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SUMMARY 

 
Gene activator proteins comprise distinct DNA-binding and 
transcriptional activation domains (ADs). Because few ADs 
have been described, we tested domains tiling all yeast 
transcription factors for activation in vivo and identified 150 
ADs. By mRNA display, we showed that 73% of ADs bound the 
Med15 subunit of Mediator, and that binding strength was 
correlated with activation. AD-Mediator interaction in vitro 
was unaffected by a large excess of free activator protein, 
pointing to a dynamic mechanism of interaction. Structural 
modeling showed that ADs interact with Med15 without 
shape complementarity (“fuzzy” binding). ADs shared no 
sequence motifs, but mutagenesis revealed biochemical and 
structural constraints. Finally, a neural network trained on AD 
sequences accurately predicted ADs in human proteins and 
in other yeast proteins, including chromosomal proteins and 
chromatin remodeling complexes. These findings solve the 
longstanding enigma of AD structure and function and 
provide a rationale for their role in biology. 
 
INTRODUCTION 
 
Transcription factors (TFs) perform the last step in signal 
transduction pathways. They thus serve key roles in central 
processes such as growth, stress response, and development, 
and their mutation or misregulation underlies many human 
diseases (Spitz and Furlong, 2012). A TF includes a sequence-
specific DNA-binding domain (DBD) and an effector domain 
that regulates nearby gene transcription. Activation domains 
(ADs) – effector domains that increase transcription – have 
long been of particular interest due to their roles as 
oncogenic drivers and use as scientific tools (Bradner et al., 
2017; Brückner et al., 2009; Dominguez et al., 2016).  

ADs were discovered as regions that could 
independently stimulate transcription when ectopically 
recruited to a gene promoter (Brent and Ptashne, 1985). 
Early experiments showed that ADs were unlike structured 
domains because progressive truncations showed graded 
reductions in activity (Hope and Struhl, 1986; Hope et al., 
1988). Subsequent studies showed that ADs were disordered 
and had few similarities in their primary sequence (Mitchell 

and Tjian, 1989). Instead, ADs were classified based on their 
enrichment of certain residues, whether acidic, glutamine-
rich, or proline-rich.  

Acidic ADs are the most common and best characterized. 
Acidic ADs retain activity when transferred between yeast 
and animals, pointing to a conserved eukaryotic mechanism 
(Fischer et al., 1988; Struhl, 1988). While some have found 
that acidic residues are necessary for activation, others have 
found that they are dispensable (Brzovic et al., 2011; Pacheco 
et al., 2018; Staller et al., 2018; Warfield et al., 2014). Besides 
their negative charge, acidic ADs are rich in bulky 
hydrophobic residues. Mutating these hydrophobic residues 
reduces activation, often in proportion to the number 
mutated.  

Because AD sequences are highly diverse and poorly 
conserved, only a small fraction of all ADs in eukaryotic TFs 
have likely been annotated. Sequence motifs have been 
proposed based on analysis of select ADs but have not been 
used for large-scale prediction (Piskacek et al., 2007). Screens 
of random sequences in yeast identified many activating 
sequences that represented as many as 1-4% of elements 
tested (Erijman et al., 2020; Ravarani et al., 2018). Actual 
protein sequences are, however, highly non-random. Direct 
screening of protein sequences has identified relatively few 
ADs at low resolution (Arnold et al., 2018; Tycko et al., 2020). 
There is a need for methods to experimentally detect or 
computationally predict all ADs.  

ADs stimulate transcription of genes by recruiting 
coactivator complexes, especially the Mediator complex, 
which interacts with RNA Polymerase II and regulates its 
transcription initiation (Kornberg, 2005). Mediator is 
necessary for TF-dependent activation in vitro and in vivo and 
is required for regulation by enhancers in all eukaryotes 
(Allen and Taatjes, 2015). Mediator and TFs are concentrated 
at strong enhancers, perhaps in a phase-separated state, 
which may play a role in gene activation (Boija et al., 2018; 
Chong et al., 2018; Sabari et al., 2018; Shrinivas et al., 2019; 
Whyte et al., 2013). Beyond Mediator, TFs have been 
suggested to recruit other conserved multiprotein 
complexes, including TFIID, SAGA, and SWI/SNF, that play 
roles in activation of various genes (Hahn and Young, 2011; 
Mitchell and Tjian, 1989). While many such TF interactions 
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have been described, their occurrence and roles remain to be 
determined. 

Biochemical studies of TF-coactivator interaction have 
given insight into the mechanism of activation. Nuclear 
magnetic resonance (NMR) studies revealed short alpha 
helices formed by acidic ADs of yeast Gcn4 protein, with 
hydrophobic faces contacting hydrophobic surfaces of the 
Med15 subunit of Mediator (Brzovic et al., 2011; Tuttle et al., 
2018). NMR constraints were consistent with multiple 
possible AD binding poses, suggesting a dynamic “fuzzy 
complex” (Tompa and Fuxreiter, 2008). Further consistent 
with these ideas, solvent exposure of aromatic residues was 
associated with activation in a screen of Gcn4 AD variants 
(Staller et al., 2018).  

Here we combine quantitative, high-throughput 
measurements of in vivo activation and in vitro interaction 
with computational modeling to characterize ADs. We 
identify all ADs in budding yeast and describe their shared 
sequence attributes. We extend the analysis by training and 
validating a neural network that predicts new ADs across 
eukaryotes. Guided by predictions, we design and measure 
activation of thousands of AD mutants to derive a deeper 
understanding of the principles underlying activation. 
Correlating activation with measurements of binding of ADs 
to Mediator in vitro identifies the key protein interactions 
driving activation, for which we predict atomic structures 
using a peptide-docking algorithm. We derive structural 
features common to AD-Mediator interactions and use them 
to explain measurements of Mediator recruitment kinetics in 
vitro. In total, we develop an integrated model for function, 
sequence determinants, molecular interactions, and kinetic 
features of TF ADs.  

 
RESULTS 
 
A quantitative screen identifies 150 activation domains 
from all yeast transcription factors 

We identified ADs across all TFs in budding yeast with the 
use of a quantitative, uniform, and high-throughput 
activation assay. Variability due to protein expression, 
activation duration, and secondary genetic effects was 
minimized by fusing domains of interest to a three-part 
artificial TF (aTF) that (1) is tracked by an mCherry tag, (2) 
localizes to the nucleus only upon induction with estrogen, 
and (3) binds uniquely through its mouse DBD in the 
promoter of a chromosomally-integrated GFP reporter gene 
(Figure 1A) (McIsaac et al., 2013; Staller et al., 2018). In this 
assay, three known ADs stimulated GFP expression greater 
than 100-fold upon estrogen treatment (Figure S1A).  

We used a pooled screen to measure activation by 7460 
protein segments, each 53 amino acids (aa) in length, that 
tiled all 164 TFs with a step size of 12-13 aa (3.8-fold average 
coverage; Figure 1B). Outgrowth of transformed yeast for five 
days ensured that each cell contained a unique aTF 
expression plasmid due to mechanisms maintaining it at 
single-copy levels (Methods) (Scanlon et al., 2009). After 

induction with estrogen, cells with a defined level of aTF 
expression were selected by mCherry signal and sorted into 
eight bins based on GFP expression (Figure S1B). By next-
generation sequencing, the distribution of each protein tile 
across the bins was determined and the mean value was used 
to calculate activation—namely, the fold increase in GFP 
relative to background (Table S1, Methods). Activation was 
highly concordant between distinct DNA sequences encoding 
the same protein fragment (Figure S1C). GFP distributions of 
three known ADs in the pooled screen exactly reproduced 
measurements from individual pure populations (Figure 
S1D). Controlling by a defined aTF expression level was 
critical for precisely measuring activation (Figures S1E-F). 
Activation measurements of fragments shared between two 
independently cloned and assayed libraries were 
reproducible (Pearson r = 0.953, Figure S1G). A median of 265 
cells were assayed per tile and 99% of tiles were seen in at 
least 10 cells.  

Our assay exhibited high signal-to-noise: tiles in 
previously known and newly identified ADs activated nearly 
200-fold while 88% of fragments activated less than 2-fold 
(Figure 1C). Across the library, 451 tiles showed significant 
activation (P < 0.0001 by Z-test). When plotted by protein 
position, activating tiles clustered into discrete, well-defined 
ADs (Figure 1D). Using a positional activation score, we 
identified 150 ADs in 96 TFs (Figure 1E and S1H, Table S2, 
Methods). These ADs overlapped 75% of all previously-
reported ADs in TFs (Table S2). Furthermore, the 53-aa tile 
length was not limiting, since our screen successfully 
identified ADs in over 85% of TFs that activated in a previous 
one-hybrid screen testing full-length proteins (Table S2) (Titz 
et al., 2006).  

Three-quarters (112) of ADs identified here were 
previously unknown (Table S2). While 63 TFs contained just a 
single AD, 33 TFs had multiple, including up to seven distinct 
ADs in Adr1 (Figures 1D and 1F). C-terminal ADs were 
common—found in nearly half of all AD-containing TFs—and 
were stronger and shorter on average than other ADs (Figure 
S1I). Consistent with AD function in their native context, TFs 
that contained ADs upregulated a higher proportion of 
downstream genes than TFs without ADs (Figure S1J) 
(Hackett et al., 2020). These results show that our screen is 
both sensitive and comprehensive and has yielded the first 
complete annotation of ADs in any eukaryotic genome. 

 
Activation strength is primarily determined not by motifs 
but by acidic and hydrophobic content 

ADs were enriched in negative charge and hydrophobic 
content, and activation was strongest for fragments that 
were high in both (Figures 2A-B and S2A; Wimley-White 
hydrophobicity scale) (Wimley and White, 1996). Past 
experiments have clearly shown the importance of bulky 
hydrophobic residues but presented conflicting evidence for 
acidic residues in activation (Brzovic et al., 2011; Pacheco et 
al., 2018; Staller et al., 2018; Warfield et al., 2014). To 
determine the role of negative charge, we took the strongest- 
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Figure 1. A quantitative screen identifies 150 activation domains from all yeast transcription factors 
(A) Schematic of the activation assay. To measure in vivo activation, we expressed fragments of transcription factor (TF) proteins fused to a 
DNA-binding domain that binds uniquely in the promoter of a genome-integrated GFP reporter gene. This artificial TF (aTF) is tracked by its 
mCherry tag and localizes to the nucleus only after induction with estrogen. 
(B) Pooled screen for activation domains (ADs). All 164 yeast TFs were tiled by a DNA oligonucleotide library expressing 7460 protein 
segments, each 53 amino acids (aa) in length, with a step size of 12-13 aa (3.8-fold coverage). The library was cloned into the aTF expression 
plasmid and transformed into yeast cells. Using fluorescence-activated cell sorting, cells with a defined level of aTF expression were selected 
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activating fragment from each AD and measured its 
activation with all acidic residues mutated. Except for a single 
example that activated just as strongly at +7 net charge 
without its acidic residues (the Gln3 C-terminal AD), 
activation was abolished in all ADs, showing definitively that 
acidic residues are necessary in budding yeast ADs (Figure 
2C). We also noticed that Asp but not Glu was associated with 
activation of wild-type tiles and hypothesized that Asp 
promotes activation more strongly than Glu (Figure S2C). 
Indeed, ADs with all Glu residues mutated to Asp consistently 
activated as well as or better than ADs with all Asp residues 
mutated to Glu (Figure S2D).  

Having identified the important residue types, we looked 
for sequence motifs that could predict activation. However, 
AD sequences appeared to share no common motifs upon 
inspection. The 9aaTAD motif, originally proposed based on 
yeast ADs (Piskacek et al., 2007), predicted ADs poorly: only 
10% of 9aaTAD-containing tiles activated in our assay, which 
was not significantly more predictive than scrambled 
versions of the motif (Figure 2D). A de novo search for motifs 
using DREME also found none that were shared by more than 
two ADs (Bailey, 2011). Evidently, ADs are diverse in 
sequence and not predictable from simple motifs. 

The lack of motifs suggests that activation is determined 
not by positions of individual residues but by distributed or 
redundant features. We pursued this point by measuring 
activation of a panel of designed mutants of eight ADs. 
Indeed, 94% of scanning single-amino acid mutants affected 
activation by less than 2-fold, and all still activated more than 
10-fold (Figures 2E and S2E). To produce larger effects, we 
varied the acidic and hydrophobic content of the ADs by 
mutating successively larger subsets of acidic or aromatic 
residues (Figure 2F, Methods). Activation was gradually, and 
finally completely, eliminated as either characteristic was 
reduced. It is noteworthy that the Gcn4 AD, a focus of many 
past studies, uniquely tolerated mutation of up to six acidic 
residues. Most notably, activation by acidic and hydrophobic 
mutants were related to the number, rather than position, of 
mutated residues (Figures 2F and S2F). Thus, activation 
strength is primarily determined not by motifs but by acidic 
and hydrophobic content. 

 

A deep learning model, termed PADDLE, predicts the 
location and strength of acidic activation domains in yeast 
and human 

Since motifs predicted ADs poorly, we turned to more 
sophisticated approaches using machine learning. We first 
trained a simple neural network to predict activation based 
solely on tiles’ amino acid (aa) composition (Methods). When 
tested on TF tiles withheld from training, this neural network 
performed remarkably well, explaining 66% of observed 
variation (Figure S3A). However, this algorithm was limited by 
its lack of information about residue positions. To 
experimentally disentangle the contributions of aa 
positioning and aa composition, we measured activation of 
eight scrambled sequences from each of the eight ADs tested 
before. Despite their shared abundance of acidic and 
hydrophobic residues, these mutants spanned a wide range 
of activation strengths, and some mutants activated stronger 
than wild-type while others failed to activate entirely (Figure 
3A). Clearly, full sequence information beyond aa 
composition is needed to predict activation. 

We therefore trained a deep convolutional neural 
network (CNN) to predict activation based on protein 
sequence, predicted secondary structure, and predicted 
disorder (Methods). CNNs evaluate sequences by 
hierarchically integrating matches to a suite of learned 
patterns and have recently found great success in many 
genomic prediction tasks (Ching et al., 2018; Kelley et al., 
2016; Wang et al., 2016). Our Predictor of Activation Domains 
using Deep Learning in Eukaryotes, or “PADDLE”, explained 
81% of observed variation in TF tiles withheld from training 
(alternatively, area under the precision-recall curve of 0.805; 
Figures S3B-C, Table S3), markedly better than the aa 
composition-based predictor. De novo, PADDLE accurately 
predicted the activation strength of (1) new ADs within TFs 
omitted from training (Figures 3B-C, left); (2) scrambled AD 
sequences, despite their identical amino acid composition 
(Figure 3C, center); and (3) 232 mutants and 178 orthologs of 
the Pdr1 AD (Figure 3C, right). Altogether, the performance 
of PADDLE was validated across a wide range of both wild-
type and mutant sequences in yeast.  

by mCherry signal and sorted into eight bins based on GFP expression. By next-generation sequencing, the distribution of each protein tile 
across the bins was determined and the mean value was used to calculate activation—namely, the fold increase in GFP relative to background. 
See also Figures S1A-D and Table S1. 
(C) Histogram of activation measured for 7460 tiles spanning all yeast TFs. Dashed line shows cutoff for P-values less than 0.0001 (Z-test). 
Red bars above the histogram mark activation of 50 random protein sequences. Inset: same histogram, zoomed in. See also Figure S1G. 
(D) Activation data for tiles spanning three example proteins. Activating tiles cluster into well-defined ADs when plotted by their protein 
position. Tiles, 53 aa long, are shown as horizontal bars with a line traced through their centers for clarity. See also Figure S1H. 
(E) Heatmap showing the mean activation at each position of the 60 TFs with the strongest ADs. Proteins run left to right from N-terminus 
to C-terminus and are sorted by length. A scale bar shows 200 amino acids (aa). ADs annotated in our screen are boxed in green and listed in 
Table S2. The method for annotating ADs is depicted in Figure S1H. 
(F) Histogram of the number of ADs in each TF. Of 164 TFs, 68 had no ADs, 63 had a single AD, and 33 had multiple distinct ADs, including up 
to seven distinct ADs in Adr1 (panel D). See also Figure S1I. 
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Classic experiments showed that many acidic ADs 
retained activity even when transferred between yeast and 
animals (Fischer et al., 1988; Struhl, 1988), so we investigated 
whether PADDLE could identify ADs in human TFs that would 
activate in human cells. Using PADDLE, we predicted 236 
high-strength and 366 moderate-strength ADs, together 
spanning 462 (27%) human TFs (Table S3). These predicted 
ADs overlapped many known ADs of TFs from diverse 
families, including p53, NFkB, Myc, Klf4, Fos, PPARA, SREBF1, 
E2F proteins, and the glucocorticoid receptor (Figure S3D). 

PADDLE also predicted 41 high-strength and 45 moderate-
strength ADs from among 419 transcription-regulating viral 
proteins (Table S3) (Liu et al., 2020). We randomly selected 
25 high-strength predicted ADs from human TFs and 
measured their activation individually using a luciferase 
reporter in HEK293T cells. Remarkably, 23 domains (92%) 
activated luciferase expression (Figure 3D). Evidently, acidic 
activation mechanisms are conserved and the patterns 
learned by PADDLE are generalizable across eukaryotes. 
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Figure 2. Activation strength is primarily 
determined not by motifs but by acidic and 
hydrophobic content 
(A) Distribution of hydrophobic content (top) 
and net charge (bottom) for non-activating tiles 
(grey) and highly-activating tiles (green). 
Hydrophobicity is computed using the Wimley-
White scale (Figure S2A) and charge is computed 
by counting Asp, Glu, Arg, and Lys residues.  
(B) Tiles are binned by their hydrophobic 
content and net charge and the median 
activation of each bin is displayed in color. 
Activation is strongest for tiles high in both acidic 
and hydrophobic content. 
(C) From each AD, activation of the strongest-
activating fragment with all acidic residues 
mutated (Asp to Asn and Glu to Gln). Except for 
the Gln3 C-terminal AD, which activated just as 
strongly at +7 net charge without its acidic 
residues, activation was abolished in all ADs. See 
also Figures S2B-D. 
(D) Just 10% of tiles containing the 9aaTAD 
motif activated, which was only 1.7-fold better 
than guessing activating tiles at random and not 
significantly more predictive than scrambled 
versions of the motif. (n.s., not significant.) 
(E) Activation of all single amino-acid mutants 
(to Ala) across eight ADs. All mutants still 
activated more than 10-fold, and 94% of 
mutations affected activation by less than 2-
fold. Activation for all mutants of two ADs are 
plotted by position in Figure S2E. 
(F) We varied the acidic and hydrophobic 
content of eight ADs by mutating successively 
larger subsets of aromatic (left) or acidic (right) 
residues. (Top) Example mutant sequences for a 
segment of the Gcn4 AD, with activation of the 
wild-type (large dot) and mutants (small dots) 
plotted below as a function of hydrophobic 
content or net charge. Lines trace a moving 
average of activation. (Bottom) Average 
activation as a function of hydrophobic content 
or net charge, for all eight ADs tested. Activation 
of all individual mutants is shown in Figure S2F. 
The Pho4 AD contains only two aromatic 
residues so its aromatic mutants are not shown.  
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Figure 3. A deep learning model, termed PADDLE, predicts the location and strength of acidic activation domains in yeast and human  
(A) Activation of wild-type (orange) and eight scrambled sequences (green) for each of eight ADs. 
(B) PADDLE predictions (purple) and experimentally-measured activation (green) for Arg81 are plotted by protein position. Predictions were 
run on 53-aa tiles in 1-aa steps and smoothed with a 9-aa moving average.  
(C) PADDLE predictions versus experimentally-measured activation is plotted for three categories of sequences that were omitted from 
PADDLE’s training dataset: wild-type tiles of TF proteins (left), the scrambled sequences of eight ADs from panel A (middle), and 232 mutants 
and 178 orthologs of the Pdr1 AD (right). R2 is the coefficient of determination. See also Figures S3A-C and Table S3. 
(D) PADDLE accurately predicts human ADs. (Top) Example PADDLE predictions on 53-aa tiles spanning two human TFs. One predicted AD 
from each TF, marked by the colored shading, was tested experimentally. (Bottom) We randomly selected 25 high-strength predicted ADs 
from human TFs and measured their activation individually using a luciferase reporter in HEK293T cells. Relative to three random sequence 
controls, 23 domains (92%) activated luciferase expression. The VP16 AD was used as a positive control. Error bars show standard deviation 
of technical triplicates. See also Figure S3D and Table S3. (* P < 0.01; ** P < 0.0005; n.s., not significant.) 
(E) PADDLE predictions (purple) and experimentally-measured activation (green) of 13-aa tiles in 1-aa steps spanning three ADs. Both 
predictions and experiments identified at least one significantly activating 13-aa tile within each of 10 ADs (Figures S3E-F). 
(F) PADDLE was used to identify the shortest core region of each AD that can independently activate. A histogram of their lengths is plotted. 
The minimal region for activation can be localized to within 20-aa core in 85% of ADs. 
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PADDLE identifies the core regions and key residues of every 
activation domain 

To uncover the principles of acidic activation learned by 
PADDLE, we analyzed predictions on designed mutant 
sequences and developed hypotheses, which we then 
experimentally tested in a second library. We noticed from 
predictions on sequences less than 30 aa that yeast ADs 
contained short, independently activating regions, which we 
term core ADs (cADs) (Figure S3E). As an experimental test, 
we measured activation in vivo of 13-aa-long fragments tiling 
ten ADs in 1-aa steps (Figure 3E). Predictions proved highly 
accurate (R2 score = 0.842, Figure S3F), and both predictions 
and experiments identified at least one significantly 
activating 13-aa cAD within each AD (P < 0.001).  

Across all yeast TFs, PADDLE predicted that the minimal 
region for activation could be localized to within a 20-aa cAD 
in 85% of ADs (Figure 3F, Table S3). These cADs still shared no 
motifs (Figure S3G), but instead had an especially high 
density of acidic and hydrophobic residues, even more so 
than the full ADs (Figure 3G). To quantify the contribution of 
each residue to activation, we predicted the impact of 
mutating each position in each cAD to alanine (Figure S3H). 
Single-aa mutants in these short cADs had a large impact on 
activation, unlike in the longer 53-aa ADs (Figure 2E), and 
showed clear trends when grouped by residue identity 
(Figure 3H). Mutating the bulkiest hydrophobic residues led 
to the greatest decreases in activation, and the three most 
important were Trp, Phe, and Leu. Mutating acidic or basic 
residues had opposite but comparable effects on activation. 
Together, these analyses identify the regions and residues 
across all ADs that contribute most to activation. 

 
A high density of acidic and hydrophobic residues is 
sufficient for most core ADs to activate, but some require a 
defined sequence and alpha helical structure 

Having identified the core regions of every AD, we 
sought to understand the sequence properties that drive 
their activation. We focused on the 28 strongest 13-aa cADs 
(Table S3), and first quantified the importance of their aa 
composition by comparing each cAD with 33 random 
scrambles of its sequence. Remarkably, only nine cADs (32%) 
showed activation by the wild-type sequence greater than 3-
fold greater than the average activation by scrambled 
sequences (Figure 4A). In these nine cADs, maximal activation 
evidently requires a specific positioning of residues. On the 
other hand, 18 cADs (64%) showed activation by the wild-
type sequence within 2-fold of the scrambled sequence 
average, indicating that their activation is primarily 
determined by aa composition and not by a unique 
positioning of residues. The wild-type-to-scramble ratio was 

not correlated with wild-type activation strength (Figure 
S4A). Instead, cADs with the greatest hydrophobic content 
had the lowest wild-type-to-scramble ratios (Figure 4B, 
Pearson’s r = -0.51). Thus, the majority of cADs activate by a 
composition-driven mechanism that exploits an excess of 
bulky hydrophobic residues. 

Alpha-helical folding is thought to be important for 
activation, which is at odds with the prevalence of 
composition-driven cADs. We directly determined whether 
the 28 strongest 13-aa cADs require helical folding by 
measuring the impact of inserting a helix-breaking proline. 
Within the seven central positions of each 13-aa cAD, we 
individually mutated each non-hydrophobic residue to 
alanine or proline and asked whether proline inhibited 
activation relative to alanine (Figure 4C). Proline mutations 
inhibited activation more than 3-fold over alanine in nine ADs 
(32%), including up to an 11-fold drop in activation in the 
Tda9 cAD. However, proline mutations inhibited activation by 
less than 2-fold in 16 cADs (58%). These effects were 
consistent between different positions within the same cAD 
(Figure S4B). Interestingly, all three cADs that contained a 
basic residue (Pul4, Tda9, and Rsf2:586) were strongly 
inhibited by proline, suggesting that a helix is necessary to 
position their inhibitory positive charge away from the 
coactivator binding interface. Most notably, the magnitude 
of proline disruption was tightly correlated with the wild-
type-to-scramble ratio (Figure 4D, Pearson’s r = 0.842), 
showing that constraints on structure and sequence, or a lack 
thereof, were closely linked. Thus, composition-driven cADs 
do not need to form a helix and likely sample disordered 
conformations, while cADs that require their wild-type 
sequence also require helical folding, employing a structure-
driven mechanism.  

To understand these two contrasting mechanisms, we 
studied them in a simplified system of artificial cADs that 
used only the four most activation-promoting residues. We 
examined 9-aa sequences (denoted “9mers”) consisting 
entirely of only two types of amino acids each—Asp and 
either Leu, Phe, or Trp—so that all possible such sequences 
(3 x 29 = 1536) could be systematically assayed (Figure 4E). As 
expected, activation required a balance of hydrophobic and 
acidic residues (Figure S4C), so we focused our analysis on aa 
compositions with the strongest median activation: 9mers 
with five or six hydrophobic residues. Within these, nearly all 
Phe 9mers and Trp 9mers activated regardless of their 
sequence (Figure 4F), characteristic of a composition-driven 
mechanism and consistent with the highly hydrophobic 
nature of Phe and Trp residues. However, Leu 9mers spanned 
a wide range of activity with only a minority that were 
strongly     activating,     characteristic     of     structure-driven 

(G) The hydrophobic content and charge per residue of whole ADs (orange) and core ADs (green). 
(H) Amino acid contributions to the strongest-activating 20-aa core within every AD. (Top) The number of times each amino acid is present. 
(Bottom) For each 20-aa core AD, the fold-change in activation upon mutating each individual residue to Ala was predicted using PADDLE. 
Those effects, grouped by the amino acid mutated, are shown in this violin plot. Median values are depicted by green lines. Mutants for three 
example core ADs are shown in Figure S3H. 
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Figure 4. Sequence and structural determinants of activation domains 
(A) To quantify the importance of aa composition, we measured activation of 33 scrambled sequences for each of the 28 strongest 13-aa 
core ADs (cAD). (Top) Activation of each wild-type cAD divided by the mean activation of its scrambled mutants. Eighteen cADs (64%) showed 
activation by the wild-type sequence within 2-fold of the scrambled sequence average, indicating that their activation is primarily determined 
by aa composition and not by a unique positioning of residues. (Bottom) Activation of each wild-type cAD (orange bars) and scrambled 
mutants (green circles), with the mean activation of mutants shown by the green bars. See also Figure S4A. 
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activation requiring a specific ordering of residues. 
To see what allows only certain Leu 9mers to activate, 

we examined all possible short motifs containing two or three 
Leu residues. The only motif strongly associated with 
activation was LxxLL (Figures 4G and S4D; P < 10-8 by 
Kolmogorov-Smirnov test). This motif was strictly required 
for activation in these 9mers, present in two copies in the 
three strongest 9mers, found in two wild-type structure-
driven cADs (Put3 and Crz1), and previously described in ADs 
of many nuclear receptors and other TFs (Plevin et al., 2005). 
This motif also suggests an explanation for why helical folding 
was necessary for cADs with less hydrophobicity: by placing 
Leu residues along one face of an alpha helix, the motif 
efficiently forms a hydrophobic binding surface.  

The analogous FxxFF and WxxWW motifs were also 
significantly but more weakly associated with activation of 
Phe 9mers and Trp 9mers (Figure S4E). However, their 
strongest predictor of activation was the average position of 
acidic residues, with N-terminal skew highly favored (Figure 
4H). Most dramatically, DDDFFFFFF activated 20-fold while 
its reverse sequence FFFFFFDDD activated just 1.3-fold. 
One role of N-terminal negative charge could be to neutralize 
the macroscopic dipole that arises from alpha helix backbone 
hydrogen bonds, stabilizing helical conformations (Rocklin et 
al., 2017). Even though a helix is not necessary for 
composition-driven activation, this effect could reduce the 
entropic cost of binding to coactivators by promoting 
transient folding.  
 
 
 

Activation domains are strongly inhibited by nearby clusters 
of hydrophobic residues 

Despite the importance of hydrophobic residues for 
activation, PADDLE also predicted that some TFs contained 
cADs whose activation was inhibited by nearby clusters of 
hydrophobic residues. We confirmed this experimentally for 
Rds1, in which residues 239-263 alone activated 6.8-fold but 
extending the sequence by eight aa, five of them 
hydrophobic, abolished activation (Figure 4I). Inhibition by 
hydrophobic residues also explains the weak activation of 
some scrambled 53-aa ADs (Figure S4F).  

To systematically quantify inhibition, we measured the 
effect on activation when the Pdr1 cAD was placed next to a 
library of 2177 random 20-aa sequences chosen to span a 
wide range of net charge and hydrophobic content (Figure 
4J). As expected, negative charge with moderate 
hydrophobicity bolstered activation. Positive charge without 
hydrophobicity inhibited activation, but even variable regions 
with +8 charge (+4 net charge) still activated an average of 
4.4-fold. Therefore, the local clustering of negative charges 
near hydrophobic residues renders the Pdr1 cAD resistant to 
global changes in net charge, suggesting that interactions 
between opposite charges within the peptide do not fully 
prevent binding to coactivators. In contrast, hydrophobic 
residues at high density inhibited activation completely. This 
suggests that inhibitory hydrophobic clusters interact with 
hydrophobic residues in the cAD, completely preventing their 
interaction with coactivators. Consistent with two 
independent mechanisms of inhibition, basic and 
hydrophobic residues together reduced activation additively. 

(B) cADs with the greatest hydrophobic content had the lowest wild-type-to-scramble ratios. Pearson’s r = -0.51. 
(C) To directly determine whether the 28 strongest 13-aa cADs require helical folding, we individually mutated each non-hydrophobic residue 
to Ala or Pro and asked whether Pro inhibited activation relative to Ala. Activation of the Pip2 cAD (left) was not disrupted by Pro mutation 
and showed at most a 1.6-fold drop compared to Ala mutations. In contrast, activation of the Put3 cAD (right) was abolished by all Pro 
mutations, up to a 5.4-fold drop compared to Ala mutations. Effects of mutations for all 28 cADs are shown in Figure S4B. 
(D) Across cADs, the wild-type-to-scramble ratio (horizontal axis) was correlated with the maximal fold-drop in activation resulting from 
proline mutation (vertical axis). Pearson’s r = 0.84.  
(E) A simplified system of artificial cADs that uses only the four most activation-promoting residues. Namely, 9-aa sequences (“9mers”) 
consisting entirely of only two types of amino acids each: Asp and either Leu, Phe, or Trp. This way, all possible sequences (3 x 29 = 1536) 
could be systematically assayed. 
(F) Activation by all 9mers consisting of five or six Leu, Phe, or Trp residues, grouped by amino acid composition. Activation by all 9mers, 
grouped by amino acid composition, is shown in Figure S4C. 
(G) Presence of the LxxLL motif is significantly predictive of activation in 9mers with five Leu residues (P < 10-8 by Kolmogorov-Smirnov test). 
The three strongest-activating sequences contain two copies of the motif. This is the only motif strongly associated with activation of these 
Leu 9mers; effects for all motifs tested are shown in Figure S4D. Similar motifs were also significantly but more weakly associated with Phe 
9mers and Trp 9mers (Figure S4E).  
(H) Activation by 9mers with five or six Phe residues was correlated with the average position of their acidic residues (Pearson’s r = -0.61). 
Most dramatically, DDDFFFFFF activated 20-fold while its reverse sequence FFFFFFDDD activated just 1.3-fold. 
(I) Residues 239-263 alone in Rds1 activated 6.8-fold, but extending the sequence by eight aa, five of them hydrophobic (red), abolished 
activation. 
(J) (Top) To systematically quantify inhibition, we measured the effect on activation when the Pdr1 cAD was placed next to a library of 2177 
random 20-aa sequences chosen to span a wide range of net charge and hydrophobic content. (Bottom) Sequences are binned by net charge 
and hydrophobic content of the variable region and mean activation is plotted in color. Activation of the Pdr1 cAD alone is shown in white, 
with stronger and weaker activation shown in green and purple respectively. 
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In total, these experiments mapped the biochemical and 
structural properties that drive both activation and 
inhibition. 

 
The large majority of activation domains bind Mediator, and 
its recruitment is a key driver for activation 

The surprising ability of simple biochemical features to 
explain a large and diverse set of ADs suggests that these 
features may also drive interactions with coactivator 

complexes. To gain a mechanistic understanding of the AD-
coactivator contacts that underlie activation, we mapped the 
interactions of wild-type and mutant ADs with Mediator. We 
focused on Med15, the primary subunit of Mediator targeted 
by ADs in budding yeast, which contains four tandem 
activator-binding domains (ABDs) (Herbig et al., 2010; Thakur 
et al., 2008). We isolated the N-terminal portion of Med15 
consisting of its four ABDs (hereafter just called “Med15”), 
confirmed its in vitro interaction with Gcn4, and used it for 
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Figure 5. The large majority of activation 
domains bind Mediator, and its recruitment 
is a key driver for activation 
(A) To measure binding in high-throughput, 
we used mRNA display, expressing our library 
of TF tiles as a pool of protein fragments 
covalently tagged with their mRNA sequences 
(left), and using this pool in pull-down 
experiments (middle). Direct counts of bound 
and input protein molecules were obtained by 
amplifying and sequencing their mRNA/cDNA 
tags and using unique molecular identifiers 
(UMIs) to remove PCR duplicates. Finally, the 
fractional pull-down of each protein fragment 
was computed by its relative abundance in the 
bound sample versus input, normalized to 
total library concentrations measured by qPCR 
(right). See also Figure S5. 
(B) For all tiles spanning Pul4, in vivo 
activation (green), in vitro Med15 binding 
enrichment (blue), and in vitro TFIID 
subcomplex binding enrichment (purple) are 
plotted. Tiles, 53 aa long, are shown as 
horizontal bars with a line traced through their 
centers for clarity. The Pul4 AD binds both 
Med15 and TFIID. Binding enrichments of all 
tiles are in Table S4. 
(C) Number and percentage of ADs that 
bound Med15, TFIID subcomplex, or both in 
pull-down experiments. ADs and Med15-
binding domains overlapped substantially. All 
ADs that bound TFIID also bound Med15. See 
also Figure S5K and Table S4. 
(D) Violin plot of the Med15 binding 
enrichment of fragments, grouped by their in 
vivo activation. A white dot labels the median 
of each bin and a black bar marks the 25th to 
75th percentile interval. See also Figure S5F. 
(E) We measured Med15 binding of the set of 
AD mutants in which aromatic residues were 
systematically removed (Figure 2F). Med15 
binding and activation are plotted, with wild-
type sequences outlined in red, the number of 
mutated residues shown in color, and 
Pearson’s r displayed. 
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binding experiments (Figure S5A).  
To measure binding in high-throughput, we used mRNA 

display (Takahashi and Roberts, 2009), expressing our library 
of TF tiles as a pool of protein fragments covalently tagged 
with their mRNA sequences, and using this pool in Med15 
pull-down experiments (Figure 5A). Direct counts of Med15-
bound and input protein molecules were obtained by 
amplifying and sequencing their mRNA/cDNA tags and using 
unique molecular identifiers to remove PCR duplicates. 
Finally, the fractional pull-down of each protein fragment was 
computed by its relative abundance in the Med15-bound 
sample versus input, normalized to total library 
concentrations measured by qPCR (Methods). Pull-down 
measurements were reproducible between replicates 
(Pearson’s r > 0.93) and consistent between identical protein 
fragments encoded by distinct but synonymous mRNA 
sequences (Figures S5B-C). Fragments known to bind Med15 
enriched up to 17-fold above random sequence controls and 
1000-fold higher than in mock pull-downs with beads alone 
(Figure S5D, Table S4). 

Binding to Med15 was widespread among ADs and 
coincident with activation activity. In total, 324 tiles bound 
Med15 significantly more than negative controls (P < 0.001 
by Z-test, Figure S5E, Methods). When plotted by protein 
position, Med15-binding tiles clustered into 153 discrete 
domains, the vast majority of which were not previously 
known to bind Mediator (Figure 5B, Table S4). ADs and 
Med15-binding domains overlapped substantially: 73% of 
ADs bound Med15, and 71% of Med15-binding domains 
functioned as ADs (Figure 5C). Moreover, ADs that did not 
bind Med15 tended to activate weakly (Figure S5F), so it is 
possible that many bind Med15 at levels below the detection 
limit of our pull-down assay, which was less sensitive than our 
activation assay (compare Figures 1C and S5E). Just as with 
activation, high acidic and hydrophobic content were 
associated with Med15 binding (Figure S5G). The Gln3 AD 
that did not require acidic residues also did not bind Med15 
substantially (2.1-fold enrichment), suggesting that it 
activates through other mechanisms. 

Most notably, activation strength and Med15 binding of 
tiles were directly proportional (Figure 5D). To test this 
relationship further, we measured Med15 binding of the set 
of AD mutants in which aromatic residues were 
systematically removed (Figure 2F). In every case, Med15 
binding and activation were strongly correlated (Figure 5E), 
showing that the hydrophobic features that drive activation 
similarly underlie Med15 binding. Moreover, the ability for 
binding of a single protein in vitro to quantitatively explain 
activation in vivo suggests that Mediator recruitment is a key 
driver for gene activation and determined largely by AD 
binding its Med15 subunit. 

ADs can bind different coactivators, though the extent of 
such interaction is unknown. To explore the possibility, we 
also examined binding of TF tiles to TFIID, a key factor in the 
transcription of nearly all genes (Warfield et al., 2017). TFIID 
contains three known AD-binding subunits, Taf4, Taf5, and 

Taf12, which form a subcomplex with Taf6 and Taf9 (Layer et 
al., 2010; Wright et al., 2006). We isolated this TFIID 
subcomplex and confirmed its interaction with the VP16 AD 
(Figure S5H). Pull-downs of the TF tiling library with the TFIID 
subcomplex enriched fragments up to 6.7-fold above random 
sequence controls (Figures S5I-J, Table S4). In total, 27 ADs 
(18%) across 26 TFs bound the TFIID subcomplex (P < 0.001), 
greatly expanding its repertoire of known interactions 
(Figures 5B-C). However, all ADs that bound TFIID also bound 
Med15, and despite the identical pull-down conditions, ADs 
bound more weakly to TFIID than to Med15 (Figure S5K). 
While more TFIID interactions may be discoverable if assay 
sensitivity can be further optimized, these results suggest 
that TFIID has broadly lower affinity for ADs and provide no 
evidence for its specific targeting as a coactivator. Since TFIID 
binding by ADs is redundant and less frequent, its role in TF-
directed activation is at most secondary to that of Mediator. 

 
Med15 uses a shape-agnostic, fuzzy interface to bind 
diverse activation domain sequences 

 What structural features of Med15 enable its 
promiscuous yet functional interaction with diverse AD 
sequences? In the best studied example, the Gcn4 AD 
interacts with hydrophobic patches and basic residues on 
multiple Med15 activator-binding domains (ABDs) in a large 
number of binding poses to form a “fuzzy” complex (Brzovic 
et al., 2011; Tuttle et al., 2018). We addressed the question 
by using FlexPepDock, a peptide docking algorithm from the 
Rosetta suite, to systematically build structural models of 
ABD-AD interactions, made computationally tractable by our 
identification of short cADs (Leaver-Fay et al., 2011; Raveh et 
al., 2011). Our modeling focused on two ABDs with known 
structures: the KIX domain, which has homology to human 
Med15 and the p300/CBP coactivator family, and ABD1 
(Figure 6A) (Brzovic et al., 2011; Thakur et al., 2008). To 
sample diverse sequences, aa composition, and secondary 
structure, we modeled interactions of the 28 13-aa cADs 
described above (Figures 4A-D) with the KIX domain and 
ABD1. For each interaction, 50,000 candidate structural 
models were sampled and ranked by the Rosetta energy 
score, and the 10 best-scoring models from each interaction 
were used in subsequent analyses (Table S5). 

We validated our structural modeling by comparison to 
experimental data in two ways. First, KIX domain residues 
previously shown by NMR to be important for interacting 
with the Pdr1 AD were recapitulated by the best-scoring 
model of this interaction (Figure S6A) (Thakur et al., 2008). 
Second, the degree of alpha helix formation across the 28 
cADs was consistent with the effect of proline insertion on in 
vivo activation (Figure 6B). As expected, cADs that were 
inhibited by proline predominantly bound both domains as 
an alpha helix, and conversely cADs that bound both domains 
in disordered conformations were minimally affected by 
proline insertion. 

A unifying feature of the interactions was the prominent 
role   of   hydrophobic   contacts   at   the   protein   interface. 
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Figure 6. Med15 uses a shape-agnostic, fuzzy interface to bind diverse activation domain sequences 
(A) We used a Rosetta peptide docking algorithm (Raveh et al., 2011) to build structural models of the 28 13-aa core ADs (cADs) described 
above (Figures 4A-D) interacting with two activator-binding domains (ABDs) of Med15, the KIX domain and ABD1. Structures of these domains 
are shown, with the hydrophobic (yellow) and acidic (green) residues that form the AD-binding surfaces displayed (Thakur et al., 2008; Herbig 
et al., 2010). For each interaction, 50,000 candidate structural models were sampled and ranked by the Rosetta energy score, and the 10 
best-scoring models from each interaction were used in subsequent analyses (Table S5). See also Figure S6A. 
(B) The percentage of cAD residues that form an alpha helix in the 10 best-scoring models when bound to the KIX domain or ABD1. cADs 
that were more than 3-fold disrupted by mutations to proline (Figure 4C) are colored blue. 
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Hydrophobicity-driven interactions between proteins often 
employ high shape complementarity to maximize interface 
area and minimize solvent-exposed area. However, the flat 
surface of the KIX domain was ineffective in burying 
hydrophobic cAD residues, which on average had as much 
surface area exposed to solvent as area contacting the KIX 
domain (Figure 6C, top). For example, the best-scoring Pdr1 
AD model used Ile and Leu residues along one helical face to 
contact the KIX domain, but this left Trp and Tyr residues on 
the opposite face exposed to solvent (Figure S6B). The poor 
hydrophobic shape complementarity of the KIX domain was 
frequently mitigated by multiple salt bridges and cation-pi 
interactions (Figure 6C). ABD1, which formed fewer ionic 
interactions, engaged cADs through a larger surface formed 
by its contoured hydrophobic ridge (Figure 6C, bottom). 
Nevertheless, hydrophobic residues of most cADs were 
incompletely buried, with those residues showing greater 
than 20% of area exposed to solvent in over half of all 
structures. Thus, despite the central role of hydrophobic AD 
residues in activation and Med15 binding, hydrophobic shape 
complementarity is not an important feature of ABD-cAD 
interactions. 

Consistent with weak constraints on the shape of the 
binding interface, all cADs bound in diverse poses. For 
example, the 10 best-scoring models of the War1 cAD bound 
the KIX domain with its helix axis at different orientations and 
with different helical faces presented towards the interaction 
surface (Figure 6D). To quantify this diversity, we defined the 
unique binding poses of each ABD-cAD interaction by 
clustering similar structures based on cAD backbone root 
mean square distance (2 Å distance cutoff), and then counted 
the number of poses adopted by the 10 best-scoring models. 
The 10 best-scoring models of nearly every cAD, when 
interacting with either domain, adopted 6 or more distinct 
poses (Figure 6E). To ensure that this did not result from 
insufficient sampling, we generated ten-fold more candidate 
models (500,000 total) for six cADs binding the KIX domain. 
For all six cADs, the 10 best-scoring models still adopted 7 or 
more distinct poses, despite spanning a narrower range of 
Rosetta scores (Figures S6C-D). Disordered cADs, lacking 
helical content, adopted especially many distinct poses; also, 
poses were frequently sampled only once, suggesting that 
disordered cADs inhabit an extremely large conformational 

space that may reduce the entropic cost of binding (Figures 
S6E-F). Altogether, these structures point to a shape-agnostic 
nature of Med15 ABD interaction surfaces and support the 
idea of a multi-pose, fuzzy mode of interaction.  

To explore the consequence of fuzzy binding for amino 
acid sequence constraints, we took Leu, Phe, and Asp 
residues from models of all cADs and plotted their binding 
positions on the KIX and ABD1 interfaces (Figure 6F). As 
expected, the hydrophobic Leu and Phe residues occupied 
regions distinct from the negatively charged Asp residues. 
However, the Leu and Phe distributions were similar to each 
other: there was no binding pocket that selectively preferred 
one residue over the other, despite large differences in their 
size and shape. The diversity of AD sequences may thus be 
understood in terms of the fuzzy nature of the AD-ABD 
interaction, which only loosely constrains the characteristics 
of hydrophobic AD residues. 

 
The high valence of TF-Mediator interactions enables 
tunable, long-lived, yet dynamic binding 

Pull-down experiments with individual ABDs showed no 
appreciable binding to any of nine ADs (Figure S7A), 
consistent with the previous suggestion that multiple ABDs 
are required for strong binding to Med15 (Brzovic et al., 2011; 
Tuttle et al., 2018). Multiple interaction sites were also 
common within ADs: PADDLE identified 42 ADs (28%) that 
contained two or more non-overlapping cADs (Figure 7A, 
Table S3, Methods). We took 47 pairs of adjacent cADs and 
measured activation by the two cADs individually or in 
tandem. For 40 of the pairs, the tandem cADs activated more 
strongly than expected from the combined activation of the 
individual cADs (4.0-fold median increase, Figure 7B). Thus, 
an increased valence of interaction sites in both Med15 and 
ADs drives stronger binding and activation. 

At larger scales, the number of interaction sites is further 
multiplied because some TFs contain multiple ADs, many TFs 
bind DNA as dimers, and many genes have several TF binding 
sites (Hahn and Young, 2011; Spitz and Furlong, 2012). To 
understand the advantages conferred by the high valence of 
TF-Mediator interactions, we studied the kinetics in vitro of 
the initial step of activation, TF-driven recruitment of 
Mediator to DNA. We performed these experiments with 
Gcn4,  which  has  an  extended  AD  consisting  of  three  cADs, 

(C) Histograms summarizing the structural features of the 10 best-scoring models of all cADs bound to the KIX domain (top) and ABD1 
(bottom). (Left) Fraction of the total hydrophobic surface of cAD residues that is solvent exposed (blue) or at the binding interface (orange). 
See also Figure S6B. (Right) Number of salt bridges or cation-pi interactions formed between cADs and the KIX domain or ABD1. 
(D) The 10 best-scoring models of the War1 cAD (blue) bound the KIX domain (grey surface) with its helix axis at different orientations and 
with different helical faces presented towards the interaction surface, in seven distinct poses in total. For orientation, the cAD N-terminus is 
shown as a sphere and one helical face is colored red. See also Figure S6C. 
(E) Distinct binding poses were defined by clustering similar structures based on cAD backbone root mean square distance, and the number 
of poses seen in the 10 best-scoring models was counted for cAD interactions with the KIX domain (top) and ABD1 (bottom). See also Figures 
S6C-E. 
(F) Sidechain locations of all Leu (red), Phe (yellow), and Asp (blue) residues of all cADs interacting with the KIX and ABD1 surfaces (grey) are 
marked by dots. Leu and Phe distributions were similar to each other: there was no binding pocket that selectively preferred one residue 
over the other, despite large differences in their size and shape. 
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and which dimerizes through its DBD. We isolated budding 
yeast Mediator complex, coupled DNA containing a Gcn4 
motif to a NeutrAvidin-coated surface, added Gcn4, and 
measured real-time binding of Mediator by surface plasmon 
resonance (Figure 7C). Mediator bound to the Gcn4-DNA 

complex with an apparent dissociation constant of KD = 14 nM 
± 2 nM and an interaction half-life of 2.7 ± 0.2 minutes (Figure 
S7B). We repeated the experiment with DNA containing 2, 4, 
or 6 copies of the Gcn4 motif. Mediator bound the resulting 
Gcn4-DNA complexes with identical on-rates. Mediator was 
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Figure 7. Functional consequences of high-
valence coactivator interactions 
(A) PADDLE identified 42 ADs (28%) that 
contained two or more non-overlapping cADs. 
(B) We took 47 pairs of adjacent cADs and 
measured their activation enhancement 
factors—the activation of both cADs in tandem 
divided by the product of activation by each 
cAD individually. For 40 pairs, activation was 
enhanced when cADs were in tandem, with a 
median enhancement factor of 4.0-fold. 
(C) Kinetics of Mediator complex recruitment 
to DNA by Gcn4. (Top) We coupled DNA 
containing a Gcn4 motif to a NeutrAvidin-
coated surface, added Gcn4, and measured 
real-time binding of Mediator by surface 
plasmon resonance. The Mediator binding 
step also included 7.5 nM Gcn4 to maintain 
DNA-bound Gcn4. (Bottom) Real-time binding 
of 2.5 nM Mediator to Gcn4-DNA complexes (0 
to 480 seconds) and subsequent dissociation 
(480 seconds onwards). DNA templates 
contained 0, 1, 2, 4, or 6 copies of the Gcn4 
motif. AU, arbitrary units. 
(D) The interaction half-life of Mediator with 
Gcn4-DNA complexes was proportional to the 
number of Gcn4 motifs and independent of 
the concentration of Mediator used in the 
binding step. See also Figure S7B-C. 
(E) Gcn4 competition assay. We purified a 
fusion of the Gcn4 AD to nuclease deficient 
EcoRI(E111Q), which resides on DNA for 
several hours, bound it to DNA containing a 
single EcoRI site, and measured Mediator 
recruitment in the presence or absence of 
excess Gcn4 competitor. Mediator was at 5nM 
in all six conditions. AU, arbitrary units. See 
also Figure S7D. 
(F) PADDLE predictions on 53-aa tiles 
spanning yeast Med2 identified two ADs, 
marked with green bars, which were tested 
experimentally. 
An activation screen of nuclear proteins 
identified ADs in all major coactivator and 
chromatin modifying complexes. Protein 
complex, protein name, and start position of 
the 53-aa AD is labeled, and experimentally-
measured activation (green) and fraction of 
residues predicted to be disordered (purple; in 
D2P2) is shown. AD that are predominantly 
disordered or unresolved in PDB structures are 
displayed in purple text. See also Figure S7E 
and Table S1. 
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also recruited more efficiently, with more Mediator bound 
per mole of Gcn4 than on templates with only one motif 
(Figure S7C). The interaction half-life, however, increased 
with additional copies of the Gcn4 motif—up to 16 minutes 
when 6 motifs were present (Figures 7C-D). If all copies 
bound Mediator independently, then the half-life should be 
the same, regardless of the number of copies. The presence 
of additional, neighboring ADs retards dissociation by 
enabling recapture of Mediator released from one AD 
through binding to another. A slower dissociation rate 
corresponds to an increase in apparent affinity constant. 

Conversely, we found that the multiplicity of ABDs in 
Mediator facilitated binding of Gcn4 ADs. When the surface 
plasmon resonance experiment was repeated with large 
excess Gcn4 in solution, there was almost no change in the 
measured on-rate. Even a 160-fold excess of Gcn4 had only 
minimal effect on the rate of Mediator binding and final level 
achieved (Figure S7D). To maintain stable TF-DNA complexes 
without TFs in solution, we repeated these experiments using 
a fusion of the Gcn4 AD to nuclease deficient EcoRI(E111Q), 
which resides on DNA for many hours and also forms 
homodimers (Wright et al., 1989). Still, Mediator with no 
Gcn4 competitor or with 250-fold excess of Gcn4 competitor 
bound similarly (Figure 7E). Excess competitor Gcn4-DNA 
complexes also failed to slow Mediator binding to the 
surface. Evidently, binding of Gcn4 to Mediator does not 
appreciably block binding of other Gcn4 molecules. This 
behavior may be explained by the occurrence of multiple 
Gcn4-binding sites on Mediator and weak interaction of a 
cAD with any one site. Rapid association-dissociation 
equilibrium of a cAD allows a second Gcn4 molecule to 
interact with Gcn4-bound Mediator, increasing the frequency 
of exchange of one Gcn4 molecule by another. Such 
facilitated exchange provides a rationale for both the fuzzy 
nature of the AD-ABD interaction and the multiplicity of 
ABDs.  

 
Activation domains are present in all major coactivator 
complexes 

PADDLE predictions and previous experiments (Liu and 
Myers, 2015) identified two strong ADs in the Med2 subunit 
of Mediator, which is adjacent to Med15 in the Mediator 
complex, suggesting a broader role for ADs beyond TF 
proteins (Figure 7F). We used PADDLE to search for ADs 
across all nuclear-localized non-TF proteins in yeast and 
selected 1485 fragments that showed potential for activation 
(Methods). Upon pooled in vivo testing, we found 290 
fragments across 229 proteins that activated significantly (P 
< 0.001 by Z-test, Table S1). To see how often PADDLE fails to 
identify acidic ADs, we also included 291 control fragments 
that had extremely high acidic and hydrophobic content but 
were predicted not to activate. No control fragments 
activated (Figure S7E), showing that PADDLE likely identified 
all acidic ADs that exist and again demonstrating that AD 
function cannot be predicted from amino acid composition 
alone. 

ADs were remarkably widespread and were found in 
proteins associated with diverse functions including 
transcriptional regulation, RNA splicing, DNA repair, 
ribosome biogenesis, and protein degradation. We focused 
on the ADs in transcription-associated proteins. Fourteen 
ADs were found in proteins that bind DNA and regulate 
pathway-specific genes; these were not included in the 
original tiling library because they bind DNA only through a 
TF partner. The two predicted Med2 ADs were also confirmed 
to activate, 36-fold and 25-fold in our assay. 

Notably, ADs were identified in all major coactivator and 
chromatin modifying complexes, including Mediator, TFIID, 
cohesin, condensin, SAGA, RSC, SWI/SNF, ISWI, NuA4, and 
FACT (Figure 7G). These complexes contained 2.9-fold more 
activating fragments than expected by chance (P < 10-12 
compared to randomly shuffled controls), suggesting a 
functional role. Domains that activate on their own could be 
inactive in their natural context if buried within a protein or 
protein complex. To investigate this possibility, we cross-
referenced coactivator ADs with all available structures in the 
Protein Data Bank (PDB) and with the Database of Disordered 
Protein Predictions (D2P2) (Berman, 2000; Oates et al., 
2012). In fact, 23 ADs were predicted in D2P2 to be highly 
disordered (more than 30%) or were predominantly 
disordered or unresolved in PDB structures (Figure 7G), and 
so may be exposed and active in vivo. For example, cohesin, 
which binds Mediator and forms enhancer-promoter 
contacts through loop extrusion (Davidson et al., 2019; Kagey 
et al., 2010; Kim et al., 2019; Sanborn et al., 2015), contained 
strong and likely-disordered ADs in its subunits Scc1 (RAD21 
homolog), Scc3 (STAG1/2 homolog), and Smc3, as well as 
multiple ADs on the meiotic-specific subunit Rec8. These 
cohesin ADs, as well as ADs within other coactivators, may 
play a role in gene regulation by driving interactions with 
Mediator. 

 
DISCUSSION 
  

Although activation domains (ADs) have been studied for 
over three decades, their locations in transcription factors 
(TFs) and mechanisms of activation have remained 
enigmatic. Combining quantitative, high-throughput 
experiments and computational modeling, we determined 
the biophysical principles underlying activation by acidic ADs. 
We trained a neural network to predict ADs in yeast and 
humans, which led to the discovery of new ADs and activation 
mechanisms. While an amphipathic helix can enhance 
activation, most ADs simply activate through an abundance 
of clustered acidic and bulky hydrophobic residues. ADs bind 
the hydrophobic and basic surface of Med15 activator-
binding domains (ABDs) through a fuzzy interface. The low 
shape complementarity of this interaction only weakly 
constrains AD sequences, explaining their high diversity. We 
show that the dynamic nature of transcriptional signaling 
arises from the fuzzy and multivalent nature of TF-Mediator 
interactions. Finally, an expanded role for ADs is suggested by 
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our finding that ADs are present in all major coactivator 
complexes.  

 
Quantitative, high-throughput measurements of activation 
enabled prediction of new ADs and revealed the principles 
underlying acidic activation 

We obtained high-throughput measurements of 
activation strength that were both quantitative and precise. 
This enabled us to detect—and predict with PADDLE—how 
activation strength depends on amino acid sequence, amino 
acid composition, and valence. Quantitation was achieved by 
inducing artificial TF (aTF) binding for a brief defined period 
so that GFP levels were representative of transcriptional 
activation (McIsaac et al., 2013), and by partitioning the 
range of GFP signal into eight levels for sorting. Others have 
measured activation only as an on-off binary system or 
screened for non-quantitative measures of activation, such 
as cell survival or pull-down of a cell surface marker (Arnold 
et al., 2018; Ravarani et al., 2018; Tycko et al., 2020). We 
achieved high precision by restricting measurements to cells 
with a defined level of aTF expression. Controlling for this 
frequently-overlooked confounding variable was critical 
because activation was strongly dependent on aTF 
abundance, especially at low levels of expression (Figure 
S1E). Another approach is to account for TF expression by 
sorting based on the GFP reporter signal divided by aTF 
expression (Staller et al., 2018); this introduces substantial 
variability, because activation has a non-linear relationship 
with aTF expression (Figure S1E), and because this ratio can 
be systematically biased by features that affect aTF 
expression (Figure S1F). This may be the reason why it has 
been concluded that acidic residues are not necessary for 
Gcn4 activation, whereas using a similar reporter system, we 
found definitive evidence to the contrary. 

By this approach, we found that all ADs in S. cerevisiae 
employ a shared acidic and hydrophobic basis and trained a 
neural network termed PADDLE to predict sequences that 
activate on this basis. PADDLE predicted ADs in human TFs 
with 92% accuracy, indicative of broad conservation of the 
acidic activation mechanism. PADDLE identified hundreds of 
new ADs in human TFs and virus proteins. PADDLE could 
further be used to interpret the functional impact of cancer-
associated and naturally-occurring mutations in human ADs.  

During our development of PADDLE, a predictor of yeast 
activation named “ADpred” was published (Erijman et al., 
2020). ADpred, a shallow neural network trained on random 
protein sequences, achieved a prediction accuracy of 93% on 
random sequences. However, its accuracy on wild-type 
sequences was much lower: only 33% of ADs predicted by 
ADpred activated in our experiments, and 29% of the ADs we 
identified were not predicted by ADpred, only 3.1-fold and 
2.3-fold better than random predictions, respectively 
(alternatively, tile-wise AUPRC of 0.294; Figures S3I-J, 
Methods). This discrepancy in accuracy may be because the 
random sequences on which ADpred was trained do not 
sufficiently represent the vastly larger space of actual protein 

sequences; for example, random sequences rarely form 
significant secondary structure. This failure to generalize 
highlights the importance of matching neural network 
training data to the prediction task and underscores the 
advantage of experiments on wild-type and related mutant 
sequences. 

PADDLE predictions were also crucial for generating, 
refining, and testing hypotheses for activation mechanisms. 
For example, we unexpectedly discovered that hydrophobic 
residues could inhibit activation by noticing that subdomains 
of certain non-activating regions were predicted to activate 
on their own. More generally, predictions on arbitrary 
subsequences of TFs identified the core domains responsible 
for activation at single-amino acid resolution, focusing 
subsequent experiments on these domains. By combining a 
high-throughput assay to measure and a machine learning 
algorithm to predict activity of protein sequences, we have 
demonstrated a design-build-test-learn cycle that could be 
applied to accelerate discovery of protein function in other 
areas of research. 

This approach yielded the most detailed view to date of 
the principles governing acidic AD sequence, which we 
summarize as follows. Activation arises from an abundance 
of acidic and bulky hydrophobic residues, especially Asp, Trp, 
Phe, and Leu. The most potent activators cluster these 
residues densely, forming short core ADs (cADs). In most ADs, 
and especially with high hydrophobicity and abundant Phe 
and Trp residues, this clustering is sufficient to activate in a 
composition-driven manner, regardless of sequence or 
secondary structure. ADs with lower hydrophobic content, 
particularly those with many Leu residues, instead must 
position their hydrophobic residues along one face of an 
alpha helix to activate. Overall, the loose constraints on 
sequence explain the remarkable diversity and lack of 
evolutionary conservation of ADs.  

The unusual plasticity in AD sequence has several 
advantages. It facilitates spontaneous evolution of new ADs, 
since an appreciable proportion of even random sequences 
can activate. This flexibility would allow organisms to develop 
new transcriptional circuits responsive to their unique needs. 
Furthermore, in contrast to classical interactions in which 
structure and function are dependent on a few key residues, 
activation strength can be adjusted gradually by mutation. 
Indeed, the observation that nearly all core ADs could 
increase their strength with simple mutations demonstrates 
that proper regulation requires precisely adjusted rather 
than maximized activation. Similarly, AD sequences can 
preserve their activity while evolving other features, such as 
in the Gal4 C-terminal AD, whose sequence is specifically 
bound and inhibited by Gal80 in the absence of galactose 
(Johnston et al., 1987; Ma and Ptashne, 1987). 

 
ADs bind Mediator using a shape-agnostic fuzzy interaction, 
which explains the heterogeneity of AD sequences and 
enables facilitated exchange of bound molecules 
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With the use of mRNA display, we found that 73% of ADs 
bound the Med15 subunit of Mediator and that binding 
strength was strongly predictive of activation for thousands 
of wild-type and mutant protein sequences. In contrast, a 
five-protein TFIID subcomplex bound only 18% of ADs, all of 
which also bound Mediator. We conclude that Mediator 
recruitment by TFs is a key driver for gene activation, and 
Mediator recruitment is largely determined by affinity of ADs 
for the Med15 subunit. These findings are in keeping with 
reports that Mediator recruitment occurs independently of 
other coactivators and can stimulate the recruitment of other 
coactivators (Ansari and Morse, 2013; Ansari et al., 2014; 
Govind et al., 2005).  

How is Med15, through its four activator-binding 
domains (ABDs), able to interact with such a large diversity of 
AD sequences? Despite the importance of hydrophobic 
interactions, our structural modeling showed that neither the 
Med15 KIX domain nor ABD1 provided enough shape 
complementarity to bury the hydrophobic residues of cADs. 
Consistent with this, most cADs did not need to form an alpha 
helix to activate. The lack of shape constraint has two 
important consequences. First, all modeled cADs bound each 
ABD in many distinct, equally-favored poses. We therefore 
suggest that fuzzy binding to Med15, previously 
demonstrated for the Gcn4 AD, is employed by all ADs. 
Second, neither ABD showed favored binding positions of Leu 
versus Phe residues of the cAD, suggesting that the shapes of 
those residues were unimportant. Thus, the loose constraints 
on binding shape explain the loose constraints on AD 
sequence. Instead, each ABD can be approximated as a 
hydrophobic surface, which engages hydrophobic AD 
residues through simple hydrophobic forces, flanked by basic 
residues, which form salt bridges and cation-pi interactions 
with acidic and aromatic AD residues. Clusters of 
hydrophobic residues adjacent to ADs inhibit activation, 
presumably because they compete for interaction with 
hydrophobic AD residues. 

Many experiments have shown that transcriptional 
initiation involves a cycle in which (1) TFs recruit Mediator to 
enhancers or upstream activating sites, (2) Mediator contacts 
the promoter and orchestrates a series of events starting 
with chromatin rearrangement, followed by pre-initiation 
complex formation and finally RNA polymerase II 
recruitment, and (3) Mediator facilitates phosphorylation of 
the polymerase C-terminal domain, which releases 
polymerase into transcriptional elongation and triggers 
dissociation of Mediator (Jeronimo and Robert, 2014; Knoll et 
al., 2018; Robinson et al., 2016; Whyte et al., 2013; Wong et 
al., 2014). Mediator release is apparently necessary because 
stably recruiting Mediator by fusing individual subunits to a 
DNA-binding domain failed to activate in nearly all subunits 
tested (Wang et al., 2010). The cycling of Mediator complexes 
increases the responsiveness of transcriptional regulation in 
at least two ways. First, it requires certain steps to be 
repeated in order to continue initiating transcription, 
preventing the system from locking into an activated state. 

Second, it frees Mediator complexes to participate in 
regulation of other genes, which all depend upon and 
compete for a relatively limited supply of Mediator (Flanagan 
et al., 1991; Gill and Ptashne, 1988). Thus, TFs must recruit 
Mediator in a manner that is specific and high-affinity but still 
dynamic. 

Our kinetic experiments showed that Mediator binds 
Gcn4-DNA complexes with high affinity but that excess Gcn4 
does not impede this interaction, showing that interacting 
Mediator and Gcn4 molecules can exchange rapidly. If a 
bimolecular interaction occurs through a single site, a 
competing molecule cannot bind until the first molecule 
dissociates which, in a case of high affinity interaction, is a 
slow process. Our observations are indicative of facilitated 
exchange, arising from the multiple sites and fuzzy nature of 
the Gcn4-Mediator interaction. Fuzzy interactions allow for 
rapid association and dissociation, because a high proportion 
of random encounters lead to weak but productive binding 
(Ferreira et al., 2005; Sugase et al., 2007; Tompa and 
Fuxreiter, 2008). One among multiple binding sites will 
frequently be available for a second molecule, which can 
invade and facilitate release of the first. Similarly, accelerated 
dissociation or exchange of the E. coli sequence-flexible DNA-
binding protein Fis in the presence of competitor proteins 
was proposed to occur by transitioning through a 
destabilizing Fis-DNA-Fis ternary complex (Graham et al., 
2011; Kamar et al., 2017). These advantageous kinetics 
provide a rationale for the prevalence of multivalent fuzzy 
interactions among transcription proteins. 

 
Coactivator complexes contain ADs that may drive cross-
interaction 

ADs have primarily been characterized in TFs where they 
serve to recruit coactivators such as Mediator, TFIID, SAGA, 
SWI/SNF, and NuA4 (Hahn and Young, 2011; Mitchell and 
Tjian, 1989). Our finding that functional ADs are also present 
in all coactivator complexes suggests that ADs have broader 
roles. First, coactivator ADs could interact with ABDs within 
the same complex, limiting their weak or non-specific binding 
to TFs. These auto-inhibited coactivators could still bind to 
ADs clustered on DNA through facilitated exchange. For 
example, we found that two cADs activated more efficiently 
and two DNA-bound Gcn4 dimers recruited Mediator more 
efficiently in tandem than individually. Second, coactivator 
ADs could amplify activation by mediating interactions 
between coactivators (Ansari and Morse, 2013; Liu and 
Myers, 2015). For example, upon Mediator binding to TFs, 
the two ADs on Med2 would be liberated from auto-
inhibition and could recruit other coactivators. Alternatively, 
Mediator and other coactivators could cluster in the 
nucleoplasm through AD-ABD cross interactions and bind 
together to promoters. Either mode of interaction would 
explain why recruitment of the Med2/Med3/Med15 
subcomplex suffices to recruit SWI/SNF to the CHA1 
promoter and suffices for activation of the ARG1 gene, while 
deletion of both Med2 ADs impairs transcription of galactose-
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inducible genes (Ansari et al., 2014; Liu and Myers, 2015; 
Zhang et al., 2004).  

Phase separation of Mediator and TFs has recently been 
demonstrated in vitro and is proposed to underlie enhancer-
promoter clustering and transcriptional activation in vivo 
(Boija et al., 2018; Chong et al., 2018; Sabari et al., 2018; 
Shrinivas et al., 2019). Phase separation may occur when a 
protein makes dynamic self-interactions through two or 
more binding domains, (Banani et al., 2016). Interactions 
between the four Med15 ABDs and the two Med2 ADs make 
possible phase separation of the Mediator tail subcomplex; 
other coactivators, with both ADs and ABDs, might phase 
separate as well. The functional role of such phase 
separation, if it occurs, is unclear. A parsimonious 
interpretation suggests that phase separation of coactivators 
and TFs is simply a macroscopic consequence of the high 
valence and dynamism of coactivator-TF interactions, 
features which may serve an altogether different purpose. 

 
Solving the enigma of AD structure and function 

ADs have long been enigmatic, due to the apparent 
mismatch of their structure and function: AD sequences are 
abundant among random polypeptides, and yet ADs bind 
their targets with high specificity; AD peptides are apparently 
disordered, and yet they bind with high affinity. We now 
understand that these structural features of ADs are ideally 
suited to their functions—they render AD-target interaction 
dynamic, through rapid yet weak binding to single sites and 
strong binding yet rapid displacement from multiple sites. 
Dynamic AD-target interaction may serve various purposes, 
such as a rapid response to changing conditions, and the 
recruitment of multiple AD-bearing proteins to a single 
target. For example, Mediator bound to RNA polymerase II at 
a promoter might interact transiently with TFIID, SAGA, 
SWI/SNF complex and other proteins during transcription. 
This mechanism may be employed with other unstructured 
sequences and high valence targets in other cellular 
processes. 
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