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Abstract

While previous studies of human information rate focused primarily on discrete
forced-choice tasks, we extend the scope of the investigation to the framework of
sensorimotor tracking of continuous signals. We show how considering information
transfer in this context sheds new light on the problem; crucially, such an analysis
requires one to consider and carefully disentangle the effects due to real-time
information processing of surprising inputs (feedback component) from the contribution
to performance due to prediction (feedforward component). We argue that only the
former constitutes a faithful representation of the true information processing rate. We
provide information-theoretic measures which separately quantify these components and
show that they correspond to a decomposition of the total information shared between
target and tracking signals. We employ a linear quadratic regulator model to provide
evidence for the validity of the measures, as well as of the estimator of visual-motor
delay (VMD) from experimental data, instrumental to compute them in practice. On
experimental tracking data, we show that the contribution of prediction as computed by
the feedforward measure increases with the predictability of the signal, confirming
previous findings. Importantly, we further find the feedback component to be
modulated by task difficulty, with higher information transmission rates observed with
noisier signals. Such opposite trends between feedback and feedforward point to a
tradeoff of cognitive resources/effort and performance gain.

Author summary

Previous investigations concluded that the human brain’s information processing rate 1

remains fundamentally constant, irrespective of task demands. However, their 2

conclusion rested in analyses of simple discrete-choice tasks. The present contribution 3

recasts the question of human information rate within the context of visuomotor tasks, 4

which provides a more ecologically relevant arena, albeit a more complex one. We argue 5

that, while predictable aspects of inputs can be encoded virtually free of charge, 6

real-time information transfer should be identified with the processing of surprises. We 7

formalise this intuition by deriving from first principles a decomposition of the total 8

information shared by inputs and outputs into a feedforward, predictive component and 9

a feedback, error-correcting component. We find that the information measured by the 10

feedback component, a proxy for the brain’s information processing rate, scales with the 11

difficulty of the task at hand, in agreement with cost-benefit models of cognitive effort. 12
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Introduction 13

Our living environment is rich with stimuli, some of which are crucial in guiding our 14

decisions. Imagine walking into a room full of people: each face, each moving object and 15

each voice in the room are in competition for our cognitive resources. Our brain deals 16

with this overwhelming computational demand by selecting information through 17

attentional mechanisms [1] and by using efficient coding, explaining away predictable 18

data and transmitting only the prediction error, that is the sensory evidence that 19

cannot be predicted from other sources or earlier inputs [2]. According to this view, 20

cognitive resources (e.g. metabolic rate of neurons or information capacity usage) would 21

be dedicated to processing surprising inputs while predictable data would be virtually 22

free to encode [3]. 23

Surprisingly, despite the consensual view of the brain as an information processing 24

machine, few attempts have been made to quantify the amount of information being 25

processed by it, beside the pioneering work described below. One of the reasons for this 26

may be inherent to the technical difficulty of separating predictable from novel 27

information in ecological tasks. The present study aims at filling this gap by applying 28

information theoretic measures to a visuomotor tracking task. 29

Information processing rate in humans 30

Just a few years after the publication of Shannon’s seminal paper on information 31

theory [4], several studies attempted to apply this novel theory to estimate the 32

information processing capacity of the human brain. In 1952, Hick [5] compared 33

subjects’ reaction times in a simple forced choice task while varying the number of 34

discrete choices available to them. He observed that the reaction time varied linearly 35

with the logarithm of the number of choices in the task. This result, later coined Hick’s 36

law, implies that there is a constant rate of information gain for this task. This is 37

important because it suggests, counter to intuition, that information processing rate 38

does not vary as a function of task difficulty. 39

In Hick’s task, the focus was on the decision process and the motor component was 40

assumed constant across conditions. To address this issue, Fitts [6] designed a 41

movement-amplitude control task to estimate information rate with respect to the speed 42

and accuracy of the movement. He first quantified the ‘difficulty’ of reaching a target in 43

information-theoretic terms; then, by dividing this quantity of information by the time 44

it took the subject to attain the target, he obtained an index of performance in units of 45

bits per second, an analogue of information gain in Hick’s task. Fitts found this rate of 46

the human visuomotor-proprioceptive channel to be relatively constant across a range of 47

task conditions (see [7] for a more recent discussion on this matter). 48

Pursuit-tracking task and its feedforward component 49

In these early attempts at measuring information processing capacity in humans, both 50

Hick and Fitts used simple task designs that involved discrete decisions or movements in 51

each trial. While these might be simpler to study, they do not necessarily provide a 52

good representation of the tasks with which we are faced most often in day-to-day life. 53

To extend the study of human information rate beyond the discrete-task context, 54

Crossman [8] chose to study a pursuit-tracking task. In this experiment, Crossman used 55

an apparatus consisting of a variable-speed velodyne, which drove a piece of paper 56

showing the target course, and a vertical handwheel which subjects used to track it. 57

Importantly, although Crossman’s paradigm involved predictions, a crucial addition for 58

studying information processing during skilled movement [9], the information rate was 59

computed simply as the mutual information between the course and the tracking after 60
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correcting for the lag between them, without dissociating the respective contributions of 61

the predictive and error-correcting components. Recent studies have provided evidence 62

in support of the existence of such predictive (also known as feedforward) components 63

during target-tracking in humans. Drop et al. [10] compared three models of tracking on 64

human tracking data and found that the model containing a feedforward component fit 65

their data best. The same authors [11] also tested the effect of the predictability of the 66

target signal on predictive control and found that the degree of reliance on feedforward 67

control is proportional to signal predictability. 68

To our knowledge, no effort has yet been made to disentangle prediction in a 69

pursuit-tracking task from the more physiologically relevant [12] real-time processing of 70

prediction errors, which we will refer to as the feedback component. Feedforward 71

components, on the other hand, can produce accurate motor responses that are not 72

based on real-time information processing of sensory inputs, but rather on a read-out 73

from the internal model, when faced with predictable data. The present study thus sets 74

out to investigate specifically the role of feedback components of information processing 75

and to leverage the tools of information theory to provide a quantitative description of 76

the real-time information processing rate of human in this visuomotor task. 77

Results 78

Our aim is to study the visuomotor channel that receives visual inputs and generates 79

motor outputs in a one-dimensional visuomotor tracking task with targets of variable 80

predictability (Fig 1A). 81

Fig 1. Example tracking data. Example experimental data showing the
x-coordinates of target signal (blue) and tracking response (orange) for condition 1 (top;
most predictable condition) and condition 4 (bottom; least predictable condition).

Background 82

To give some background to our information-theoretic measures, we start by revisiting 83

the definition of entropy, mutual information, entropy rate, as well as the interpretation 84

of transfer entropy as the rate of information transmission of a channel. 85

Entropy is the basic quantity we use to measure information. Defined for a random 86

variable X with probability p(X), it is given by: 87

H(X) = −
∑

p(X) log p(X) (1)

A channel that takes X as input and gives Y as output is characterised by a conditional 88

probability function that determines the transition from X to Y . The rate at which 89

information is processed through such a channel is given by the mutual information 90

between X and Y : 91

I(X; Y) =
∑

p(X,Y ) log
p(X,Y )

p(X)p(Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

(2)

Mutual information provides insights about the static relationship between two random 92

variables. In order to quantify the dynamics, or causality, of the relationship between 93
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multiple random processes, one must consider transition, rather than static, 94

probabilities, which leads to the definition of entropy rate (for a single variable) and 95

transfer entropy (for the interaction of two systems) [13]. 96

Entropy rate measures the rate of growth of entropy of a sequence, that is how much 97

novel information each new sample provides. For a sequence X of n random variables, 98

entropy rate is given by: 99

H(X ) = lim
n→∞

1

n
H(X1, X2, ..., Xn)

= lim
n→∞

H(Xn|Xn−1, Xn−2, ..., X1)

≤ H(Xn)

(3)

when the limits exist. It can be interpreted as the entropy per symbol in the sequence 100

or as the conditional entropy of the last random variable given all the previous ones. 101

For stationary processes, it is proven that both limits exist and that they are equal. 102

Entropy rate is of particular interest to the current study because the continuous visual 103

target movement in the experimental task was constructed as a sequence of target 104

positions presented on the screen. Therefore, the entropy rate of the target position 105

quantifies all the information there is to know about target position, and which could be 106

potentially transferred to tracking response. 107

The last inequality in equation 3 follows from the property of conditioning, which 108

can never increase the entropy of a random variable; the equality is attained for a 109

sequence of independent and identically distributed (i.i.d.) variables, since in that case 110

Xn is independent of the preceding symbols and conditioning on them does not reduce 111

the entropy. However, in our study, successive target positions are correlated. We would 112

therefore expect the sequence to have an entropy rate that is smaller than the entropy 113

of the target position, H(X ) < H(Xn). In other words, there is less uncertainty 114

associated with a target position that follows the sequence than one that is randomly 115

drawn at any given time point. 116

Transfer entropy, representing the information processed with respect to each new 117

element of the input sequence, is defined as the conditional mutual information between 118

the last output and previous inputs, given the history of the outputs: 119

I(Yn+d; X(l)
n |Y(k)

n ) (4)

where one defines the notation X
(l)
n = (Xn, ...Xn−l+1). Parameters l and k determine 120

the depth of past values one uses to encode the history of X and Y , respectively, while d 121

represents a time difference between X and Y , assuming the information transfer is not 122

instantaneous. Our analysis, detailed in the next section, allows us to identify specific 123

choices of d, k and l to compute the information transfer from signal X to tracking Y . 124

Definition of measures 125

Basic assumptions. Adopting a model-free approach, we did not make any specific 126

assumptions on the mechanism involved in producing the observed tracking 127

performance. For our analysis, we rely on two key properties of information sharing and 128

transmission in the system. 129

The first one is an effective time delay. The feedback channel, while engaging in 130

real-time information processing, suffers from a non-reducible time delay in producing 131

outputs with respect to the input signals. This visuomotor delay (VMD) is a 132

consequence of the physical constraints of the visuomotor system. 133
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The second key property of the system is its autocorrelation. The signals used in the 134

current study were constructed by passing white noise through a sinusoidal filter (order 135

2). By altering the parameters of the filter we could control the amount of noise that 136

passed through, thus the predictability of the signal. However, regardless of the 137

predictability, the autocorrelation in the target signals was always limited to second 138

order, due to their sinusoidal nature. 139

Feedback component information content. Using the above properties, we were 140

able to fix the free parameters in the transfer entropy formula in equation 4, thus 141

tailoring it to the quantification of the information rate of the feedback component, as 142

desired. Given that the expected delay of information transfer from signal X to tracking 143

Y is the VMD and that the target is a second-order autocorrelated signal, we set the 144

delay d between the two processes to be VMD and the depths l and k to be 2. To ensure 145

independence between successive samples, we further modified the transfer entropy term 146

by conditioning it on Yt−1, thus obtaining the following feedback component measure: 147

IFB = I(Yt; {Xt−VMD,Xt−VMD−1}|{Yt−VMD,Yt−VMD−1,Yt−1}) (5)

Total information and feedforward component. The total information shared 148

between signal X and tracking Y has either of two origins: it arises via feedback 149

information transfer with a non-reducible time delay (Xt−VMD, Xt−VMD−1 → Yt), or it 150

is due to prediction (Xt, Xt−1 → Yt). This allowed us to compute it as the joint mutual 151

information: 152

Itotal = I(Yt; {Xt,Xt−1,Xt−VMD,Xt−VMD−1}) (6)

This term represents the expected value of total shared information between X and Y . 153

Deducting the feedback component from it yields the average information attributable 154

to the feedforward component: 155

IFF = Itotal − IFB (7)

Validation through model simulations 156

In order to validate the quantities derived above, we built a mathematical model of the 157

task based on optimal control theory [14] (see Fig 2A and Method), in which we could 158

manipulate and measure directly the involvement of the feedback component and 159

therefore provide a ‘true’ value against which to compare our IFB and IFF measures. 160

We formulated the visuomotor tracking task as a linear state space model with 161

quadratic regulation cost. We generated the target and joystick dynamics with a set of 162

linear differential equations, which were also included in the transition matrix A of the 163

model. State representation also included the error between target and joystick 164

coordinates. The regulation objective was to minimise the value of this state element. 165

Optimisation of the control variable u was obtained with a model predictive controller, 166

as described in the Methods section. 167

Validation of IFB and IFF . To establish the ground truth for the feedback measure, 168

TFB, we used the mutual information between observation x and state estimates s at 169

the Kalman filter level to quantify the information transfer through the feedback 170

pathway in the model: 171

TFB = I(st;xt) =
1

2
∗ log(

|CΣC ′ +R′|
|R|

) (8)

with Σ being the state covariance matrix, C the state-to-observation matrix, and R the 172

observation noise. 173
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Fig 2. Simulation design and results. A. Schematic of LQR model of the
visuomotor tracking task. B. Correlation between true feedback measure TFB and
proposed measure IFB from model data , R = 0.999. (left) Correlation between true
feedforward measure TFF and proposed measure IFF from model data , R = 0.999.
(right) Color code indicates the value of the noise parameter used to generate the signal
(see Methods). Larger values correspond to higher complexity in signals, thus less
predictable. C. Relationship between IFB and performance lag/VMD ratio. An
exponential function PL

VMD = a exp(bIFB) was fitted on the data, with PL the
performance lag and VMD the visuo-motor delay. The R squared of the fit was 0.98. a
= 1.172 (95% confidence interval: 0.815 - 1.53), b = 4.282 (3.779 - 4.785).

The feedforward component, on the other hand, is formulated as the mutual 174

information between state estimates at two successive time points t and t− 1: 175

TFF = I(st−1; st) =
1

2
∗ log(

|Σ|
|Q|

) (9)

with Q the process noise. TFB and TFF were computed for sets of simulation data 176

generated by the model using different predictability levels of input signals, while all 177

other parameters were kept constant. It is important to stress that TFB and TFF 178

provide an upper bound on the actual mutual information between inputs and outputs 179

because they are concerned only with state representations at the Kalman filter level 180

and do not take into account the potential loss of information through filtering at the 181

level of the LQG regulator. 182

We then computed the proposed information theoretic measures IFB and IFF on the 183

same data using Gaussian copula estimation (see Methods) and obtained the correlation 184

of the two measures with their respective ground truth values across different 185

predictability levels. Figure 2B shows the high correlation between TFB and IFB 186

(R2=0.999), and that of TFF and IFF (R2=0.999), attesting to the validity of the 187

proposed measures in quantifying component-specific information. 188

Validation of the estimate for VMD. While VMD can be directly extracted from 189

the model for simulation data, there is no way to access it directly in real experimental 190

data. We therefore needed to establish an estimate of VMD that could be applied to 191

experimental data. A candidate for such an estimate was the peak latency of the 192

transfer entropy from signal X to tracking Y , TEX→Y . Since the feedback component 193

is delayed by VMD, the transfer entropy should peak at t-VMD. To evaluate the 194

correspondence of this candidate measure to the true VMD, we generated simulated 195

data corresponding to true VMD values from 9 to 19 frames while all other parameters 196

were kept constant. Notably, the effective VMD of the simulation data was determined 197

by the sum of the visual and motor delay parameters with an additional delay that was 198

inherent to the joystick mechanism and which depended on the parameters of its state 199

space representation (i.e. spring, mass and damping coefficients). Therefore, here again, 200

we were seeking a correlation rather than a strict equality between inferred and 201

reference values. The comparison showed perfect correlation between the peak latency 202

of IFB and the VMD actually implemented in the model (R2 = 1), validating this 203

estimate of VMD from data. 204

Relationship between feedback component and performance lag. The effect 205

of prediction on tracking performance is two-fold: first, it provides a cognitively efficient 206

way to encode the target signal, thus saving cognitive resources; second, it compensates 207

for VMD by allowing subjects to act in advance, which contributes to a reduction in 208

performance lag (that is, the lag corresponding to maximum cross-correlation between 209

target and tracking). When prediction fails, we would expect the feedback component 210
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to take up more information load to maintain performance level. And due to the 211

irreducible VMD of the feedback component, the more it is involved, the more 212

performance lag will tend to VMD. We looked at our simulation data to confirm this 213

effect by observing the relationship between the ratio of performance lag to VMD and 214

the feedback component measure. We found a strong exponential relationship between 215

the two variables (Fig 2C). 216

Experimental results 217

Identifying VMD from experimental tracking data. To be able to compute IFB 218

and IFF, one must first know the VMD of the system. Having confirmed that the peak 219

latency of transfer entropy TEX→Y corresponds perfectly with VMD in simulation data, 220

we computed the trial-averaged peak latencies of TEX→Y for each subject from their 221

performance in the most complex condition to obtain an estimate for each subject’s 222

VMD (Fig 3A). Our results showed that VMD lied between 14 and 16 frames (about 223

230 to 270ms) for 10 out of the 11 subjects, while one subject showed a VMD of around 224

380ms. 225

Fig 3. Experimental results. A. VMD of individual subjects (sorted in increasing
order). Error bars represent the standard deviation across trials. B. Average real time
information processing rate per second across subjects C. Average IFF across subjects
for different conditions

Feedback information rate. Using subject-specific VMD, we computed the feedback 226

component IFB using equation 5. Results showed that feedback information transfer 227

increased with the complexity of the signal (F(3,40) = 34.9, p < 0.0001). Post hoc 228

Tukey HSD test indicated that condition 1 and condition 4 were significantly different 229

from all other conditions while the difference between condition 2 and 3 did not reach 230

significance. 231

Since IFB represents information rate per sample, one can obtain subject-specific 232

information processing rates per second by multiplying IFB by the number of samples in 233

one second. With a frame rate of 60Hz, we have concluded that the subjects’ real-time 234

information processing rate lies between 1 to 12 bits/s, depending on the complexity of 235

the signal (Fig 3B). 236

Feedforward component and predictability of signal. The feedforward 237

component measure IFF cannot be interpreted as an information transfer rate per unit 238

of time because, unlike IFB, it is not an independent measure between successive 239

samples. However, it can still be compared across conditions to help us gain insight 240

about the role of prediction with regards to signals of different predictability. We 241

observed a clearly opposite trend relative to that of the feedback component. As 242

predictability of signals decreased, IFF also decreased, F(3,40) = 30.7, p < 0.0001. Post 243

hoc Tukey HSD test once again indicated only condition 1 and condition 4 were 244

significantly different from all other conditions (Fig 3C). 245

Discussion 246

In the current study we have proposed an original information-theoretic approach to 247

evaluate the computational demand of sensorimotor tasks. One of our key contributions 248

was to obtain a decomposition of the total mutual information between inputs and 249

outputs, tailored to dissociate the contribution of real-time processing of prediction 250

errors (referred to as the feedback component) from that attributable to internal 251

predictions (feedforward component). 252
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This approach affords us the opportunity to quantify the information rate of 253

sensorimotor tasks, and hence, to study the information capacity of sensorimotor 254

systems. We hypothesize that the feedback component is a better marker of the amount 255

of cognitive resources required by the task than the total mutual information. Indeed, 256

in a communication channel in which both encoder and decoder are aware of the 257

autocorrelation of the data X, predictability can be leveraged to decrease information 258

rate by encoding only the data that is not already predicted by the conditional 259

probability P (Xt|Xt−1,t−2,...,1,M) implemented in the decoder/encoder, achieving 260

entropy encoding, i.e. a code length that is equal to H(P (Xt|Xt−1,t−2,...,1)) [15]. This 261

part of the data that cannot be predicted corresponds to the feedback component in the 262

present study. In predictive coding models [16], such optimisation of encoding through 263

prediction can be understood in terms of firing rate of prediction error neurons. When 264

inputs are perfectly predictable, these neurons would not fire at all, thereby leading to 265

low metabolic costs. 266

Information processing rate in humans 267

When applying the discussed measures to a visual tracking task, we found that, whereas 268

the feedforward information increases with predictability of signals, the information rate 269

of the feedback component decreased with predictability. 270

Our results thus imply that, in our task, information processing rate adapted to 271

signal predictability, in apparent contradiction with Hick’s law. This suggests that the 272

engagement of cognitive resources in the task was balanced against performance goals, 273

in agreement with cost-benefit models of effort [17–19]. Participants would thus invest 274

cognitive resources in proportion to their impact on performance. In the case of 275

predictable targets, investing more resources would have only minimal effect on 276

performance, justifying to maintain a low information rate. In contrast, when 277

predictability is low, performance depends more on information rate, explaining larger 278

rates across subjects in this condition. Future studies will determine in more details the 279

nature of this rate-performance trade-off. 280

Information-theoretic approach to evaluating tracking 281

performance 282

VMD is an important property of subjects’ sensorimotor system, however its direct 283

estimation from tracking data poses some challenges. Ideally, VMD should correspond 284

to the performance lag in a situation where subjects track completely unpredictable 285

signals, i.e. white noise. However, such a signal has too many high frequency 286

components, which subjects are unable to track, making this approach infeasible in 287

practice. We therefore proposed and validated a model-free solution to estimate VMD 288

in tracking tasks. We found VMD values between 230ms to 270ms, in agreement with 289

previous literature on human visuomotor reaction time [20]. We observed sizeable 290

inter-personal differences in VMD but, within subject, VMD varied little across 291

conditions. 292

A common outcome measure in tracking experiments is the time lag between 293

tracking response and signal [21–24]. While this lag by itself is a good indicator of 294

performance, normalizing it with respect to VMD highlighted an interesting relationship 295

to the feedback component. In particular, log(PerfLag
VMD ) has an approximately linear 296

relationship with the FB component. The combination of VMD and real-time 297

information processing rate thus provide a more complete picture of subjects’ 298

performance in a tracking task. 299

Its model-free nature, coupled with state-of-the-art methods for information 300

estimation, grant our approach enough flexibility for generalising it to more complex 301
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tasks, such as to accommodate higher-dimensional target/tracking spaces [25] or 302

delay-embeddings of random processes [26]. 303

Limitations 304

A major advantage of the information-theoretic approach is that it is model-free, and 305

thus requires few assumptions. In the present study, we relied only on the following 306

postulates. First, we assumed that the visuomotor system can be viewed as a constant 307

communication channel that takes visual input X and gives motor output Y , related 308

through the conditional p(Y |X), which is constant over time within subjects and 309

conditions. Second, we assumed that the VMD was constant over time. Were these 310

assumptions incorrect, our measure would still provide a valid average of the actual 311

information rate. Third, the method used to measure mutual information, namely the 312

Gaussian copula, relies on the assumption of normally distributed dependency structure 313

between variables. This makes our estimate a lower-bound to the true mutual 314

information value, since the Gaussian distribution has the highest entropy among all 315

distributions. Fourth, in our measures, for the sake of simplicity, we have conflated the 316

joystick visual input with the motor output. However, in reality, motor noise is added to 317

the motor output such that the joystick position can differ from the intended one [27]. 318

Therefore, the variable Y used in our formulae, which corresponds to the joystick cursor 319

position on the screen, does not really represent the motor output but rather motor 320

output corrupted by noise. This simplification leads to a potential underestimation of 321

the true feedback component that is insensitive to variations in motor noise. This 322

should be addressed in future work. 323

Another limitation of the present work pertains to the resolution of the VMD 324

estimate. Given the discrete nature of the computerized visuomotor tracking task, we 325

can only measure subjects’ VMD up to the resolution that is allowed by the frame rate 326

of the experimental display. With the 60Hz display system we used in the experiment, 327

the resolution of the VMD is around 17ms. Future studies can improve the experimental 328

design to allow for higher resolution for studying the tracking performance. 329

Finally, it is worth mentioning that our proposed measures are tailored to an order-2 330

target tracking task. A target with a more complex autocorrelation structure would 331

require adapting the mutual information formulae by adding higher-order terms. 332

Conclusion 333

We have presented here a method allowing us to separate feedback and feedforward 334

information rates of a visuomotor tracking task and have shown that both components 335

are influenced by the predictability of signals. We argue that our proposed measure of 336

the feedback component should provide a more relevant measure of task difficulty, 337

cognitive demand and associated metabolic costs than a non-discriminative total 338

information transfer measure. Future studies should aim at comparing this measure 339

with currently existing metrics of cognitive effort and metabolic demands. 340

Materials and methods 341

Participants 342

We recruited 11 right-handed subjects (2 males) aged between 20-28 years old from the 343

local university network. They all have normal or corrected to normal vision. All 344

participants have given their consent in written form. The experiment lasted around 345

one hour and all subjects were compensated equally for their time. This experimental 346
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paradigm was approved by the Ethics Committee of Université de Bordeaux and 347

complied with the Declaration of Helsinki. 348

Experimental design 349

The visuomotor task employed for the current experiment was a one-dimensional target 350

tracking task. A vertical bar (3.3mm wide and 66.5 tall) was presented as the visual 351

target on the screen (1024x1280) and subjects were asked to follow the movement of the 352

target with a triangular cursor (6.6mm wide and 13.2mm tall), which they controlled 353

through a joystick. The target was programmed to move only along the horizontal 354

plane, so subjects were instructed to constrain their joystick movement to this plane 355

during the task, which they could easily achieve by letting the joystick lean on the front 356

end of its pad while moving it sideways. To prevent subjects from cancelling the target 357

movement on the screen by head or eye movements, subjects wre instructed to place 358

their heads on a fixed headstand attached to the table to stabilise their head positions 359

and they are instructed to fixate at a centre crosshair during all trials. In addition, we 360

have installed an Eyelink© 1000 + eye tracker (SR Research Ltd., Kanata, Ontario, 361

Canada) to monitor their eye movements to ensure compliance to the task instruction. 362

The trajectory of the visual target y was pre-programmed by passing white noise ε 363

through a sinusoidal filter: a1xt = εt + a2xt−1 + xt−2, with a2 = −2
√
a1 cos( π

100 ). We 364

could manipulate the predictability of the signal by altering the parameter a1 of the 365

filter controlling the amount of noise that passed through. Fig 1 shows example signal 366

and tracking from condition 1 and 4. Since the target trajectory was pre-programmed, 367

it was completely independent of the subjects’ response during the task. Horizontal 368

joystick movement was registered as the main output response. We further registered 369

vertical joystick movement and discarded trials during which subjects failed to keep to 370

the required plane. 371

Mutual Information Estimation Using Gaussian Copula 372

There exist many different methods for estimating mutual information. For the current 373

study, we found the Gaussian copula method to be the most appropriate for our 374

data [28]. Compared to a classic binning or k-nearest-neighbour methods [29] for mutual 375

information estimation, the copula-based method is less subject to sampling bias and it 376

does not require any assumption regarding the distribution of the random variable. 377

A copula is a multi-dimensional cumulative distribution function (CDF) for which 378

the marginal distributions of all variables are uniformly distributed over the interval 379

[0, 1]. 380

For a multivariate random vector (X1, X2, ..., Xd) with continuous CDFs 381

Fi(x) = P (Xi ≤ x), one can apply the probability integral transform [30] to obtain 382

uniformly distributed marginals over the interval [0, 1]: 383

(U1, U2, ..., Ud) = (F1(X1), F2(X2), ..., Fd(Xd)) (10)

Using the uniformly distributed marginals, we can define a copula: 384

C(u1, u2, ..., ud) = P (U1 ≤ u1, U2 ≤ u2, ..., Ud ≤ ud) (11)

Sklar’s theorem [31] states that every multivariate CDF of a random vector can be 385

expressed in terms of its marginals and a unique copula, if the marginals are continuous. 386

F(x1, x2, ..., xd) = C(F1(x1), F2(x2), ..., Fd(xd)) (12)
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The theorem has the implication that one could separate the dependency structure of a 387

multivariate distribution from its marginals. The copula is the part of the density 388

function that retains all dependencies between variables, and is independent from 389

individual marginal distributions. It was shown that the mutual information between 390

the random variables equals the negative entropy of their corresponding copula [32]. 391

This implies that mutual information, like copula, does not depend on individual 392

marginal distributions but rather depends only on the interaction between variables. 393

Using the characteristics of the copula and its link to mutual information, we can 394

now estimate MI by computing the corresponding copula density of the random 395

variables. For a faster estimation of the copula entropy, the marginals are transformed 396

to standard Gaussian variables. Since copula entropy is independent of individual 397

marginal distributions, this transformation should not affect the result. However, this 398

transformation will allow the application of the parametric Gaussian model for MI 399

estimation using covariance matrices and joint covariance matrix of the random 400

variables (X,Y ). 401

I(X;Y ) =
1

2
log[
|ΣX ||ΣY |
|ΣXY |

] (13)

Linear-Quadratic Regulator model 402

The state space model takes observation vector x as input, incorporating both joystick 403

and visual target positions, and models their dynamics through internal state s, 404

transition matrix A, motor output u and control matrix B: 405

st = Ast−1 +But−1

xt = Cst
(14)

and we define the cost function to be: 406

J = sTt+NQst+N +
N−1∑
k=0

(sTt+kQst+k + uTt+kRut+k) (15)

with N being the control horizon. The matrix A was composed of the delayed joystick 407

spring-mass system Aj and delayed target dynamics As: 408

A =

 As . . . 0
Aj . . . 0

0 . . . 1 0 . . .− 1 0 . . . 0

 (16)

with the number of zeros on the last line depending on the visual and motor delays. 409

The transition matrix for the spring-mass system is a 2x2 matrix, which is augmented 410

to account for the visual and motor delays: 411

Aj =



0 1 0 . . .
0 0 1 . . .

0
. . .

0 . . . 1 0 . . .
0 . . . 1 1 . . .
0 . . . −0.01 0.8 1 . . .

0 . . .
. . .

0 . . . 1
0 . . . 0


(17)
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with the number of leading and ending ones depending on the visual and motor delays, 412

respectively. The delayed target dynamics is represented as 413

As =



0 1 0 . . .
0 0 1 . . .

0
. . .

0 . . . C0
1 C0

2

0 . . . A0
1,1 A0

1,2

0 . . . A0
2,1 A0

2,2


(18)

with A and C corresponding to the matrices of the actual state space representation of 414

the target signal (eq. 14). The control sequence that minimises the cost function at 415

time t is: 416

ut = −H−1t Ftst (19)

where Ft = ÂTQC̄ and Ht is the state to observation matrix, 417

Ht = C̄TQC̄ + R̄ (20)

Augmented matrices Â, C̄ and R̄ were defined as follows: 418

Â =


A
A2

...
AN

 C̄ =



B
AB B

A2B
. . .

...
AN−1B . . . B

 R̄ =

R . . .

R

 (21)

At every time step, the state vector was updated with new observation data by means 419

of a Kalman filter. 420
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