3, . . . , Fെ1, 222 

where 𝑦୤
ீ is the average value of features from the f th input channel. Considering all the F channels 223 

from the previous layer, the output of the Globalpooling layer 𝒚ୋ is an F dimension vector.  224 

Subsequently, a Dense1 layer using ReLU function as activation function outputs R units. It has 225 

an RൈF weight matrix 𝑊D1 and an R-dimensional bias vector 𝑏D1. Each output units is processed by: 226 
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𝑦୰ୈଵ ൌ ReLuሺ෍𝑊୰,୤
ୈଵ

୊ିଵ

୤ୀ଴

𝑦୤
ୋ ൅ 𝑏୰ୈଵሻ, for r ൌ1,2,3, . . . , Rെ1. 227 

Dense1 layer can compile the features from different input channels together and finally generate an 228 

R-dimensional vector 𝒚D1, while a Conv1D layer just extracts features into different feature maps.  229 

The vector 𝒚D1is then sent into a BN2 layer to generate a new feature vector 𝒚B2 that having a 230 

mean close to 0 and a standard deviation close to 1, which has the same effect as the BN1 layer. 231 

Using a sigmoid function as an activation function, the final layer is the Dense2 layer and output 232 

only one score between zero and one representing the probability of prediction. Using an R-233 

dimensional weight vector 𝑊D2 and a bias scalar 𝑏D2, the output score is given by: 234 

𝑦ୈଶ ൌ sigmoidሺ෍𝑊௥
ୈଶ

ୖିଵ

௥ୀ଴

𝑦௥୆ଶ ൅ 𝑏ୈଶሻ. 235 

The sigmoid function is defined as: 236 

sigmoidሺxሻ ൌ
1

1 ൅ eି୶
 237 

In general, the sequence with a score higher than 0.5 would be regarded as a positive sample (a 238 

virulent phage) and the sequence with a score lower than 0.5 would be regarded as a negative 239 

sample (a temperate phage). When training, we used the Adam optimizer [32] (learning rate = 240 

0.0001), binary cross-entropy as the loss function, and 32 as the batch size to train the neural network 241 

and update network weights. Altogether, we found that setting the size F to 64, M to 6, S1 to 3, S2 to 242 

3, P to 0.3, and R to 64 made the best performance. The structure of DeePhage was shown in the 243 

upper part of Figure 2. 244 

It is worthy to know more about the importance of the encoding method for sequences and each 245 

specific layer in our model, so we tested six different models (including DeePhage) by using k-mer 246 

frequencies as an encoding representation or removing a certain layer.  The six model architectures 247 

(DeePhage, Kmer-4, No-Maxpooling, No-Dropout, No-Globalpooling, and No-BN) were shown in 248 

Additional File 1 (Figure S1) and their performances were shown in Additional File 1 (Table S1). It can 249 

be seen that the Kmer-4 model did a terrible prediction. As mentioned above, when we used 4-mer 250 

frequencies to characterize each phage at the level of genome sequences (as shown in Figure 1), it 251 

could slightly distinguish two kinds of phages. It is proved that k-mer frequencies have not enough 252 

power to represent short sequences and are fit for capturing the global signature of long sequences 253 

rather than the local signature of short sequences. As for those models removing a certain layer, the 254 
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performance dropped compared with DeePhage. Especially, the prediction accuracy reduced nearly 255 

10% and 5% when using a model without a Globalpooling layer and BN layers (No-Globalpooling and 256 

No-BN model). Other models decreased slightly. We can see the architecture and the one-hot 257 

encoding representation of DeePhage are better than others.  258 

 259 
Note: Conv1D, 1D convolutional layer; Maxpooling, 1D maximum pooling layer; Globalpooling, 1D global average pooling layer; BN1, first batch 260 

normalization layer; BN2, second batch normalization layer; Dropout, dropout layer; Dense1, first dense layer; Dense2, second dense layer 261 

Figure 2. Structure of deep learning neural network and visualization of five layers by reducing dimensions. DeePhage uses 262 

the Convolutional Neural Network as the classifier. The neural network (in the upper part) takes the sequence in the “one-hot” 263 

coding form as input and output a score between zero and one. In general, the sequence with a score higher than 0.5 can be 264 

referred to as the virulent phage-derived fragment and the sequence with a score lower than 0.5 can be referred to as the 265 

temperate phage-derived fragment. The visualization demonstrated the learning process of DeePhage. The performance would 266 

be better when we observing a deeper layer (in the lower part). 267 

Although deep neural networks are considered as black-box models, we hope to have insights 268 

about the learning process for features. We chose five layers (One-hot input, Conv1D, BN1, 269 

Globalpooling, and BN2) to observe their learned features. Because it is hard to gain an intuitive 270 

feeling about high-dimension features, we used t-Distributed Stochastic Neighbor Embedding (t-SNE) 271 

[33], which is a machine learning algorithm for dimensionality reduction, for the visualization of high-272 

dimensional data in a 2D projected space. During the training period, we firstly used PCA to reduce 273 

features into a 20-dimensional space and then used t-SNE to reduce them into a two-dimensional 274 

space using the sequences from Group D. The visualizations of five layers were shown in the lower 275 

part of Figure 2. It could be seen that the effects of classification are better when focusing on the 276 

deeper layers. In detail, two types of phages were firstly mixture together and then separated 277 

gradually, which demonstrated the learning process of DeePhage. Furthermore, it should be 278 
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emphasized that the visualizations by dimensionality reduction cannot reflect the complete power of 279 

DeePhage. 280 

Considering the other length of sequences beyond our four-trained groups, we design some 281 

strategies. For those sequences longer than 1800 bp, DeePhage will split the sequence into several 282 

1800-bp-long subsequences without overlapping, usually except the last subsequence. DeePhage will 283 

then use the neural network in the corresponding group to predict each subsequence, and calculate 284 

the weighted average score according to the score and length of each subsequence. Because 285 

training the neural network using long sequences is very time-consuming, we do not train additional 286 

neural networks for longer sequences. For those sequences shorter than 100 bp, DeePhage uses the 287 

neural network in Group A to predict. 288 

 289 

RESULTS 290 

Identification performance of DeePhage 291 

We first used the five-fold cross validation to evaluate the performance of DeePhage. To test whether 292 

DeePhage can distinguish the lifestyle of novel phages or not, for each validation, we divided the 293 

training set and the test set based on complete genomes rather than artificial contigs, and then 294 

simulated 20,000 training sequences and 20,000 test ones using MetaSim [23]. The performance 295 

evaluation criteria here are defined as: Sn=TP/(TP+FN); Sp=TN/(TN+FP); and Acc=(TP+TN)/(TP+ 296 

TN+FN+FP). Among these criteria, Sn and Sp are used to evaluate the accuracy of virulent phages 297 

and temperate phages respectively, while Acc is used to evaluate the overall performance. As shown 298 

in Table 1, DeePhage demonstrates overall reliable and stable performance with Acc from 75% to 299 

88%. Such results indicate that the input of functional genes with several proteins is not required for 300 

our DeePhage. Therefore, our DeePhage method shows an evident advantage compared with the 301 

tool PHACTS. Since DeePhage can identify each DNA fragment as the virulent phage-derived 302 

sequence or temperate phage-derived one directly and independently, it would be a more acceptable 303 

tool to analyse phages in metagenomic data. In this case, the complete or near-complete genomes 304 

for phages were hard to be reconstructed from the data, especially for those with low abundance or in 305 

a low coverage sequencing condition. Clearly, our DeePhage has the advantage of being applicable 306 

to processing the data by current short-read sequencing technologies and performs better when the 307 

short reads could be assembled into longer contigs. 308 
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Table 1. Results of five-fold cross-validation for DeePhage. The validation of each group was performed independently. Each 309 

result consists of the mean and standard deviation. 310 

Group 
Group A 

 (100-400 bp) 
Group B 

(400-800 bp) 
Group C 

(800-1200 bp) 
Group D 

(1200-1800 bp) 

Sn(%) 69.3±3.6 76.2±5.5 82.1±6.6 86.9±4.7 

Sp(%) 78.8±5.8 86.1±6.9 88.6±9.6 88.7±8.9 
Acc(%) 74.6±1.9 81.8±2.7 85.8±4.0 88.2±4.3 

 311 

It is noted that the Sn is slightly lower than Sp for each rotation of different length groups, which 312 

means that some virulent phage-derived sequences are more prone to be misjudged as temperate 313 

ones. The reason is possibly that the diversity of virulent phages is lower than that of temperate 314 

phages in the current database. Although the sizes of positive and negative samples are comparable 315 

based on base counts, the number of genomes in positive samples is less than that of negative 316 

samples. In general, sequences from the same genome have similar sequence signatures such as 317 

codon usage and GC content. The fewer number of genomes in positive samples may lead to lower 318 

diversity. From the algorithm of machine learning, the negative samples have a wider distribution in 319 

the feature space while the positive samples only occupy a smaller space. Therefore, for the test 320 

data, the positive samples are easier to fall out of their feature space, which leads to the misjudgment 321 

of DeePhage. Despite this, the performance of DeePhage on virulent phages is rather reliable. More 322 

details about the performances of the ROC curves and AUC scores of DeePhage in each rotation of 323 

the five-fold cross validation are shown in Additional File 1 (Figure S2). 324 

In general, sequences with scores near 0.5 are not as reliable as those sequences with a score 325 

near 0 or 1. Therefore, DeePhage is designed with an adjustable cutoff to filter out these uncertain 326 

predictions. Users can specify a cutoff using a parameter. In this way, a sequence with a score 327 

between (0.5-cutoff/2, 0.5+cutoff/2) will be labelled as "uncertain". In general, with a higher cutoff, the 328 

percentage of uncertain predictions will be higher while the remaining predictions will be more 329 

reliable. 330 

 331 

Comparison with PHACTS for protein sequence identification 332 

It should be noted that DeePhage and PHACTS were designed for different tasks, PHACTS was 333 

designed for complete genomes while DeePhage is designed for metagenomic fragments. Therefore, 334 

the requirements of the input data for them are actually different. PHACTS requires users to input all 335 

proteins (amino acid sequences) within one phage genome, so proteins from different phages should 336 
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not be put into the same file. In contrast, the DeePhage’s requirement is only to input all DNA 337 

fragments (nucleic acid sequences), no matter whether they contain coding regions and whether they 338 

are from the same phage, and DeePhage may directly judge each fragment independently. Although 339 

it is difficult to compare two tools based on the same condition, we tried to test the performance of 340 

PHACTS in DNA short fragments. Since PHACTS requires a collection of protein sequences as input, 341 

we firstly annotated the protein sequences of 100,000 DNA sequences of the test set in each length 342 

group using FragGeneScan (v1.31) [34] and proteins from the same sequence (sequences without 343 

coding regions were ignored) are input into the program PHACTS (v0.3). As for comparison, 344 

DeePhage is also used to predict these DNA sequences with coding regions. The total accuracy (the 345 

number of correct predictions divided by the total number of sequences having the coding regions in 346 

each length group) of DeePhage and PHACTS in each length group are shown in Figure 3. For short 347 

fragments covering data sets of Group A to D, PHACTS demonstrates the accuracies of ACC around 348 

50%, which are nearly the results of random predictions. In construct, DeePhage can satisfactorily 349 

classify the sequences with the accuracies of ACC about 75%~88%. 350 

 351 

Figure 3. Comparison results of DeePhage and PHACTS in each length group.  352 

 353 

In addition, we have evaluated the performances of DeePhage and PHACTS on the coding 354 

sequences (CDSs) from all 225 phage genomes. Since PHACTS could only process protein 355 

sequences, we extracted all CDSs from the genomes according to the GenBank annotation and each 356 

CDS was independently inputted to PHACTS (in the form of amino acid sequences) and DeePhage 357 
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(in the form of nucleic acid sequences). We found that PHACTS can only achieve the Acc of 54.3%, 358 

which is also similar to random judgment results, while DeePhage achieves the Acc of 85.0%, more 359 

than 30% higher than that of PHACTS. Considering that the number of CDSs in each metagenomic 360 

fragment is very limited, PHACTS has actually a very limited ability to analyse metagenomic data 361 

especially when the complete genomes could not be reconstructed using these fragments. Overall, as 362 

the first tool designed for phage lifestyle classification from metagenomic data, DeePhage, a de novo 363 

tool using the deep learning algorithm, presents efficient prediction. 364 

Also, DeePhage can handle large scale high-throughput data within an acceptable running time. 365 

In order to test, we recorded the runtime of DeePhage and PHACTS to predict 100 DNA sequences 366 

(converted to protein sequences for PHACTS) ranging from 100-1800 bp. DeePhage spends nearly 367 

10 seconds 810 times faster than PHACTS using nearly 135 minutes, when tested on a virtual 368 

machine with the following configuration: CPU: Intel Core i7 4790; and Memory: 8G, DDR3. As for 369 

PHACTS, every sequence needs to be aligned and every prediction needs to be replicated ten times, 370 

while DeePhage could directly predict every sequence without any alignments. Therefore, DeePhage 371 

is much faster than PHACTS. 372 

 373 

Evaluation of DeePhage and PHACTS using real metavirome data 374 

Although it was difficult to make exact evaluations using real data, some functional genes could help 375 

us to make an approximately effective assessment of our model. In this subsection, we used 376 

DeePhage to predict all the sequences in a metavirome data of bovine rumen [24] with 118918 377 

contigs assembled by SPAdes (v3.13.0) [26]. As a result, 45.1% (53625/118918) of the contigs were 378 

predicted as virulent phage-derived contigs and 54.9% (65293/118918) as temperate phage-derived 379 

contigs. For assessment of the DeePhage’s prediction, we then collected the RefSeq viral protein 380 

database [35] as a reference. Since the viral proteins labelled of ‘excision’, ‘integration’, or ‘lysogeny’ 381 

are more likely to exist in temperate phages [14], we used those proteins to build an MTPD (mini 382 

temperate phage-derived) set containing 107 protein sequences. We then searched all 118918 383 

contigs against the MTPD data using Blastx v2.7.1[36] and obtained 16 targeted contigs having 384 

homologous regions (e-value  1e−10, hits length  400). Those presented an extremely small 385 

proportion (16/118918), which confirms that there are a huge number of data having no reliable 386 

homologous regions of known databases. When it comes to DeePhage, 13 of 16 targeted contigs can 387 
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be identified as temperate phage-derived contigs, while only 10  contigs can be classified as 388 

temperate phage-like contigs by PHACTS. It shows DeePhage performs better than PHACTS and 389 

has rather the potential to analyze newly sequenced phage data. However, the prediction scores 390 

being nearly 0.5 shows PHACTS actually made randomly inferring, while DeePhage having a majority 391 

of reliable scores and making better predictions. The information of 16 targeted contigs and predicted 392 

results by DeePhage and PHACTS was listed in Table 2. 393 

 394 

Table 2. Information of 16 targeted contigs and predicted results by DeePhage and PHACTS. ‘Contig ID’ refers 395 

to the ID of 16 targeted contigs. ‘Identity’, ‘E-value’, and ‘Hits length’ refer to the alignment results using Blastx. 396 

Contig 
ID 

Contig 
length (bp) 

Identity 
(%) 

E-value 
Hits 

length 
DeePhage PHACTS 

prediction score prediction score 

4 28516 26.32 1e-10 513 temperate 0.4308 temperate 0.4835 

12 11212 27.23 2e-14 606 temperate 0.2022 temperate 0.4667 

52 5349 29.89 1e-30 798 temperate 0.0127 temperate 0.4995 

88 3734 24.68 1e-11 828 temperate 0.1326 temperate 0.4925 

173 2530 26.22 2e-25 1044 temperate 0.0232 virulent 0.5000 

223 2233 23.27 1e-12 834 virulent 0.6742 virulent 0.5161 

1257 1029 29.87 1e-16 462 virulent 0.6044 virulent 0.5082 

1639 921 23.96 2e-11 849 temperate 0.1589 temperate 0.4735 

3299 702 28.18 8e-25 609 temperate 0.0303 temperate 0.4744 

3326 699 30.88 9e-15 405 temperate 0.3095 virulent 0.5055 

6405 549 25.14 1e-13 519 temperate 0.0222 virulent 0.5080 

7704 514 39.86 2e-22 429 temperate 0.1451 virulent 0.5110 

8130 503 36.05 3e-22 441 temperate 0.0512 temperate 0.4944 

9804 470 31.69 2e-16 423 temperate 0.1596 temperate 0.4952 

10819 454 38.61 2e-30 450 temperate 0.0574 temperate 0.4951 

12636 430 34.04 2e-21 417 virulent 0.9784 temperate 0.4743 

 397 

Further, we found that 16 contigs contain homologous regions of the functional proteins with the 398 

e-value lower than 1e-10, but they do not have high identity scores to these proteins (identity<50%). 399 

These results indicate that the 16 contigs are not close to the viral proteins from the database in the 400 

genetic relationship. These also show that the diversity of phages in the environmental samples might 401 

be much higher than that in the current database, and DeePhage can handle these novel phages. In 402 

fact, when we looked over the RefSeq viral protein database, we found that a large number of 403 

proteins are labelled as putative or hypothetical and the percentage of such proteins might be much 404 

higher than that of bacteria, which further demonstrates the diversity of phages.  405 
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Not only the several above-mentioned contigs but also the whole sequences could be taken into 406 

consideration in a full scope of the predictive ability of DeePhage. Using the whole genomes of 77 407 

virulent and 148 temperate phages in our datasets, we annotated all the sequences in the virome 408 

data of bovine rumen by Blastn v2.7.1[36]. When setting the default parameters (the default e-value is 409 

10), 118564 contigs could be annotated as virulent or temperate phage genomes by BLAST. Among 410 

those contigs, DeePhage distinguished 49.32% virulent and 57.69% temperate phage contigs with an 411 

average proportion of 54.4%. In comparison, PHACTS made an apparent preference for virulent 412 

contigs (68.2%) and for temperate contigs (28.9%). Although the proportion of virulent contigs was 413 

higher, PHACTS only received an average of 44.5%, which was much lower than DeePhage. 414 

Estimated on the level of entire real data, the superiority of DeePhage is certainly considerable. 415 

To sum up, the evaluation of DeePhage using real metavirome data demonstrated DeePhage 416 

made much better and reliable predictions than PHACTS. As an ab initial tool, it may be concluded 417 

that DeePhage has a good ability to adapt to this diversity and has the potential to analyse newly 418 

sequenced phage data. 419 

 420 

An application of a cross-sectional study indicating that phage transformations impacting the 421 

change of gut microbiota structure 422 

Viruses especially the phages contribute importantly to the gut microbiota structure. Particularly, 423 

temperate phages could be free from the genome of their bacterial hosts and then kill them driven by 424 

a suitable environment condition. While virulent phages directly attack their host. Therefore, such 425 

phage transformations would change the gut microbiota composition profile and community structure. 426 

However, it is hard to analyse this result entirely using the databased method because of the 427 

limitation of database and marker genes like 16S RNA. As a result, there are not effectively 428 

computational related tools. For example, alignment phage sequences to the known phage database 429 

using the traditional Blast program could just output some known phages without any new phages. 430 

Indeed, the number of unknown phages were extraordinarily huge. Fortunately, DeePhage now could 431 

detect phage transformations over the whole genomes of phages from the complete virome data. The 432 

downstream findings based on DeePhage could give us instructive insights into the function of 433 

phages in the gut microbiota. 434 
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In this subsection, we then designed a new strategy about how to use DeePhage to estimate the 435 

transformations of phages in the cross-sectional study. Specially, we analyse the virome data from 436 

ulcerative colitis (UC) patients and healthy people as an example to find out associations between 437 

phages and gut microbiota after having the disease. For phages in a community, owing to lack of 438 

marker genes like 16S RNA to detect their abundance or diversity, it is difficult to determine the 439 

association between the transformation of phages and the change of gut microbiota structure. Herein 440 

we collected 21 untargeted metagenomic samples (randomly selected) of UC patient guts and 21  441 

(randomly selected) untargeted metagenomic samples of healthy human guts by Nielsen et al. [37]. In 442 

addition, we collected 54 virome samples (viral particles were enriched before sequencing) of UC 443 

patient guts (being diagnosed as a specific state) and 23 virome samples of healthy control by 444 

Norman et al. [38]. The accessions were provided in Additional File 1 (Table S1 and S2). We used 445 

SPAdes to assemble raw reads of each sample. 446 

For each untargeted metagenomic sample, we first used PPR-Meta [10] to identify all the phage-447 

derived contigs. The average percentage of phage contigs in metagenomic data of UC patient and 448 

healthy individual guts were similar (23.7% in UC patient and 25.7% in healthy human guts) without 449 

significant difference (p-value=0.170, the difference in location=0.021 and 95% confidence interval = 450 

(0.007, 0.045) for two-sided Wilcoxon Rank-Sum test). For convenience, in the following text, phage 451 

contigs in gut microbiota annotated by PPR-Meta were referred to as computational phages while 452 

contigs from virome data were referred to as experimental phages. It was worth noting that 453 

experimental phages only included virulent phages and temperate phages in the lytic cycle. However, 454 

temperate phages in the lysogenic cycle could not be included, because temperate phages in the 455 

lysogenic cycle would integrate their genomes into host cells and would not assemble the viral 456 

particles. In contrast, computational phages included all kinds of phages. 457 

We then used DeePhage to predict the lifestyle of the experimental phages. An average of 64.2% 458 

of the contigs were predicted as temperate phages in UC patients while 51.5% in healthy individuals 459 

with significant difference (p-value=0.001, difference in location=0.123 and 95% confidence interval = 460 

(0.054, 0.200) for two-sided Wilcoxon Rank-Sum test). This indicates that the proportion of temperate 461 

phages in UC patients' gut was higher than in healthy individuals. However, we still could not infer the 462 

detailed transformations from this result, because both the decreased diversity of virulent phages and 463 

increased diversity of temperate phages in UC patients will lead to a higher proportion of temperate 464 
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phages. More importantly, even if the number of virulent phages and temperate phages were the 465 

same in healthy individuals and UC patients, the proportion of temperate phages in experimental 466 

phages could also increase when more temperate phages were undergoing the transformation from 467 

the lysogenic cycle to the lytic cycle, in which they would assemble free viral particles. To make the 468 

population dynamics clearer, we further used DeePhage to predict the lifestyle of the computational 469 

phages. Surprisingly, an average of 57.5% and 56.9% of the contigs were predicted as temperate 470 

phages in UC patients and healthy individuals without significant difference (p-value=0.811, the 471 

difference in location=0.003 and 95% confidence interval = (0.036, 0.025) for two-sided Wilcoxon 472 

Rank-Sum test), indicating that the proportion of virulent phages and temperate phages in UC 473 

patients and healthy individuals were similar. Considering the results from computational phages and 474 

experimental phages together, it seemed that the higher proportion of temperate phages in 475 

experimental phages of UC patients might result from the part of temperate phages undergoing a 476 

transformation from the lysogenic cycle to the lytic cycle. 477 

From these preliminary results, we inferred that the phage populations in UC patients were 478 

undergoing a kind of change that influence the gut microbiota structure, in which some kinds of 479 

temperate phages were transforming from prophages to free viral particles. To investigate the 480 

transforming temperate phages, we picked out all the temperate contigs annotated by DeePhage from 481 

the UC and healthy samples. Using all the phage genomes [39] as the database of the BLAST 482 

method (e-value  1e−10), 342 species of phages were existing in both Healthy and UC samples, and 483 

just 154 species, 99% of which were from the Caudovirales order, only existing in Healthy samples. 484 

As a comparison, we found out different phage contigs coming from 551 species that only existing in 485 

UC samples, which probably means there were more kinds of temperate phages in UC samples than 486 

in Healthy samples. Those phages could be classified into eleven families:  Siphoviridae, 487 

Herelleviridae, Podoviridae, Myoviridae, Ackermannviridae, Autographiviridae, Drexlerviridae, 488 

Tristromaviridae, Inoviridae, Microviridae, Sphaerolipoviridae. The first seven families belong to the 489 

Caudovirales order, which accounts for nearly 97% (532/551) different species. Besides, a very small 490 

part (nine different species) is coming from Microviridae family. Caudovirales order and Microviridae 491 

family are dominated in human gut virome [40], meanwhile, they are more abundant in UC patients 492 

compared with household members and controls [41]. Especially, Norman et al. observed an increase 493 

in the richness of some members of the Caudovirales in UC patients [38]. Those supported our 494 
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inference to a certain degree. The last several families lacking researchers’ concerns in the human 495 

gut could roughly be ignored. Since the release of prophages is often associated with the death of 496 

bacterial hosts, the activation of the temperate phages may be associated with the change of species 497 

composition. We can infer that after being illness more kinds of temperate Caudovirales phages turn 498 

into a lytic cycle and become free viral particles from the bacterial genomes, in consequence, such 499 

switch change the struct of microbiota by killing the bacterial host. Consistently, previous research 500 

showed that the species compositions of the bacteria community in UC patients were different from 501 

that of healthy individuals [42] and the virulent phages from the healthy core could be substituted by 502 

temperate phages [43]. All those discoveries indicated that maybe it was the temperate Caudovirales 503 

phages have a primary impact on human UC disease, which was also verified by us. However, 504 

DeePhage could not only detect well-studied phages, such as Caudovirales phages, but it also can 505 

trace any known and unknown phages to distinguish their lifestyles. With integrated data, we have 506 

access to disease conditions deeply. 507 

To sum up, such a strategy being independent of databases may further provide insights into the 508 

specific and integral interactions between phages and bacterial hosts according to phage lifestyles, 509 

which could not have been found out before. Researchers can gain more valuable information about 510 

the disease process and facilitate the study of human disease. 511 

 512 

DISCUSSION 513 

In this paper, we presented DeePhage as an effective tool to distinguish virulent phage-derived and 514 

temperate phage-derived sequences in metavirome data. Coding a DNA sequence, DeePhage needs 515 

no previously extracted features but use each nucleotide as input. There are some advantages. 516 

DeePhage can bypass using the information of some functional genes to make the judgment and 517 

directly and rapidly identify each DNA fragment being independent of assembling. Such a function is 518 

important because many novel phage genomes are difficult to reconstruct and the amount of 519 

sequences is large when focused on metagenomic data. CNN models here occupied the core 520 

strength of DeePhage for their excellent ability on feature extraction, which is hard to discover by 521 

statistics. As we can see, DeePhage gradually separates virulent and temperate phage-derived 522 

sequences along with deeper neural networks. DeePhage’s ability to distinguish two kinds of 523 

sequences is superior to PHACTS on the assessment of simulated data and real data. To be specific, 524 
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DeePhage presents a huge improvement in prediction accuracy (nearly 30% higher on simulated 525 

data) and computational efficiency (almost 810 times faster). More importantly, DeePhage sheds new 526 

light on the phage transformations by tracing the variation of a specific type of phage. As we can see, 527 

the previous study speculated the possibility that the expansion of the Caudovirales phages is related 528 

to the activation of prophages in UC patients [44]. Fortunately, now we can be more convinced that 529 

more temperate Caudovirales phages are turning into a lytic cycle. We believe that there will be an 530 

increasing number of new discoveries, just like the problem mentioned before, on account of 531 

DeePhage. Afterward, DeePhage ultimately reduces the dependency on culture-dependent methods 532 

and promotes human disease research. 533 

It is also interesting to explore the biological mechanism that helps DeePhage distinguish 534 

fragments from these two kinds of phage using the sequence signature. In our opinion, this may 535 

because virulent phages and temperate phages face different evolutionary pressures and therefore 536 

contain different sequence signatures, such as k-mer frequencies as we showed in Figure 1. Genome 537 

amelioration often occurs on foreign DNA, such as phage or plasmid, in the host cell and foreign DNA 538 

will change its sequence signatures according to the host chromosome to help it exist stably in the 539 

host cell [45]. The similarity of sequence signatures between foreign DNA and bacterial chromosome 540 

is often used to predict the bacterial host of the foreign DNA [11,12,45]. Since temperate phages will 541 

spend more time in the host cell, they may adjust their sequence signatures toward host 542 

chromosomes. Related researches also show that temperate phages do contain more similar 543 

sequence signatures to their hosts than virulent phages [21,46]. Therefore, we considered that the 544 

difference of sequence signatures played an important role for DeePhage to identify these two kinds 545 

of phages. To further prove this conjecture, we collected 120 bacterial genomes from RefSeq 546 

database [47] (the accession numbers can be seen in Additional File1, Table S4) and then used 547 

MetaSim to extract artificial contigs between 100 to 1800 bp. We observed how DeePhage would 548 

judge these bacterial sequences. Although the training set of DeePhage did not contain any bacterial 549 

sequences, DeePhage identified 79.3%, 84.7%, 84.9%, and 86.0% of the bacterial sequences as 550 

temperate phages in Group A, B, C, and D, respectively (the sequence length in each group was 551 

corresponding to Table 1). We considered that the reason why more than half of the bacterial 552 

sequences were identified as temperate phages was that bacteria contained similar sequence 553 
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signatures with temperate phages. This phenomenon also demonstrates that using the information of 554 

sequence signatures may be the working principle of DeePhage. 555 

DeePhage also has some limitations. Although prokaryotic viruses are dominant in virome 556 

samples, a few eukaryotic viruses could also be included. However, DeePhage cannot identify these 557 

sequences before distinguishing the lifestyle of each contig. Fortunately, the related tool that helps to 558 

distinguish prokaryotic and eukaryotic viruses has been developed recently [48] and we are also 559 

considering constructing a preprocessing module for DeePhage to filter out the eukaryotic viruses so 560 

that DeePhage can generate more reliable results for the downstream analysis. 561 

In conclusion, to the best of our knowledge, DeePhage is the first tool that can directly judge 562 

each fragment as a virulent phage-derived or temperate phage-derived sequence for virome data in a 563 

fast way. Therefore, it is expected that DeePhage will be a powerful tool for researchers who are 564 

interested in the function of phage populations and phage-host interactions. 565 

 566 

Availability of supporting data and materials 567 

The artificial contigs, related scripts, and original results are available at 568 

http://cqb.pku.edu.cn/ZhuLab/DeePhage/data/. All the other data are available at corresponding 569 

references mentioned in the main text. 570 

Availability of supporting source code and requirements 571 

Project name: DeePhage. 572 

Project home page: http://cqb.pku.edu.cn/ZhuLab/DeePhage or 573 

https://github.com/shufangwu/DeePhage. 574 

Operating system: The code of DeePhage was written on Linux. We optimized the program in a 575 

virtual machine; thus, DeePhage is platform independent. 576 

Programming language: python, matlab 577 

Other requirements: no other requirements are needed if running in the virtual machine. If not, Python 578 

3.6.7, TensorFlow 1.4.0, Keras 2.1.3, numpy 1.16.4, h5py 2.9.0 and MATLAB Component Runtime 579 

2018a (for free) are needed. MATLAB is not necessary. 580 

License: GPL-3.0. 581 

RRID: SCR_019243 582 

 583 
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Additional files 584 

Additional file 1: Figure S1. The architectures of six different models; Table S1. The Sn, Sp, and Acc 585 

of six different models; Figure S2. The ROC curves and AUC scores of DeePhage performances in 586 
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Figure 1. The PCA of 4-mer frequencies distribution among virulent and temperate phage genomes.  612 
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Figure 2. Structure of deep learning neural network and visualization of five layers by reducing 613 

dimensions. DeePhage uses the Convolutional Neural Network as the classifier. The neural network 614 

(in the upper part) takes the sequence in the “one-hot” coding form as input and output a score 615 

between zero and one. In general, the sequence with a score higher than 0.5 can be referred to as 616 

the virulent phage-derived fragment and the sequence with a score lower than 0.5 can be referred to 617 

as the temperate phage-derived fragment. The visualization demonstrated the learning process of 618 

DeePhage. The performance would be better when we observing a deeper layer (in the lower part). 619 

Table 1. Results of five-fold cross-validation for DeePhage. The validation of each group was 620 

performed independently. Each result consists of the mean and standard deviation. 621 

Figure 3. Comparison results of DeePhage and PHACTS in each length group. 622 

Table 2. Information of 16 targeted contigs and predicted results by DeePhage and PHACTS. ‘Contig 623 

ID’ refers to the ID of 16 targeted contigs. ‘Identity’, ‘E-value’, and ‘Hits length’ refer to the alignment 624 

results using Blastx. 625 
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