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A central challenge of medical imaging studies is to extract quantitative
biomarkers that characterize pathology or predict disease outcomes. In high-
resolution, high-quality magnetic resonance images (MRI), state-of-the-art
approaches have performed well. However, such methods may not translate
to low resolution, lower quality images acquired on MRI scanners with lower
magnetic field strength. Therefore, in low-resource settings where low field
scanners are more common and there is a shortage of available radiologists to
manually interpret MRI scans, it is essential to develop automated methods
that can accommodate lower quality images and augment or replace man-
ual interpretation. Motivated by a project in which a cohort of children with
cerebral malaria were imaged using 0.35 Tesla MRI to evaluate the degree of
diffuse brain swelling, we introduce a fully automated framework to trans-
late radiological diagnostic criteria into image-based biomarkers. We inte-
grate multi-atlas label fusion, which leverages high-resolution images from
another sample as prior spatial information, with parametric Gaussian hid-
den Markov models based on image intensities, to create a robust method for
determining ventricular cerebrospinal fluid volume. We further propose nor-
malized image intensity and texture measurements to determine the loss of
gray-to-white matter tissue differentiation and sulcal effacement. These inte-
grated biomarkers are found to have excellent classification performance for
determining severe cerebral edema due to cerebral malaria.
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1. Introduction. Magnetic resonance imaging (MRI) is a non-invasive technique that
uses powerful electromagnetic fields to visualize brain structures and assess both disease
diagnosis and prognosis. In recent years, cutting-edge technology using magnetic field
strengths of up to 7 Tesla has allowed for extremely high-resolution human brain images
to be captured. Alongside this improvement in technology, there has been a concurrent ex-
plosion of sophisticated automated methods ranging from lesion segmentation in multiple
sclerosis (Shiee et al., 2010; Valcarcel et al., 2018; Valverde et al., 2017) or brain tumor
(Gordillo, Montseny and Sobrevilla, 2013), to the prediction of clinical outcomes in patients
with psychosis (Nieuwenhuis et al., 2017).

However, access to advanced MRI technology is not consistent across the globe (Marques,
Simonis and Webb, 2019). In low-resource settings, challenges related to cost, infrastructure,
and unreliable power sources may limit the availability of high field strength MRI (Latourette
et al., 2010), sparking interest in lower field strength (< 0.5T) MRI alternatives. Even in areas
where 1.5-3T MRI is in use, low field MRI is witnessing a resurgence in popularity: stand-
alone and portable MRI systems have demonstrated potential for use in emergency rooms,
critical care units, ambulances, and public areas (Campbell-Washburn et al., 2019; Sarracanie
et al., 2015; Sheth et al., 2020). However, this technology is often limited by low signal to
noise ratio, which is strongly dependent on the main magnet field strength. The challenge
is to translate modern image analysis pipelines—which were developed on higher resolution
images—to low-resolution and lower quality scans.

In response, we propose methods to extract information from images acquired on a 0.35T
scanner to assess the severity of cerebral edema in children with cerebral malaria (CM).
Malaria is a parasitic infection that results in more than 400,000 deaths annually, with the
great majority occurring in children living in sub-Saharan Africa, and continues to be a public
health priority (World Health Organization, 2018). CM is a serious complication of malaria
infection characterized by impaired consciousness and ultimately coma (Idro et al., 2010).
In children, CM is a leading cause of malarial death and has a case fatality rate of 15-20%
despite optimal treatment (Dondorp et al., 2010). The pathophysiological mechanisms behind
CM are not completely understood, though diffuse brain swelling, intracranial hypertension,
and higher brain weight-for-age are commonly seen in fatal cases (Seydel et al., 2015; Idro
et al., 2010). It is thus hypothesized that brain swelling, in conjunction with non-central
nervous systemic factors, plays a critical role in disease outcome.

MRI has been proposed to study the pathogenesis of CM (Looareesuwan et al., 2009) as
well as assess participants’ eligibility for enrollment in clinical trials (Kampondeni et al.,
2018). In the latter case, the severity of brain swelling (cerebral edema) must be evaluated
rapidly with MRI, ideally by a trained on-call neuroradiologist. However, these visual deter-
minations involve a degree of subjectivity, and there is a shortage of trained neuroradiologists
in resource-limited settings, which are additionally impacted by the limited availability of
high field strength machines. We are therefore interested in automating this assessment of
brain swelling in order to increase the utility of low field MRI in low-resource settings.

As a first approach to this problem, we asked if standard image processing tools could be
applied to low field strength scanners and evaluated existing pipelines to extract measure-
ments of brain volume and structure. We experimented with a common pre-processing task
in brain MRI analysis referred to as brain segmentation, where voxels (3-dimensional pix-
els) of the brain image are identified and isolated, and voxels from the skull, eyes, and other
non-brain tissues are removed. Popular surface-based methods such as Brain Extraction Tool
(Smith, 2002) perform well on 3T images; however, BET performed poorly when applied to
the 0.35T images in our sample of patients with cerebral malaria (Figure 1). Parameter tuning
did not resolve these issues.

To address this, we developed a novel integrative framework for assessing brain edema
severity in children with CM by adapting image processing pipelines originally designed for
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FIG 1. Surface-based brain segmentation methods such as Brain Extraction Toolbox (BET) perform well on
higher resolution images compared to lower resolution images. (Left column) BET segmentation on a 0.35T image
from our sample. (Right column) BET segmentation on a 3T image from the Philadelphia Neurodevelopmental
Cohort (Satterthwaite et al., 2016). Notably, the 0.35T segmented image still contains much of the skull, which is
completely removed in the 3T segmented image.

high field strength scanners to images from low field strength scanners. We leveraged existing
high-quality brain imaging data to identify cerebral tissue and remove all non-brain voxels
from images in our study. We adapted currently available image processing techniques to
extract volume-, intensity-, and curvature-based biomarkers from low resolution MRI scans,
assessing each of the key metrics used by neuroradiologists to assess disease severity. Finally,
we incorporated these biomarkers into a logistic regression model that parsimoniously char-
acterizes how radiologists score brain edema on MRI. Our model exhibits high prediction
accuracy (measured by area under the curve) and is validated by its classification perfor-
mance on a separate testing set, and through Monte Carlo sampling.

2. Data.

2.1. Magnetic Resonance Imaging. Participants in this study were children (aged 6
months to 14 years old) admitted to the Blantyre Malaria Project, a long-term study of CM
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TABLE 1
Radiological criteria used to assign brain volume (BV) scores and identify patients with severe brain swelling. A

BV score ≥ 7 indicates severe brain swelling.

Score Definition

1 Severe atrophy markedly abnormal for age with diffuse prominence of the cis-
ternae and sulci

2 Mild atrophy - subtle prominence of the cisternae and sulci for age
3 Normal brain volume
4 Mild increased volume but with maintenance of cisternae and sulci
5 Mild swelling - some loss of cisternae and sulci but not diffuse
6 Moderate swelling - diffuse involvement with some loss of cisternae and sulci
7 Severe swelling - loss of all sulci, presence of cisternal effacement, decreased

gray/white matter delineation
8 Severe swelling – loss of all sulci, presence of cisternal effacement, presence of

uncal herniation, loss of gray/white matter delineation

pathogenesis located in Blantyre, Malawi. All children had a Blantyre Coma Score of 2 or
less, malaria parasitemia on peripheral blood smear, and no other known cause of coma. Af-
ter clinical stabilization and beginning of intravenous antimalarial medications, participants
were imaged with a General Electric 0.35T Signa Ovation MRI system (General Electric
Healthcare, Chicago, Illinois). We considered two pulse sequences to highlight diverse tissue
structures in the brain: a typical T1-weighted image exhibits brightest signal for fat, brighter
signal for white matter than gray matter, and darkest signal for cerebrospinal fluid (CSF); in
a T2-weighted image, CSF and fat are both bright and white matter is relatively dark. During
the enrollment period, 100 participants were imaged. Five children were excluded from all
analyses as both T1 and T2 sequences were unavailable for assessment.

MRI acquisition parameters were not uniform across subjects, nor were they uniform
across modalities within a subject. For instance, while most subjects had T1 and T2 scans
that had high in-plane resolution in the axial dimension, many had a mixture of T1 and T2
scans that had high in-plane resolution in axial, coronal and/or sagittal planes. A further chal-
lenge was that, in almost all images, the top of the brain was outside of the field of view; this
was due to time constraints with respect to image acquisition. Finally, some images contained
banding and other artifacts due to subject motion and technical factors.

The images were partitioned into training (n= 46) and testing (n= 49) sets at the outset.
In the training set, subjects were scored by 3 radiologists, while in the testing set, subjects
were scored by up to 8 radiologists. Exploratory analyses and biomarker identification were
performed on the training data, with the better-validated testing data reserved to assess pre-
diction performance.

2.2. Brain Volume Severity Score. Brain volume (BV) scores were obtained from 8 radi-
ologists who had been trained in assessing cerebral edema in the context of CM. MRI images
were assigned a brain volume score ranging from 1 to 8 according to several neuroradiolog-
ical criteria (Table 1) (Kampondeni et al., 2018; Potchen et al., 2012; Seydel et al., 2015).
Scores of 7 or 8 indicate patients with severe brain swelling who are at high mortality risk.
Scores were assigned based on all available MRI images, including the T1 and T2 sequences
as well as occasionally acquired diffusion weighted images; our automated method involved
only the T1 and T2 sequences. As each subject’s BV score was assigned by several radiolo-
gists, the overall BV score for that subject was calculated as the median of these ratings.

3. Methods. The goal of our analyses was to develop an automated approach using sta-
tistical modeling to predict the BV score given the acquired images. In the following sections,
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we first describe a pre-processing procedure for the T1 and T2 scans to reduce the effect of
image artifacts and to identify brain tissue. We then motivate and develop biomarkers of the
three primary assessments used to determine severity of brain swelling. Finally, we integrate
these metrics into a logistic regression model and assess the classification performance of
that model using two validation schemas based on the initial training and testing data. All
code can be provided upon request, and we intend to make it available on GitHub.

3.1. Pre-processing.

3.1.1. Notation. For subject i and modality τ ∈ {1,2} corresponding to T1 and T2 scans,
a brain image consists of the voxel vector xi = {1, ..., Vi} where Vi is the total number of
voxels in that image. At any voxel x ∈ {1, ..., Vi}, the intensity viτ (x) defines a function
from the integers to the real numbers. By evaluating viτ (x) at all voxels, we obtain the vector
viτ , which is collectively referred to as the image.

3.1.2. Bias Correction. A common artifact of the MRI acquisition process is intensity
inhomogeneity or bias, wherein the intensities vary in a gradient over the entire image (Vovk,
Pernus and Likar, 2007). Because this can affect the quality of subsequent analyses where
tissues are identified based on the observed image intensities, bias correction is a common
pre-processing step in neuroimaging studies (Sled, Zijdenbos and Evans, 1998). All images
in our sample were corrected using N4 bias correction (Tustison et al., 2010), which assumes
a multiplicative bias model for the observed image

viτ (x) = uiτ (x)hiτ (x) + εiτ (x),

for subject i and modality τ such that uiτ is the true image, hiτ is a smooth bias field, and
εiτ is Gaussian noise that is independent of uiτ .

3.1.3. Brain Segmentation. Because the skull and other non-brain tissues contain noisy
and irrelevant information, it is necessary to perform tissue segmentation, where voxels cor-
responding to a tissue of interest are identified. In the case of brain segmentation, we define
the class assignment for voxel x and subject i to be

bi(x) =

{
1 voxel x is brain
0 otherwise.

The voxelwise evaluation of bi(x) at x ∈ {1, ..., Vi} yields the subject-specific brain mask bi,
a binary vector of length Vi where the ith entry corresponds to the classification of the ith
voxel as either brain or non-brain.

Popular surface-based brain segmentation tools such as the Brain Extraction Tool (Smith,
2002) did not perform well on our images, as the low resolution precluded a clear separation
between brain and skull (Figure 1). Therefore, we appealed to a class of methods that borrow
strength from existing “gold standard” segmentations on atlases, which consist of a high-
resolution brain image together with its highly-validated brain mask. Our atlas set comprises
a sample of 12 subjects imaged at 3T as part of the study-specific atlas in the Philadelphia
Neurodevelopmental Cohort (Satterthwaite et al., 2016). For these subjects, the whole brain
was automatically segmented and the masks were manually corrected slice by slice, a time-
intensive process. The 12 youngest subjects in this group were selected to reduce age-related
biases that may result from atlases developed from images of patients who are older than the
subjects in our sample.
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FIG 2. Ventricular CSF volume and BV score. In these T2-weighted images, CSF is shown as bright regions and
the ventricles are highlighted by green boxes. (Left) A subject with BV score = 2.5 indicating near-normal brain
volume. (Right) A subject with BV score = 7 indicating highly increased brain volume.

Atlas-based segmentation is typically a two-stage process: first, the atlas is continuously
deformed to match the target image (that is, the image to be segmented); this deformation
is referred to as the registration function. We used symmetric image normalization (SyN)
to estimate non-linear registration functions (Avants et al., 2008). The registration function
is then applied to the atlas’s brain mask, yielding a mask warped into the target image co-
ordinate space indicating where various tissues are located in the target image. To address
heterogeneity across subjects under study, it is common practice to repeat this process us-
ing multiple atlases and brain masks; such methods are referred to as multi-atlas methods
(Rohlfing et al., 2004).

The second step is to produce a consensus segmentation of the target in a process called
label fusion. We employed a majority voting consensus algorithm (Artaechevarria, Munoz-
Barrutia and de Solorzano, 2009; Kittler, 1998): at each voxel, the final designation of brain
versus non-brain was decided by the majority of warped atlas brain masks at that voxel.
Although majority voting has been criticized as overly simplistic, we found it to perform
well in our data and further noted that more advanced label fusion methods (Wang et al.,
2013) failed in our dataset, likely due to lower image quality.

3.2. Biomarkers of Severe Edema. Based on the radiological criteria for BV scores of
7 and 8 (Table 1), we developed three image-based multi-modal biomarkers to quantify a)
ventricular volume, b) gray and white matter delineation, and c) sulcal effacement.

3.2.1. Ventricular CSF Volume. We hypothesized that severely increased brain volume
would be associated with a smaller ventricular volume relative to the whole brain (Figure
2). As such, a measure of ventricular CSF requires the identification of ventricular and CSF
voxels in the image.

To identify CSF regions, we leveraged a model of the observed intensities to partition
voxels into classes. We used FSL FAST (Zhang, Brady and Smith, 2001), a popular approach
that assumes that intensities and tissue classes can be modeled by a Gaussian Hidden Markov
Random Field (GHMRF). Within the image for subject i, a voxel x can be classified as either
gray matter, white matter, or CSF. This assignment can be summarized by a tissue class
segmentation function wi(x):
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wi(x) =


1 voxel x is gray matter
2 voxel x is white matter
3 voxel x is CSF
0 voxel x is extracerebral.

The collective tissue class assignments obtained by evaluating wi(x) at all voxels are denoted
wi and must be estimated. In the GHMRF, both the observed voxel intensities viτ and the true
tissue classes wi are considered to be random, and the goal is to find the class assignment ŵi

maximizing their joint likelihood

ŵi = argmax
w:{1,...,Vi}→{0,1,2,3}

P(w,viτ ) = argmax
w:{1,...,Vi}→{0,1,2,3}

P(viτ |w)P(w),

where the conditional distribution of viτ (x) |wi(x) is assumed to be Gaussian, and the tissue
classes w are realizations of a Markov random field, and hence follow a Gibbs distribution.

However, the whole-brain CSF volume measurements have high variability among sub-
jects, especially at the brain boundary; this is likely due to the brain segmentation performed
in the previous step. Therefore, we limited the measure to ventricular CSF volume, which
yielded a more stable estimate and demonstrated better identification of subjects with highly
increased BV than either whole-brain CSF volume or ventricular volume alone. To segment
the ventricles, we obtained adult ventricle atlases from the publicly available OASIS cross-
sectional data set (Marcus et al., 2007). Using the same procedure of SyN registration and
majority-voting label fusion as in the brain segmentation step, we obtained a ventricle mask
for each subject, and calculated the ventricular CSF mask as the intersection of the CSF mask
from FSL FAST and the OASIS ventricle mask.

For voxel x and subject i, we define the ventricular CSF mask function

ci(x) =

{
1 voxel x is ventricular CSF
0 otherwise.

The first image-based biomarker (Figure 3) is the brain parenchymal fraction (BPF) of the
T2 scan, or the proportion of non-ventricular CSF voxels to total brain voxels:

γ1i = 1−
∑Vi2

j=1 ci(j)∑Vi2
j=1 bi(j)

.

Higher values of BPF represent a lower proportion of ventricular CSF volume and thus higher
levels of brain swelling.

3.2.2. Grey-to-White Matter Differentiation. To translate the loss of gray and white mat-
ter delineation into a function of the observed image, it is necessary to normalize voxel in-
tensities (within modalities) so that subjects can be compared. Therefore, for each subject,
we applied a linear scaling of the image intensities based on normal-appearing white matter
(NAWM) using the WhiteStripe technique (Shinohara et al. 2014).

For subject i and modality τ , the observed intensities viτ are assumed to follow a mixture
distribution with K components. That is, the probability density f : R→ R is a function of
intensity value v that decomposes as

f(v) =

K∑
k=1

yikfik(v),
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FIG 3. Distribution of derived biomarkers over all subjects in the sample and categorized by severe edema status.

where the fik : R→ R are subject-specific probability density functions and the weights yik
sum to 1. It is assumed that there exists a transformation fik(v)→ gk(v) so that the intensity
distribution is not subject-specific:

g(v) =

K∑
k=1

yikgk(v).

The white stripe of NAWM is found by smoothing the empirical intensity histogram with
a penalized spline (Ruppert, Wand and Carroll, 2003) and identifying the peak corresponding
to white matter (in T1 scans this is the rightmost or highest-intensity peak; in T2 scans this
is the overall mode). The interval around this peak, whose width may be adjusted by tuning
parameters, is the white stripe. Every voxel intensity within the brain is then linearly scaled
by the mode µ̂iτ and trimmed standard deviation σ̂iτ of intensities within the white stripe:

v∗iτ (x) =
viτ (x)− µ̂iτ

σ̂iτ
.

Letting Bi equal the total number of brain voxels for subject i, we calculated the second
and third biomarkers (Figure 3) using the T1 and T2 scans by taking the average normalized
intensity after WhiteStripe within the brain voxels only (as determined by the brain segmen-
tation mask in the previous section):
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γi2 =
1

Bi

Vi∑
j=1

bi(j) · v∗i1(j)

γi3 =
1

Bi

Vi∑
j=1

bi(j) · v∗i2(j).

3.2.3. Sulcal Effacement. Finally, we considered that sulcal effacement, which is associ-
ated with BV scores of 6 to 8, might be extracted from the MRI by detecting gyri, or ridges,
of the cerebral cortex (Figure 4). To do so, we used a filter on the Hessian matrix of each
MRI image (Frangi et al., 1998).

In a 3-dimensional image, the Hessian matrix Hiτ (x) at voxel x contains information
about the local curvature around x for subject i and modality τ . Typically, Hiτ (x) is calcu-
lated by convolving a neighborhood of x with derivatives of a Gaussian kernel. The three
eigenvalues of Hiτ (x) with smallest magnitudes

∣∣λiτ1 (x)
∣∣ ≤ ∣∣λiτ2 (x)

∣∣ ≤ ∣∣λiτ3 (x)
∣∣ have a ge-

ometric interpretation: gyral or planar structures correspond to small values of
∣∣λiτ1 (x)

∣∣ and∣∣λiτ2 (x)
∣∣, and a high value of

∣∣λiτ3 (x)
∣∣ (Frangi et al., 1998). Tubular and spherical structures,

on the other hand, are associated with different patterns in these eigenvalues, so the following
dissimilarity measures are required to identify gyral features:

RiτA (x) =
|λiτ2 (x)|
|λiτ3 (x)|

RiτB (x) =
|λiτ1 (x)|√
|λiτ2 (x)λiτ3 (x)|

The vesselness image Riτ (x) is a function of these dissimilarity measures and other tun-
ing parameters. By calculating its value at each voxel, we produced a probability-like map
highlighting gyral features.

We used the Hessian filter implemented in ITK-SNAP’s Convert3D tool (Yushkevich et al.,
2006) on the T2 images, as they showed the best contrast between CSF and brain tissue. Due
to limited field of view and the quality of brain segmentation around the top and bottom of
the brain, the Hessian filter was only calculated in MRI slices taken from central portions of
the cerebral hemispheres. The middle portion was defined by removing the top and bottom 3
slices (of the axial sequence) of each T2 image, as well as any voxels neighboring extracranial
tissue (Figure 4).

We defined the final biomarker (Figure 3) as the median of the observed Hessian filter
intensities in the T2 image limited to the brain voxels b′i defined by the erosion method
above:

γi4 =median
{
Ri2(x) | b′i(x) = 1, x ∈ {1, . . . , Vi}

}
The median was chosen as the distribution of the Hessian filter intensities within each image
was highly right skewed; this resulted in a more conservative and robust characterization of
the difference between severe and non-severe cases.

4. Analysis and Prediction.
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FIG 4. Gyral features, such as sulci, are shown as bright in the T2-weighted MRI scan. (Top left) A subject with
BV score = 2, which corresponds to decreased brain volume. (Top right) For a subject with BV score = 8 and
severely increased brain volume, the sulci appear noticeably darker as they no longer contain CSF. (Bottom right)
The Hessian filter is used to identify gyral features for a T2 image (bottom left) from a subject with BV score =
2.5.

4.1. Model. To predict highly increased brain volume (a median BV score of 7 or
higher), we defined the binary outcome variable for subject i and median BV score thresh-
old k as the indicator variable Y (k)

i = 1BV≥k. The main outcome of interest in our study
was Y (7)

i . Together with the biomarkers introduced in the previous section, we formed the
multivariate logistic regression model

(1) logitP
(
Y

(7)
i = 1

)
= β0 + β1γi1 + β2γi2 + β3γi3 + β4γi4.

The estimated coefficients β̂i fit on the training set are shown in Table 2. Subjects with a
BV score of 7-8 were associated with a lower median Hessian filter (p < 0.01), signifying
fewer prominent sulci in the brain. This was the only coefficient found to be significantly
different from zero, consistent with radiologists’ reports that sulcal effacement was the most
important factor in determining a higher BV score. Both the intercept term and the coefficient
of BPF had high standard errors, suggesting that there may have been near-complete data
separation. For this reason, we did not interpret those coefficients.

4.2. Prediction Accuracy. In addition to model (1), we performed two sets of sensitiv-
ity analyses. The biomarkers γ·j for j ∈ {1, ...,4} were developed to identify images with
BV ≥ 7; we considered an additional set of models with outcomes Y (6.5)

i and Y (6)
i , where

the threshold for determining severely increased brain volume was relaxed. Because γi4, the
measure of sulcal effacement, was both the most statistically and clinically important predic-
tor of severe cases, we also considered models with γi4 alone (“Sulcal Only”) as opposed to
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TABLE 2
Estimated coefficients in the prediction model (1) of severe brain edema.

Dependent variable:

Y
(7)
· (BV Score ≥ 7)

γ·1 (Brain Parenchymal Fraction) −52.51
(−507.68, 402.67)

γ·1 (WhiteStripe Intensity - T1) 0.22
(−0.11, 0.56)

γ·1 (WhiteStripe Intensity - T2) 0.34
(−0.08, 0.77)

γ·1 (Hessian Filter Intensity) −9.70∗∗∗

(−16.25, −3.14)

Constant 58.54
(−394.78, 511.87)

Observations 48
Log Likelihood −11.71
Akaike Inf. Crit. 33.42

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

the “Full Set” of covariates. In total, we examined 5 alternate models in addition to the main
model, which are summarized in Table 3.

Prediction accuracy was assessed using area under the Receiver Operating Characteristic
curve (AUC), which considers the sensitivity and specificity across different thresholds of
the predicted outcome. For all models, the AUC was high, ranging from 0.81 to 0.96 in the
training set, and 0.90 to 0.97 in the testing set. Models with outcome Y (6)

i received a lower
AUC than those with outcome Y (6.5)

i and Y (7)
i , although the 95% confidence intervals for all

models intersect. This finding suggests—in corroboration with clinical observations—that
patients with a BV score of 6 represent borderline cases and are therefore graded with the
most uncertainty.

We compared models with γi4 as the sole covariate to the full model using a likelihood
ratio test, and found that the reduced model performed similarly when the outcome was Y (7)

i

(p > 0.3 in both training and test sets), moderately when the outcome was Y (6.5)
i (p < 0.01

in the testing set only), and poorly when the outcome was Y (6)
i (p < 0.01 in both training

and test sets). In other words, the sulcal effacement biomarker was sufficient to classify cases
scoring a 7 to 8, but all 3 biomarkers were needed to accurately classify cases with BV
scores of 6 to 8. This suggests that the measures of ventricular CSF and gray-to-white matter
differentiation, while less relevant for predicting cases scoring 7 or higher, may be useful in
differentiating cases that were assigned a score of 5 versus 6.

Since there were systematic differences in the number of raters between the training and
test sets, and to confirm that our results were not dependent on the initial split, we re-sampled
the full dataset 100 times to form 100 training and test sets. In each re-sampling iteration, we
fit the six aforementioned models using the training set and calculated the AUC (and 95%
confidence interval) on the training and test set. Then, the average AUC (and 95% confidence
interval endpoints) was calculated over the 100 iterations (Table 4).
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TABLE 3
Prediction accuracy was assessed using area under the curve (AUC) and 95% confidence intervals for logistic

regression models with binary outcomes Y (6)
i (BV ≥ 6), Y (6.5)

i (BV ≥6.5), and Y (7)
i (BV ≥ 7). We also

considered models with either the full set of covariates in (1) (“Full Set”) or just the sulcal effacement
biomarker (“Sulcal Only”). The primary model in (1) is shown in bold.

Outcome Covariates Train AUC Train AUC
(95 % CI)

Test AUC Test AUC
(95% CI)

BV ≥ 7 Full Set 0.96 [0.90,1.00] 0.95 [0.88,1.00]
BV ≥ 7 Sulcal Only 0.95 [0.90,1.00] 0.96 [0.90,1.00]
BV ≥ 6.5 Full Set 0.96 [0.91,1.00] 0.91 [0.82,1.00]
BV ≥ 6.5 Sulcal Only 0.96 [0.91,1.00] 0.93 [0.84,1.00]
BV ≥ 6 Full Set 0.95 [0.90,1.00] 0.97 [0.92,1.00]
BV ≥ 6 Sulcal Only 0.81 [0.67,0.95] 0.90 [0.78,1.00]

TABLE 4
Monte Carlo simulations demonstrate that our findings are not dependent on the initial split of training and test
data. We re-sampled the data into training and test sets 100 times. Average AUC and average 95% confidence

interval endpoints are shown for logistic regression models with binary outcomes Y (6)
i (BV ≥ 6), Y (6.5)

i (BV ≥

6.5), and Y (7)
i (BV ≥ 7); and either the full set of covariates in (1) (“Full Set”) or with the sulcal effacement

biomarker (“Sulcal Only”). The primary model in (1) is shown in bold.

Outcome Covariates Mean Train
AUC

Train AUC
(Mean 95%
CI Endpoints)

Mean Test
AUC

Test AUC
(Mean 95%
CI Endpoints)

BV ≥ 7 Full Set 0.97 [0.93,1.00] 0.94 [0.87,1.00]
BV ≥ 7 Sulcal Only 0.96 [0.91,1.00] 0.96 [0.91,1.00]
BV ≥ 6.5 Full Set 0.96 [0.91,1.00] 0.91 [0.81,0.99]
BV ≥ 6.5 Sulcal Only 0.94 [0.88,1.00] 0.94 [0.86,1.00]
BV ≥ 6 Full Set 0.97 [0.93,1.00] 0.93 [0.86,0.99]
BV ≥ 6 Sulcal Only 0.85 [0.72,0.97] 0.86 [0.74,0.98]

In the resampling schema, we observed the same pattern in prediction performance: over-
all, classification accuracy was high for all models in both the training (mean AUC = 0.85-
0.97) and test sets (mean AUC = 0.86-0.96). We again found that the Sulcal Only model
performed as well as the full model for Y (6.5)

i and Y
(7)
i , but notably worse than the full

model for Y (6)
i . Together, these results show that our derived biomarkers and model are able

to accurately and robustly differentiate between subjects with highly increased brain volume
(BV scores of 7 or 8) from those who do not. The measurement of sulcal effacement γi4
was found to be the most important factor to identify cases with BV ≥ 7, while measures of
ventricular CSF volume and gray and white matter differentiation γi1, γi2, γi3 provided more
value in identifying “borderline” cases.

5. Discussion. We developed a method for statistical image analysis of low resolution,
noisy brain MRI after determining that standard methods developed for images obtained
on a high-field MRI scanner did not perform well on lower resolution images. Our method
involved creating and validating a multi-atlas, integrative framework to automate the radio-
logical assessment of brain volume, a biomarker strongly associated with death in children
with CM. An attractive feature of our pipeline is that it requires only T1- and T2-weighted
MRI sequences for analysis. Our logistic classification model is parsimonious, aligns with
clinical observations, and has high predictive accuracy. We hope that the implementation of
these findings in low-resource environments can help to address both the shortage of radiolo-
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gists for manual MRI interpretation, as well as the challenge of interpreting images from low
field MRI.

Our results provide insight into how radiologists score brain edema on MRI, generally sup-
porting the stated importance of sulcal effacement over ventricular size and gray-to-white de-
lineation. The superior performance of the sulcal effacement biomarker suggests that higher
scores of brain edema were predominantly derived from this MRI feature, even as other fea-
tures such as loss of gray-to-white matter delineation are also prescribed features for images
assigned brain volume scores of 7 and 8. Future efforts to provide Hessian filter images or
sulcal effacement scores might assist individual radiologists in producing more consistent
gradings of brain volume.

A limitation of our approach is that logistic regression only accommodates binary out-
comes (severe and non-severe brain volume scores); we did not predict the brain volume
score itself. In exploratory analyses, models which predicted BV score directly had high
misclassification error and mean squared error (results omitted), suggesting that more infor-
mation or more sophisticated models may be needed to predict the ordinal score.

Future analyses could apply our pipeline to predict disease outcome: (Kampondeni et al.,
2018) found that global CSF volume was the best predictor of prognosis in patients with
CM. However, the accuracy of global CSF measurements in our current pipeline is limited
by the quality of segmentation at the edge of the brain. Recent developments in deep learning
methods for brain segmentation (Ronneberger, Fischer and Brox, 2015) could address this
issue, although such procedures may require larger sample sizes with manual delineations of
brain tissue than are currently available.

In summary, we introduced and validated a biologically and statistically principled method
of biomarker development using images from low field strength MRIs, even in images with
additional artifacts. We note that these strategies, which involve borrowing strength from
publicly available high-resolution data whenever possible, and considering aggregate statis-
tics that are more robust to extreme values, can be applied to any study of low-resolution brain
images. The principles behind the tools introduced in this study are also broadly applicable
to the design of new techniques that automate existing, clinically validated tasks.

Acknowledgements. The authors were supported by NIH Grants R01 MH112847, R01
NS112274 and R01 NS060910.
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