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Abstract:  17 

Single cell analysis tools have made significant advances in characterizing genomic 18 

heterogeneity, however tools for measuring phenotypic heterogeneity have lagged due to the 19 

increased difficulty of handling live biology. Here, we report a single cell phenotyping tool 20 

capable of measuring image-based clonal properties at scales approaching 100,000 clones per 21 

experiment. These advances are achieved by exploiting a novel flow regime in ladder 22 

microfluidic networks that, under appropriate conditions, yield a mathematically perfect cell trap. 23 

Machine learning and computer vision tools are used to control the imaging hardware and 24 

analyze the cellular phenotypic parameters within these images. Using this platform, we 25 

quantified the responses of tens of thousands of single cell-derived acute myeloid leukemia 26 

(AML) clones to targeted therapy, identifying rare resistance and morphological phenotypes at 27 

frequencies down to 0.05%. This approach can be extended to higher-level cellular 28 

architectures such as cell pairs and organoids and on-chip live-cell fluorescence assays.  29 

 30 

  31 
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MAIN TEXT 32 

Introduction  33 

In recent years, advances in sequencing technology have enabled deep, clonally 34 

resolved views into the genomic and transcriptional heterogeneity that exists within cellular 35 

populations.[1-4] This variance is important, as it likely drives much of the phenotypic 36 

heterogeneity that underpins physiological and pathological programs.[3-5] While single cell 37 

genomic tools can now routinely measure the mutational or transcriptional profiles of >100,000 38 

individual cells in a single experiment,[6,7] similar tools for measuring single cell phenotypic 39 

heterogeneity and dynamics remain elusive owing to the complexities of working with live 40 

biology. One promising approach for capturing phenotypic heterogeneity on a massive scale 41 

entails organizing a high-density array of individual cells that can be continuously observed over 42 

time microscopically, with or without chemical or physical perturbations. Imaging these isolated 43 

clones can reveal phenotypic distributions, including rare phenotypes of biological significance, 44 

such as cells that respond uniquely to important stimuli or produce distinct secreted factors.[8,9] 45 

However, to date no existing platforms have demonstrated the ability to measure single cell 46 

phenotypes at throughputs approaching the 100,000 clone scale. The only platform that 47 

approaches this benchmark is the Berkeley Lights Beacon® instrument, but to our knowledge 48 

that platform is currently unable to perform more than four parallel experiments per instrument, 49 

limiting the ability to analyze phenotypic responses of diverse cell types to assorted stimuli.[9] 50 

In cancer, rare clones that survive in the presence of chemotherapeutic treatments often 51 

drive recurrence of drug resistant disease.[10,11] In the laboratory, these clones have 52 

traditionally been isolated and studied individually through a weeks- to months-long process of 53 

selection, enrichment, and clonal isolation. As a result, it has been difficult to quantify the 54 

abundance of resistant clones in a population, directly define clonal growth properties, or scale 55 

analyses to different tumor samples, cell lines, drugs, and doses. Given the complexity and 56 
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heterogeneity of resistant clones within individual patients, it is expected that new, integrative 57 

approaches will be necessary to design drug therapies capable of suppressing the collective 58 

growth of resistant subclonal populations. This necessity underscores the importance of 59 

technologies that can measure these properties at scale.[10-12]  60 

In this report, we present the first single cell phenotyping platform that can reach the 61 

scale of 100,000 clones in a single, multi-day, time-resolved experiment, all performed in 62 

parallel by one instrument. Our approach is made possible by fundamental advances in 63 

microfluidic chip design, improvements in methods for long-term culturing and microscopic 64 

observation of single cells, and finally advances in image processing and analysis software that 65 

allow for large image-based datasets to be automatically analyzed down to the level of individual 66 

cell morphology. Specifically, we report on a novel microfluidic design that represents the most 67 

efficient microfluidic trapping architecture to date, and we also demonstrate robust, cost-68 

effective methods for maintaining mammalian cells on-chip over sufficient time to identify rare 69 

phenotypic properties like drug resistance. These results pave the way for more efficient 70 

methods for credentialing drugs and ultimately, improved selection of therapeutic regimens 71 

for patients. More broadly, by enabling flexible phenotypic single cell profiling at massive scale, 72 

this platform may facilitate the functional characterization of diverse and complex cellular 73 

populations. 74 

 75 

Results 76 

A novel microfluidic flow regime enables high efficiency single cell trapping  77 

In our chip design, there are two unique flow regimes distinguished by the opposite 78 

directions of fluid flow that can exist in the rungs of a microfluidic ladder network, which is 79 

caused by the difference in fluidic resistances in the rails of the ladder (Fig. 1a, see 80 

supplementary theory for details). This two-state flow system is present in both microfluidic 81 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.12.18.423559doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423559
http://creativecommons.org/licenses/by/4.0/


Page 5 of 35 
 

mesh and ladder networks; however prior works have all used only one flow regime in cell 82 

trapping devices [13-17] in which the resistance through the trap, RA, (one of the rails of the 83 

ladder) is higher than the hydrodynamic resistance through the bypass section, RT, (the 84 

opposite ladder rail). In previous studies, the fluid flow in the ladder rung points away from the 85 

trap (see the blue arrows in Fig. 1a,b), which leads to a less efficient trap since cells have the 86 

ability to bypass the traps by following the streamlines towards the serpentine section. 87 

Surprisingly, there have been no prior reports of microfluidic devices in the other flow regime, RA 88 

< RT, which is vastly more efficient as a cell trap because, in this case, the flow joins rather than 89 

splits at the entrance to the trap (see the red arrows in Fig. 1a,b). This improved trapping 90 

efficiency comes at the expense of a larger device footprint, since it is necessary to design 91 

longer and narrower channels for the bypass section in order to achieve the required resistance 92 

ratio. However, this approach is advantageous when the goal is to improve the trap occupancy 93 

rate and make more efficient use of limited cell samples.  94 

 The working method of this trapping approach is based on a self-limiting principle, in 95 

which the fluid flow is modulated by the cell’s physical presence in a trap, which functions as a 96 

switch to alternate between the two flow states. When the trap is initially empty, it is in a high 97 

efficiency flow state for capturing cells where RA < RT. After a trap has captured a cell, the flow 98 

profile changes because the cell’s physical presence modifies the resistance through the trap, 99 

thus switching the flow state to the low efficiency capture state where RA > RT. The high 100 

resistance of the occupied traps causes subsequent cells to bypass the occupied traps and 101 

diverts them downstream toward unoccupied traps. As a result, the cells populate the array in a 102 

deterministic fashion with most of the traps becoming filled in the order that cells were 103 

introduced onto the chip. 104 

To load the cells onto the chip, a cell suspension at a concentration of 106 cells per mL is 105 

prepared in a 0.2 µm-filtered aliquot of cell culture media, and then a 10 – 20 µL aliquot of cell 106 
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suspension is placed into the inlet reservoir, after which it takes approximately 3 to 5 minutes to 107 

fill all of the traps by applying negative pressure (20 to 50 mbar) at the microfluidic outlet. The 108 

remaining cells are then rinsed from the device by washing the inlet several times and then 109 

flowing clean filtered media through the chip for another minute, leading to a trapping 110 

distribution similar to that shown in Fig(1b, top).  111 

Once the traps are filled, the cells are transferred into the apartments by applying a sub-112 

second elevated pressure pulse, which squeezes the cells through the constrictions into the 113 

adjacent apartments. These mechanical perturbations are benign and have been successfully 114 

employed in various drug and gene delivery applications.[18-20]. As a general rule, we found 115 

that a 1:3 or 1:4 ratio for the width of the trap region compared to the diameter of the cell was 116 

ideal; this allowed cells to be consistently trapped and retained at low pressures (~20 mbar), but 117 

reliably transferred into the apartments at higher pressures (~500 mbar).  In our chip designs, 118 

the single cell capture efficiency worked best when the front trap width is in the range 3 – 6 µm 119 

for cells for cell diameters in the range of 10 – 25 µm. Representative images of the cell 120 

positions during each step of the trap and transfer process are shown in Fig. 1b.  121 

We also developed automated methods for reading the individual apartment addresses 122 

from the images and quantifying the number of cells in each chamber through brightfield image 123 

classification techniques. These classifiers are based on standard image segmentation models 124 

that have been trained to detect the instances of each cell in each chamber at each time point 125 

[21,22], as described in detail in the methods section. With this software package, we were able 126 

to quantify the trapping efficiency in the array and assess any spatial biases that were used to 127 

improve the microfluidic architecture.  128 

In this platform, we are simultaneously optimizing two metrics of performance, namely (1) 129 

the number of traps that end up capturing a single cell (typically ~80% in our hands), and (2) the 130 

number of cells needed to completely fill all of the traps, which is related to how the cells are 131 
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distributed in each of the parallel channels during the loading process. Both of these parameters 132 

need to be optimized to effectively make use of limited cell samples. Since this design is very 133 

efficient at capturing cells, the 6,016 traps in the device are consistently filled when ~10,000 134 

cells are introduced to the inlet.  Due to the combination of fabrication defects, presence of 135 

debris in the cell culture media, and incompletely dissociated cell suspensions, the trap 136 

occupancy rates for MOLM-13 cells was found on average to yield ~80% single cells, ~10% 137 

empty chambers, and ~10% chambers having more than one cell (Fig. 1c).  138 

 139 

Cell pairs and reproducible cell clusters can be organized with high efficiency 140 

This platform has the ability to organize other types of cellular architectures for myriad 141 

potential cellular analysis applications by tuning the device geometry and/or serially repeating 142 

the trap and transfer process. The ability to form heterogeneous cell pairs (Fig. 2a), for example, 143 

has potential applications in immunooncology and in forming different types of cellular micro-144 

environments. A similar approach has been employed by others for fabricating hybridomas [13], 145 

and pairing T cells with other cells [23]. We demonstrate this pairing ability by first organizing an 146 

array of MOLM-13 cells that were labeled with CellTrace Far Red dye, and then repeating this 147 

process with the same cells that were instead loaded with CellTrace CFSE dye. In each step, 148 

we obtained ~80% single cell capture efficiency, and this yielded an overall efficiency of ~64% 149 

of chambers having heterogenous red/green single cell pairs.  150 

This device can be modified to form reproducible cell groupings in a single shot by 151 

opening up the front trap, as shown in Fig. 2b. For this geometry, repeatable clusters of 6-10 152 

cells per apartment were organized reliably across the entire chip, and this approach may have 153 

potential applications for rapidly creating spheroids or organoids in a highly parallel format.  154 

 155 

Rare cell phenotypes are observed in multi-day cell culture experiments  156 
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The chips are fabricated by deep reactive ion etching (DRIE) of Silicon wafers, then 157 

anodically bonding the wafers to glass lids, followed by dicing the wafers into individual chips, 158 

and finally assembling the chips into custom-machined microfluidic chip holder (see methods 159 

section for detailed fabrication process).  This fabrication approach can be readily accomplished 160 

in a standard university cleanroom and allowed us to fabricate features as small as 2 µm.  The 161 

microfluidic architecture was designed such that cells were able to squeeze through the front 162 

traps having 3 – 6 µm constrictions; however, cells were retained by the parallel frit structure at 163 

the back of the chambers that had smaller 2 µm constrictions.  The geometry allowed fluid to 164 

pass through the apartments while retaining the cells inside the chambers over many days, 165 

enabling the study of clonal growth patterns and variability in morphological features.  166 

 To achieve steady perfusion of media into the chips while inside the incubator, we 167 

connect 10mL syringes to the inlet and outlet, which serve as media reservoirs.  We fill the inlet 168 

syringe with media while the outlet syringe is connected to a vacuum line. In this way, we 169 

ensure that the media reservoir at the inlet has unimpeded gas exchange with the ambient 170 

conditions inside the incubator. We maintain good cell viability by using weak vacuum pressures 171 

in the range of -20 to -50 mbar to continuously flow media through the device. For this specific 172 

chip, an optimal flow rate of ~5 mL/day is sufficient to remove metabolic waste products and 173 

provide fresh nutrients.  However, the exact flow rates need to be tuned for other microfluidic 174 

geometries, cell types, and other experimental parameters.  175 

The simplicity of this microfluidic design allows for re-sealable connections to be made 176 

easily between the chip and the external pressure controllers, which enables many on-chip 177 

experiments to be conducted in parallel (Fig. S1a). Each day the chip is disconnected from the 178 

pumping system to perform imaging on a standard fully automated microscope (Fig. S1b). To 179 

rapidly acquire high-resolution images of each apartment in the chip, we developed imaging 180 

algorithms that employ microscope image quality focus classifiers [24] and image-segmentation 181 
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computer vision models (Mask-RCNN) [25] to identify fiducial marks on the chips and determine 182 

the optimal focus for each image (see methods section and github repository posted online 183 

[26]). As a compromise between image quality and speed, we opted to perform microscopy at 184 

10X magnification, allowing the entire chip to be tiled with ~300 images where 20 apartments 185 

are captured in each field of view. This approach allows us to image each chip within 5-10 186 

minutes depending on the number of fluorescent channels, and it provided the bandwidth to 187 

image up to 18 chips per day (see Fig 1c and Fig S1). 188 

 With the ability to repeatedly image many chips in parallel over many days and analyze 189 

cell properties per chamber with our software pipeline, we have the statistical power to discover 190 

rare phenotypic variants of biological significance. For example, in Fig. 3a we plot the growth 191 

rate as a function of the time-averaged mean cell area across the 11,094 single cell clones that 192 

maintained positive growth rates over 96 hr. The distribution of growth rates in each of the three 193 

chips show similar phenotypic distributions, each displaying medians of ~0.95 doublings/day 194 

with the middle quartiles falling in the range of 0.84 – 1.12 doublings/day and the fastest growth 195 

rate exceeding 1.5 doublings/day. Beyond growth measurements, we found an interesting 196 

subset of clonal cellular populations that not only were fast growers but also abnormally large 197 

compared to the bulk population. A few of these rare phenotypes were found in each chip, and 198 

their frequency in the parental line was assessed to be ~0.05% for this cell line (See Fig. 3b). 199 

These rare cells consistently presented with a pear-shaped morphology (Fig. 3c), and the fact 200 

that they are larger across all timepoints and have similar morphologies provides intriguing 201 

evidence of (epi)genetically heritable cell size and shape regulation.[27] 202 

 203 

In situ fluorescence staining extends capabilities of high-throughput single-cell culture 204 

In addition to time-resolved studies of clonal growth rates, the microfluidic platform is 205 

readily adapted for fluorescence imaging studies, including in situ live cell staining. In one 206 
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demonstration, MOLM-13 cells were treated with a cell membrane-permeable nuclear stain 207 

(Hoescht 33258) as well as a PE-conjugated antibody against CD45, a marker expressed on all 208 

hematopoietic cells (Fig. 4a). Paired with Mask-RCNN cell instance segmentation, this 209 

experimental design can illuminate aspects of individual cell morphology and biomarker 210 

expression at high throughput on a clonal basis, including clonal phenotypic diversity. As an 211 

example, individual cell stain intensity distributions and signal statistics can be extracted for 212 

chambers of interest to study quantitative phenotypic differences within or across clones (Fig. 213 

4b,c). 214 

 215 

Rare drug resistant phenotypes are observed in multi-day cell culture experiments  216 

 The power of this platform to analyze thousands of cells per chip and many chips per 217 

system makes it uniquely suited for drug screening applications that require single cell 218 

resolution. To demonstrate this approach, we conducted an 8-chip study of cells exposed to 219 

either DMSO or 0.5 nM or 1.5 nM of the FLT3 inhibitor quizartinib (AC220).  MOLM-13 cells 220 

harbor the internal tandem duplication (ITD) in-frame insertion in FLT3, a gene mutated in ~30 221 

percent of AML patients and associated with poor prognosis.[28] ITD renders FLT3 hyperactive 222 

via ligand independent phosphorylation, thus MOLM-13 cells are exquisitely sensitive to 223 

quizartinib.[29]   224 

During long-term culture, the flow through the chip needs to be fast enough so that the 225 

metabolic waste products from upstream apartments do not significantly affect the downstream 226 

apartments. The vacuum pressure required to achieve an optimal flow rate was found to be in 227 

the range of -30 to -70mbar, depending on the total number of cells in the chip. When exposed 228 

to a vacuum pressure of -50mbar, the heatmaps in Fig. 5a reveal no apparent systematic bias in 229 

cell behavior across the chip, such as differing growth rates at positions nearer to the inlet 230 

versus the outlet. This finding supports the assumption that the growth properties of the single 231 
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cells can be treated as statistically independent with regards to position inside the array. As 232 

expected, the cells thrived in the DMSO control, and a smaller fraction still grew well at the 0.5 233 

nM conditions; however very few cells survived the 1.5 nM conditions. In the 0.5 nM conditions, 234 

the median growth rates per chip were reduced to 0.55 doublings/day with the middle growth 235 

rate quartiles falling in the range of 0.25 – 0.79 doublings/day. Surprisingly, we still observed 236 

fast-growing cells in the drugged condition that displayed growth rates up to 1.4 doublings/day – 237 

these rare cells appear to be practically unaffected by the drug treatment (Fig. 5b). One striking 238 

example of a drug resistant cell growing in the background of drug sensitive cells is shown in 239 

Fig. 5c after several days of exposure to 0.75 nM quizartinib (see Movie S1 and Fig. 5c).  240 

We also observed a consistent, positive correlation between cell area and growth rates 241 

across the different drug conditions, likely reflecting FLT-3 ITD’s established control over cell 242 

size and proliferation regulators like the mTOR and ERK pathways, respectively.[28] For 243 

example, the time-averaged median area per cell that was measured in the DMSO conditions 244 

was found to be 137 µm2 with the middle quartiles ranging from 128 – 144 µm2, whereas at 0.5 245 

nM quizartinib the mean cell areas were reduced to a median of 126 µm2 and with the middle 246 

quartiles ranging from 119 – 133 µm2.  However, we did not observe similar trends in the 247 

relationship between cell shape (eccentricity vs growth rate) as shown in Fig. S2. These 248 

relationships are further exemplified in Fig. S3, which shows a parallel coordinates plot linking 249 

the individual cell trajectories to the size dependence.  The similarity of the growth trajectories 250 

across different cohorts was also classified with t-SNE plots in Fig. S4. 251 

 252 

Discussion 253 

We have developed a high throughput live cell biology platform that can establish and 254 

maintain highly reproducible cellular architectures on chip for multiple days. This platform 255 

enables the analysis of phenotypic heterogeneity at the necessary scales for measuring low 256 
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frequency variants in a population, such as cells that are resistant to a drug or have other rare 257 

morphological features. There are potential areas for improving this platform, such as by 258 

functionalizing the substrates with adhesive vs. non-adhesive patches at selective positions in 259 

the device and by using frit structures based on porous hydrogels,[30] which can help support 260 

and better constrain adherent and suspension cell cultures. We also expect that in the future 261 

these high-throughput phenotyping capabilities can be combined with the selective patterning of 262 

DNA primers inside the apartments to enable highly parallel transcriptome measurements to be 263 

perform in parallel with the image-based phenotyping for potential applications in single cell 264 

functional pharmacogenomics assays. 265 

 266 

Materials and Methods 267 

Experimental Design 268 

Chip Fabrication: Microfluidic chips are fabricated on 6” wafers using deep reactive ion etching 269 

(DRIE) to form the channel walls, as previously described [31,32]. Photoresist (Shipley 1813) is 270 

spun onto the wafers at 500rpm for 5s and 4000 rpm for 60 s, baked at 115 °C for 60 s, exposed 271 

to 80-100 mJ/cm2 in a Karl Suss MA6 mask aligner, and then developed in Microposit MF319 272 

developer for 30 s. The wafers are then thoroughly cleaned and etched to a depth of 15 – 20 µm 273 

in the DRIE (SPTS Pegasus Deep Silicon Etcher). The photoresist mask is then stripped and 274 

cleaned in piranha solution (3:1 H2SO4 to H2O2 at 200°C). Next, a 15µm thick layer of AZ 9260 275 

photoresist is spun onto the backside of the wafer at 500 rpm for 5s and 1800rpm for 60s, baked 276 

at 110 °C for 60s, exposed to 4000 mJ/cm2 and developed for 300s in AZ400K 1:4 developer. 277 

This layer is used to create through silicon vias to establish the inlets and outlets and dice the 278 

chips. The photoresist is then stripped and thoroughly cleaned as described previously. Finally, 279 

we anodically bond borosilicate glass to the Silicon microchannels at 300 °C for 3 hr. In total, 280 

each wafer yields 12 devices (chips), which have dimensions of 30 mm X 25 mm.  281 
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 282 

Microfluidic Setup: Custom-made chip holders were machined in Aluminum (Protolabs, MN), 283 

comprising a bottom holder and a top-viewing window. The bottom piece contained ¼”-28 284 

threaded holes to allow for connection to be made to the chips with screw-in luer locks (part 285 

number, company, city). The chip holders were also anodized (Surtronics, Raleigh, NC) to 286 

ensure that they would last inside the high humidity environment of a cell culture incubator for 287 

long durations. The chip holders were placed onto a custom stage adapter and mounted on a 288 

ASI-RAMM microscope (Applied Scientific Instrumentation, Eugene, OR), that contains an 289 

automated focus drive, objective changer, and filter changer. Fluid was introduced to the chip 290 

with an Elvesys pressure controller (OB1 MK3+, Paris, France) that applied vacuum pressure at 291 

the outlet.  292 

 293 

Cell Culture: MOLM-13 acute myeloid leukemia cells [33] were obtained from the Wood lab.  294 

Cells were maintained in RPMI 1640 medium (Gibco 11875-093) supplemented with 10% fetal 295 

bovine serum (Gibco 10347-028) and penicillin/streptomycin (Gibco 15140-122) in a 5% CO2 296 

environment.  Cells were passaged in T25 flasks and centrifuged for 5 min at 350 rcf prior to 297 

sub-culturing to maintain a density range of 2.0 – 3.0 x 106 cells per mL.  A new thaw of cells 298 

was utilized every 8 weeks to minimize genetic drift.  Counting and viability determination with 299 

0.4% Trypan Blue with a Countess II instrument (ThermoFisher Scientific). Quizartinib (AC220) 300 

was obtained from Selleck Chemicals LLC. 301 

 302 

Cell Loading: Cells were loaded into the chip by pipetting a 20mL aliquot into screw-in luer 303 

locks positioned on the inlet side, after which the cells were infused into the chip by applying 20 304 

– 30 mbar vacuum pressure to the outlet side using a syringe body that was attached to a 305 

rubber stopper. The microfluidic architecture consists of one inlet and one outlet, which feed into 306 
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the active area of the chip by successive flow division in a binary tree, leading to 128 parallel 307 

streets with 47 apartments in series. The loading time typically required 3 – 5 minutes for the 308 

cells to reach the last row of apartments in each street, corresponding to a loading rate of about 309 

20 cells per second. After the cells were trapped in each constriction, the luer locks on the inlet 310 

side were rinsed at least 3 times by replacing the fluid with fresh cell culture media. In order to 311 

eliminate any remaining cells that were stuck in the luer lock or on the chip surface, we 312 

irradiated the luer locks with UVC using a 270nm LED diode attached to a heat sink (Irtronix, 313 

Torrance, CA) – this provided a lethal radiation dose to any non-specifically adhered cells and 314 

prevented the chips from being invaded with cells at later time points. Finally, the cells were 315 

squeezed through the constrictions by applying a brief (~1s) pressure pulse in the range of 300 316 

– 800mbar to the outlet. The chips were then disconnected from the imager and put into the 317 

incubator.  318 

 319 

High-Throughput Microscopy: We developed custom python codes to rapidly take images of 320 

each chamber. The algorithm involved first identifying 3 crosshairs on the chip to establish the 321 

equation of a plane, next creating a stage position list containing the XY position and optimal 322 

focal plane for each image, then taking images of each chamber, and finally saving and naming 323 

the images in custom formats to render them compatible with the computer vision algorithms. 324 

The software used to image the chips is provided at github,[26] and since they are based on a 325 

python wrapper for Micro-Manager [34], the program is easily adapted for most standard robotic 326 

microscopes.  327 

 328 

Fluorescence Imaging: Chips were loaded with MOLM-13 cells and cultured in 0.2 µm-filtered 329 

R10 media at 37°C and 5% CO2. At 72 hr, 5 µL of Hoescht 33258 (0.1 mg/mL) was added to 330 

~50 µL of media at the microfluidic inlet port and flowed onto the chip using negative pressure (-331 
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100 mbar) applied at the microfluidic outlet. Constant flow was maintained for 10-15 minutes to 332 

stain cell nuclei, followed by rinsing with media. Similarly, 5 µL of PE-conjugated anti-CD45 333 

(Invitrogen, 0.2 mg/mL) was flowed in, incubated, and rinsed prior to imaging. Multichannel 334 

images were collected in brightfield and using standard DAPI and Texas Red filter sets. 335 

 336 

Statistical Analysis 337 

Image Analysis: We developed custom python codes to rapidly analyze the images and extract 338 

cellular phenotypic properties in a computationally efficient manner. Our cell extraction 339 

algorithms make use of the Mask-RCNN image segmentation model, [35] which is designed to 340 

identify objects in images without the need for pixel classification post-processing. This is an 341 

advance on previous methods for biological image segmentation [36,37] that enabled us to 342 

compose a simple pipeline for cell quantification using a minimal amount of training data. In a 343 

separate study, we quantified the superior performance of Mask-RCNN segmentation relative to 344 

supervised segmentation algorithms and statistical methods.[38] Similarly, the SVHN (street 345 

view housing number)[39] model is an architecture for digit classification that we used to 346 

determine the apartment identifiers etched into the chips.  347 

Our pipeline consists of three separately applied models where the first is used to identify 348 

a key point within each apartment image (hereto referred to as a “marker”), given an image 349 

containing multiple apartments (i.e. raw microscope images). Images of individual apartments 350 

were then extracted using these markers. Because the raw microscope images often have slight 351 

rotations, the relative positions of the identified markers in adjacent apartments were used to 352 

infer an overall rotation of the images to be inverted before further decomposing the individual 353 

apartment images. The apartment images were then registered against a template image to 354 

remove small translations. The digit identifiers for each apartment, with no rotations or 355 

translations, were extracted based on fixed offsets from the marker position. Fixed offsets are 356 
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determined relative to several chip landmarks and need to be updated whenever the chip form 357 

factor is altered. Identification of individual cell objects is performed based on the entire 358 

apartment image, but segmented results are filtered to the chamber and trap areas, again using 359 

fixed offsets from the marker, as a way to prohibit erroneous classification of debris within 360 

microfluidic channels. 361 

 Training for the cell segmentation model included 814 annotated images and the Mask-362 

RCNN model trained was initialized to a weight set resulting from pre-training over the COCO 363 

[40] image dataset, a feature provided by the Matterport implementation.[25] Training also 364 

included an augmentation pipeline consisting of image flips, affine rotations, random croppings, 365 

contrast transform, and blurring. The marker identification model was trained in a very similar 366 

fashion but required only 70 annotated images since the associated classification task was 367 

simpler. By contrast, the digit recognition model required far more training data (9,375 annotated 368 

images) though this annotation task was much less time consuming since the individual digit 369 

images only needed to be assigned a class, as such bounding boxes or object masks were not 370 

required. 371 

  We have also developed a dashboard visualization tool that allows the growth rates and 372 

other properties to be viewed at the experiment level, individual apartment level, and array 373 

levels. More details on the software package can be found at github.[22]  374 

 375 

Data Analysis: The data presented in Figures 3 & 5 is limited to chambers starting from a 376 

single cell and having at least one cell in the apartment at each time point. This led to 377 

significantly fewer data points for the 1.5 nM quizartinib cohort, where a majority of cells did not 378 

survive the drug treatment over several days. The growth rates are determined by fitting the raw 379 

trajectories to an exponential with base 2. The calculated growth rates are likely to be a lower 380 
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bound, since the image-segmentation models begin to miss cells in apartments that are very 381 

crowded, as shown in Fig. 3b.  382 

 383 

H2: Supplementary Materials 384 

Supplementary Theory 385 

Fig. S1. Experimental setup 386 

Fig. S2. Scatterplot of growth rate versus cell size or shape 387 

Fig. S3. Parallel coordinates plot of growth trajectories and mean cell areas 388 

Fig. S4. t-SNE plot of growth trajectories 389 

Movie S1. Drug resistant AML clone growing in 0.75 nM quizartinib 390 
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Figures and Tables 530 

 531 

Figure 1. Working Principle. The microfluidic device can be modeled as a ladder resistor 532 

network (a), which has two flow regimes that have high (or low) cell trapping efficiency. The high 533 

(low) trapping flow regimes are depicted by the red (blue) arrows, respectively, in which the fluid 534 

joins (splits) before entering the apartment. The cells are first trapped in the constriction (b, top), 535 

and then transferred into the apartments with a brief pressure pulse (b, bottom). A higher 536 

magnification view of each step in the trap and transfer process is shown.  The results from one 537 

experiment consisting of 18-chips (c) capturing a total of 88,317 cells shows that on average 538 

83% of apartments contain a single cell (orange bars), 7% are empty (light blue bars), and 10% 539 

have more than one cell (dark blue bars [2 cells] and gold bars [> 2 cells]). Scale bar is 100-µm.  540 
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 541 

Figure 2. Multi-cellular architectures. (a) Heterogeneous single cell pairs are formed by 542 

repeating the trap and transfer process with different cell types, whereas (b) highly reproducible 543 

cell clusters are created in a single shot when the front trap is opened up.   544 
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 545 

Figure 3. Phenotypic heterogeneity measured in extended duration culture. MOLM-13 546 

cells were grown for 96 hr under continuous perfusion with RPMI media with 10% FBS. The 547 

growth rate distribution vs. time-averaged cell area across three chips (a), with example views of 548 

the average cell morphology compared to a rare subset of significantly larger cells (b), which 549 

were present at frequencies of approximately 0.05%. The time lapse images are taken at 24 hr 550 

intervals, and red dots are added to the images to depict the locations of the cell centroids as 551 

identified by the image analysis software.  A higher magnification view of the cells with pear-552 

shaped morphology is also shown (c). 553 

 554 

  555 
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 556 

Figure 4. High-throughput extraction of clonal fluorescence data. (a) Multi-channel live-cell 557 

imaging of MOLM-13 clonal populations. After 72 hr of culture under constant flow, cells were 558 

stained in situ with Hoescht 33258 to visualize nuclei and PE-conjugated antibody against 559 

CD45, a pan-hematopoietic cell surface marker. (b) Signal quantification of MOLM-13 cells 560 

within a single culture chamber. Density plots depict brightfield, nuclear, and surface marker 561 

stain intensity distributions of automatically segmented individual cells within the selected 562 

chamber. Scatter plots present the relationship between cell size and mean intensity in each 563 

imaging channel. (c) Example multichannel images demonstrating diversity of individual cells 564 

segmented using Mask-RCNN.  565 
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 566 

Figure 5. Growth rate heterogeneity due to drug response.  The growth rates of MOLM-13 567 

cells were measured in DMSO or 0.5 nM or 1.5 nM quizartinib over 96 hr. (a) To visualize the 568 

distribution of growth rates at different locations in the chip, the cell number per apartment is 569 

plotted a heatmap at t = 0, t = 24, and t = 48 hr. The heatmap colors are plotted on a log scale 570 

to better visualize the apartments with 0 or 1 cells. (b) The growth rates are shown in several 571 

scatter plots for the three cohorts depicting the relationship between doubling rate and mean cell 572 

area in each clone. (c) A time lapse of a single drug resistant clone emerging over 120 hr in 0.75 573 

nM quizartinib is highlighted. 574 

  575 
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Supplementary Theory 576 

Laminar flow hydrodynamic networks can be modeled like electrical circuits, where the 577 

pressure, flow rate, and hydrodynamic resistances are analogous to voltage, current, and 578 

electrical resistances. Ladder (or mesh) networks are comprised of two types of resistors, 579 

including those aligned parallel to the main flow path, i.e., RA and RT, (the rails of the ladder) 580 

and those aligned perpendicular to the main flow path, i.e., RB (the rungs of the ladder). The 581 

flow distribution can be solved by setting up continuity equations at each branch point in the 582 

array. From there, we apply a constant pressure drop, ΔP, parallel to the flow direction across 583 

each array period. This system of equations thus reduces to solving the pressure at 4 nodes in 584 

the minimum unit cell, which are given by: 585 

𝑅!!! + 𝑅!!! + 𝑅!!! −𝑅!!! −𝑅!!! − 𝑅!!! 0
−𝑅!!! 𝑅!!! + 𝑅!!! + 𝑅!!! 0 −𝑅!!! − 𝑅!!!

−𝑅!!! − 𝑅!!! 0 𝑅!!! + 𝑅!!! + 𝑅!!! −𝑅!!!

0 −𝑅!!! − 𝑅!!! −𝑅!!! 𝑅!!! + 𝑅!!! + 𝑅!!!

𝑃!,!
𝑃!!!,!
𝑃!,!
𝑃!!!,!

= ∆𝑃

𝑅!!!

𝑅!!!

−𝑅!!!

−𝑅!!!

   586 

where Pi, 0, Pi,1, Pi+1,0, and Pi+1,1 are the four unique nodes of the unit lattice.  587 

The pressures at each node can be solved by inverting Eq. (1) to yield a generic solution 588 

in terms of the pressure at an arbitrary point, in this case chosen as Pi,0: 589 

𝑃!,! = 𝑃!,! 

𝑃!!!,! =  𝑃!,! −  
1
2  

𝑅!!! − 𝑅!!!

𝑅!!! + 𝑅!!! + 𝑅!!!
∆𝑃 

𝑃!,! =  𝑃!,! −  
1
2  

𝑅!!! + 𝑅!!!

𝑅!!! + 𝑅!!! + 𝑅!!!
∆𝑃 

𝑃!!!,! =  𝑃!,! −  
1
2  ∆𝑃 

We can then determine the ratio of flow along the two lateral paths, QB, relative to the 590 

flow through the apartment, QA, which are given by: 591 

𝑄!
𝑄!

=
𝑅! + 𝑅!
𝑅! − 𝑅!
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Since this ratio changes sign as a function of the relative magnitude of RA and RT, this 592 

result indicates that there are two regimes of fluid flow. When RT > RA, which is the typical 593 

scenario for previously studied trapping designs, the flow ratio is positive and approaches a 594 

singularity when RT is nearly equal to RA. This singularity defines a critical point where there is 595 

zero flow through the lateral branches, RB, and all of the flow moves solely through the RA and 596 

RT paths, practically in straight lines. An alternative way to think of this phenomenon is that the 597 

pressure at the adjacent nodes Pi,0 and Pi,1 are equal when RA and RT have equal resistance, 598 

leading to zero flow in the lateral branches. 599 

The other flow regime, which has not previously been reported, occurs when RT < RA, 600 

which leads to the ratio in Eq. (3) becoming negative. The significance of this sign inversion is 601 

that the flow through the lateral branches, QB, is assigned in the wrong direction. In this flow 602 

regime, all of the fluid joins together at the branch point and flows through the trap, which is a 603 

perfect trap from a mathematical sense.   604 
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Supplementary Figures 605 

 606 

Figure S1. The incubator system used for maintaining chips with media is shown (a). 607 

Continuous media flow through the chips was achieved by pulling vacuum at the outlet, while 608 

allowing the media at the inlet to be exposed to the gas- and temperature-controlled 609 

environment of the incubator. External to the environment, the pressure was maintained by 6 610 

vacuum regulators, which were divided with 3-way splitter manifolds, enabling up to 18 chips to 611 

be contained simultaneously. The chip on the imager is shown (b).  612 
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 613 

Figure S2.  Size and shape dependence on clonal growth rates is shown for an example chip in 614 

the 1.5 nM, 0.5 nM and DMSO cohort.  There is positive correlation between cell size and 615 

growth rate, however a correlation between cell shape and growth rate was not observed.   616 

  617 
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 618 

Figure S3. The parallel coordinates plot shows the growth and size trajectory for each cell 619 

identified in the different cohorts and chips and is used as compact method for visualizing linked 620 

phenotypic attributes.  The pink bars represent the filtering to highlight the linked attributes. (a) 621 

The growth trajectories of the 1.5 nM quizartinib cohort, which are highlighted in the blue and 622 

green trajectories, show significantly lower growth rates and smaller time-averaged cell size. (b) 623 

A subset of cells are filtered to display the cell trajectories with growth rates greater than 0.66 624 

doublings per day and with cell areas greater than 150 µm2. 625 

 626 

627 
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 628 

Figure S4. t-SNE plot is shown for the cell trajectory data. The arrows denote the direction of 629 

decreasing cell doubling rate.  The individual cluster map for each chip is shown in (a) and the 630 

combined data overlaid is shown in (b).  631 
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Supplementary Movies 632 

 633 

Movie S1. This time-lapse video shows a single drug-resistant MOLM-13 clone emerging after 634 

120 hr of continuous exposure to 0.75 nM quizartinib.  635 

  636 
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