
 1 

Machine Learning-based Biomarkers Identification 1 

and Validation from Toxicogenomics - Bridging to 2 

Regulatory Relevant Phenotypic Endpoints 3 

Sheikh Mokhlesur Rahman1,2, Jiaqi Lan1,3, David Kaeli4, Jennifer Dy4, Akram Alshawabkeh1  and 4 

April Z. Gu 1,5* 5 

1 Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington 6 

Ave, Boston, MA 02115, USA 7 

2 Department of Civil Engineering, Bangladesh University of Engineering and Technology, 8 

Dhaka 1000, Bangladesh 9 

3 Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical 10 

College, Beijing, 100050, China 11 

4 Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington 12 

Ave, Boston, MA 02115, USA 13 

5 School of Civil and Environmental Engineering, Cornell University, 263 Hollister Hall, Ithaca, 14 

NY 14853 15 

* Corresponding Author: aprilgu@cornell.edu, Tel: 607 255 8778; Fax: 607 255 9004 16 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423486doi: bioRxiv preprint 

mailto:aprilgu@cornell.edu
https://doi.org/10.1101/2020.12.18.423486
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

  17 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423486
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

ABSTRACT 18 

High-throughput in vitro assays and AOP-based approach is promising for the assessment of 19 

health and ecotoxicological risks from exposure to pollutants and their mixtures. However, one of 20 

the major challenges in realization and implementations of the Tox21 vision is the urgent need to 21 

establish quantitative link between in-vitro assay molecular endpoint and in-vivo phenotypic 22 

toxicity endpoint. Here, we demonstrated that, using time series toxicomics in-vitro assay along 23 

with machine learning-based feature selection (MRMR) and classification method (SVM), an 24 

“optimal” number of biomarkers with minimum redundancy can be identified for prediction of 25 

phenotypic endpoints with good accuracy. We included two case studies for in-vivo 26 

carcinogenicity and Ames genotoxicity prediction with 20 selected chemicals including model 27 

genotoxic chemicals and negative controls, respectively, using an in-vitro toxicogenomic assay 28 

that captures real-time proteomic response data of 38 GFP-fused proteins of S. cerevisiae strains 29 

covering biomarkers indicative of all known DNA damage and repair pathways in yeast. The 30 

results suggested that, employing the adverse outcome pathway (AOP) concept, molecular 31 

endpoints based on a relatively small number of properly selected biomarker-ensemble involved 32 

in the conserved DNA-damage and repair pathways among eukaryotes, were able to predict both 33 

in-vivo carcinogenicity in rats and Ames genotoxicity endpoints. The specific biomarkers 34 

identified are different for the two different phenotypic genotoxicity assays. The top-ranked five 35 

biomarkers for the in-vivo carcinogenicity prediction mainly focused on double strand break repair 36 

and DNA recombination, whereas the selected top-ranked biomarkers for Ames genotoxicity 37 

prediction are associated with base- and nucleotide-excision repair. Current toxicomics approach 38 

still mostly rely on large number of redundant markers without pre-selection or ranking, therefore, 39 

selection of relevant biomarkers with minimal redundancy would reduce the number of markers 40 
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to be monitored and reduce the cost, time, and complexity of the toxicity screening and risk 41 

monitoring. The method developed in this study will help to fill in the knowledge gap in 42 

phenotypic anchoring and predictive toxicology, and contribute to the progress in the 43 

implementation of tox 21 vision for environmental and health applications.  44 

 45 

 46 

 47 
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INTRODUCTION 50 

Genotoxicity is of great concern because of its link to mutagenicity, carcinogenicity as well as 51 

cancer, and there is urgent demand for genotoxicity screening and risk assessment for various 52 

environmental and health applications.1-4 In the absence of, or combined with, in-vivo 53 

carcinogenicity data, in-vitro or cell-based genotoxicity assays provide supporting data for cancer 54 

risk assessment.5 Recently, toxicogenomics has emerged to be a promising technology that reveals 55 

molecular-level activities, at the gene, protein, or metabolite level of organisms, in response to 56 

environmental contaminants and may represent the underlying cellular network mechanisms of 57 

toxicity responses.2,6 This also responds to the Tox21 vision that promotes a systematic transit 58 

from current in-vivo whole animal-based testing, to more in-vitro mechanistic pathway-based 59 

assays using high-throughput screening and tiered testing.7-8 However, one of the major challenges 60 

in realization and implementations of the Tox21 vision is the urgent need to establish quantitative 61 

link between in-vitro toxicogenomic assay molecular endpoint and in-vivo phenotypic regulatory 62 

relevant endpoints.  63 

Establishing quantitative causal relationships between in-vitro assay endpoints to 64 

regulatory-relevant apical endpoints holds the key to the realization of predictive toxicology 65 

through practical and widespread implementation of in-vitro assay-based toxicity screening 66 

schemes and strategies for environmental and health applications.9-16 Adverse-outcome pathway 67 

(AOP) framework is the state-of-the-art approach to link mechanistic toxicity mechanisms with 68 

the phenotypic adverse outcome that would enable the assessment of health risk as well as 69 

ecotoxicological risks from exposure to pollutants and their mixtures.17-21 Coalesce of effective 70 

biomarkers and proper predicting framework would enable more cost-effective and wider 71 

implementation of toxicomics in monitoring of genotoxicity and predict adverse toxic responses.22-72 
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24  Subsequently, proper selection and validation of predicative biomarkers plays a crucial role in 73 

our ability to link molecular-level effects recorded in in-vitro assays to the in-vivo regulatory 74 

relevant phenotypic endpoints, or system-level impacts in many fields such as, environmental 75 

toxicity, disease prediction and health risk identification.25-28  76 

The rapid advancement in bioinformatics and machine learning methods enables more 77 

sophisticated biomarkers identification.10,29-30 Current biomarker identification from toxicomics 78 

data employs feature selection and classification methods. Two general approaches of feature 79 

selection include filter and wrapper methods. The filter methods often provide relatively simpler 80 

and faster alternatives to select the most important features and the features are selected or filtered 81 

based on their relevance to differentiate a target outcome from others.31 The wrapper methods 82 

combine feature selection along with the classification method, where the features are judged 83 

based on their ability to increase the accuracy of the classification models.32-33 However, the 84 

wrapper methods are often associated with extensive computational cost, and prone to possible 85 

overfitting when the sample size is relatively small.34-35 In addition, since the selected features of 86 

the filter methods are independent of the classification method, they often have higher relevance 87 

to the target outcome than those derived from a wrapper method.31,34 Filter based feature selection 88 

methods that have been applied to toxicomics data (e.g., gene and protein expression data) include 89 

mutual information, statistical tests (t-test, F-test, chi-square), information gain,36 gainratio,30 and 90 

ReliefF36 among others. Though most of these algorithms find the important biomarkers based on 91 

their relevance and correlation to the target outcome, they do not address redundancy and 92 

overfitting issues. The maximum relevance and minimum redundancy (MRMR) algorithm aims 93 

to reduce the redundancy in datasets, while also identifying the most relevant features and 94 

biomarkers to predict the outcome.31,34 Furthermore, using the right classification algorithm for 95 
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the problem is important in order to avoid overfitting by the model.37 The classification algorithms 96 

that have been used in the past to classify toxicogenomics data include k-nearest neighbor, naïve-97 

Bayes, and support vector machines (SVMs). Support vector machines (SVMs) have been shown 98 

to yield reliable and efficient classification performances, while limiting overfitting, particularly 99 

for cases where the number of features is higher than the number of samples (as often seen with 100 

toxicogenomic data).29  101 

Although a few isolated biomarkers have been used for genotoxicity detection in both 102 

environmental and human health applications, such as CYP1A1 and CYP1B1,38 RAD54,39 CYP-103 

R,38 A2m, Ca3, Cxcl1, and Cyp8b1,40 their correlation with phenotypic genotoxicity endpoints or 104 

carcinogenicity has not been quantified. Furthermore, the temporal dependencies of 105 

toxicogenomics responses have also not been considered in most cases, since most studies record 106 

a snapshot of the responses.38 It is still an open research area to identify relevant toxicogenomic-107 

based biomarkers that quantitatively link in-vitro responses to regulatory relevant in-vivo toxicity 108 

endpoints, utilizing the temporal molecular response patterns.  109 

In this study, we applied MRMR feature selection and SVM classification algorithm, to 110 

identify an ensemble of biomarkers from temporal toxicogenomic assays, for genotoxicity and 111 

carcinogenicity prediction and for bridging to regulatory relevant phenotypic endpoints via AOP. 112 

As per the AOP framework, molecular initiating event for DNA damage would link to an adverse 113 

outcome of genotoxicity at organism or population level that is relevant to risk assessment.13,19,41 114 

We proposed and developed a novel quantitative toxicogenomics assay to evaluate mechanistic 115 

genotoxicity through detect and quantifying molecular level changes in proteins involved in known 116 

DNA damage repair pathways, to comply with the AOP concept.2,42-43 The selected key proteins 117 

involved in all known DNA damage and repair stress response pathways are conserved among 118 
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yeast and other eukaryotes including human, therefore is expected to capture AOP molecular 119 

effects at sub-cytotoxic dose levels that lead to phenotypic changes and adverse outcome.2,19,44 The 120 

protein expression changes, in exposure to each chemical, are monitored by employing a 121 

genotoxicity assay using GFP-tagged yeast reporter stains, covering 38 selected protein 122 

biomarkers indicative of all the seven known DNA damage repair pathways as discussed above.2,45 123 

Two separate case studies — i) in-vivo rodent carcinogenicity and ii) Ames test-based genotoxicity 124 

prediction — are performed to identify the biomarker-ensembles for chemically-induced 125 

genotoxicity and carcinogenicity endpoint prediction. For each case study, 20 chemicals are 126 

selected that include model genotoxic compounds with reported endpoints and negative control 127 

without any reported genotoxic effects. Both in-vivo rodent carcinogenicity and Ames based 128 

genotoxicity are among the most widely used endpoints for genotoxicity assessment and they are 129 

being used in the National Toxicology Program46 and Carcinogenic Potency Database (CPDB)47. 130 

The performance of the prediction models is evaluated by estimating the area under the receiver 131 

operating characteristics curve (AUC), as well as the classification accuracy, sensitivity, and 132 

specificity. The relationship between the number and identities of top-ranked biomarker selection 133 

and the prediction performances are assessed.   134 

 135 

METHODOLOGY 136 

Materials  137 

A time-series toxicogenomic assay of 20 chemicals is evaluated in the current study, including 138 

model genotoxic compounds and negative control without any reported genotoxic effect. Details 139 

of the chemicals are provided in Table S1. Two types of genotoxicity endpoints are investigated, 140 

including i) in-vivo rodent carcinogenicity and ii) Ames genotoxicity assay. Both carcinogenicity 141 
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and genotoxicity endpoint data is collected from the existing literature and are summarized in 142 

Table S1.2,48 143 

 144 

Quantitative Toxicogenomic Assay for Genotoxicity Assessment  145 

The proteomic based toxicogenomic assay employs a library of 38 in-frame GFP-fused reporter 146 

strains (key proteins) of Saccharomyces cerevisiae (Invitrogen, no. 95702, ATCC 201388), 147 

covering all known recognized DNA damage repair pathways, as reported in our previous work 148 

(Table S2).2,49 The reporter strains are constructed by oligonucleotide-directed homologous 149 

recombination to tag each open reading frame (ORF) with Aequrea victoria GFP (S65T) in its 150 

chromosomal location at the 3’ end. The assay library measures the expression of full-length, 151 

chromosomally tagged green fluorescent protein fusion proteins,50 where the GFP signal 152 

represents the protein expression, directly. The altered expression level is measured for 2-hr at 153 

every 5 minute, which is then integrated over the full exposure period to obtain the quantitative 154 

toxicity index — Protein Expression Level Index (PELI). The details of the proteomics assay, 155 

when using GFP-tagged yeast cells, were described in the Supporting Information (Text S1) and 156 

also in our previous reports.2,49,51   157 

 158 

Scoring Criteria to Rank the Biomarkers 159 

The selection of biomarkers is based on their contribution to differentiate protein expression 160 

level among the genotoxicity-negative and -positive chemicals. The maximum relevance is used 161 

as a scoring measure, which is quantified by estimating t-stat (Text S1) to find the relevance of 162 

biomarkers to a target outcome. The second scoring measure, maximum relevance minimum 163 
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redundancy (MRMR), is applied to reduce the redundancy from the relevant biomarkers and 164 

quantified via penalizing the relevance for collinearity with other biomarkers in the library. 165 

Maximum Relevance 166 

Maximum relevance measures how the biomarkers are relevant to identify the 167 

genotoxicity-positive chemicals. t-stat criterion is used as a measure of the relevance.31 t-stat 168 

measures the difference between the mean of the features in genotoxicity-negative, and 169 

genotoxicity-positive class. The higher the t-stat value the higher the differences in average protein 170 

expression level between the two classes — genotoxicity-positive and -negative categories. Hence, 171 

the objective function of selecting the most significant biomarker is to maximize the relevance, Vt. 172 

  𝑉𝑡 =
1

|𝑆|
∑ 𝑡𝑖

2
𝑖∈𝑆 ; with the objective function: max(𝑉𝑡)    [1] 173 

where,  𝑉𝑡 measures the relevance of feature i, 174 

𝑡𝑖 is the t-stat of the protein i (Text S2), and  175 

  𝑆 is the number of features in the dataset. 176 

Maximum Relevance Minimum Redundancy 177 

Application of the maximum relevance criteria may identify multiple biomarkers that are 178 

correlated with each other. To reduce the redundancy, it is expected that, the selected biomarkers 179 

should contain only the uncorrelated proteins since multiple correlated proteins do not provide any 180 

additional information regarding the chemical class.31,52 Co-linearity can be measured using 181 

Pearson correlation between the genes that quantify redundancy, as described in the following. 182 

Minimum redundancy: The redundancy (Wc) of the biomarkers can be measured by the Pearson 183 

correlation of a biomarker with the rest of the biomarkers. 184 

  𝑊𝑐 =
1

|𝑆|2
∑ |𝑐(𝑖, 𝑗)|𝑖,𝑗 ; with the objective function: min(𝑊𝑐)   [2] 185 

where, 𝑐(𝑖, 𝑗) is the correlation between proteins i and j (Text S2). 186 
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By combining the maximum relevance (Equation 1) and minimum redundancy (Equation 2), 187 

in two separate ways, two different maximum relevance minimum redundancy (MRMR) scoring 188 

criteria can be computed. They are:  189 

(i) MRMR-TCD (t-stat correlation difference criterion): In MRMR-TCD scoring method the 190 

relevance and redundancy are combined using difference, where the objective function is: 191 

max
𝑖∈Ω𝑆

{𝑉𝑡 −𝑊𝑐}. and  192 

(ii) MRMR-TCQ (t-stat correlation quotient criterion): MRMR-TCQ score is measured by 193 

combining the relevance and redundancy using quotient and the objective function is: 194 

max
𝑖∈Ω𝑆

{
𝑉𝑡

𝑊𝑐
}. Since  MRMR-TCQ apply greater penalty on redundancy than the MRMR-TCD, 195 

it has the potential to select the biomarkers that can generate models with better prediction 196 

accuracies.31  197 

By utilizing the scoring measures, mentioned here, three scoring criteria — t-stat, MRMR-TCD, 198 

and MRMR-TCQ — are adopted to find the ranks of the biomarkers. The rank measure of all the 199 

scoring methods are calculated using a 10-fold cross-validation (CV). The dataset is randomly 200 

divided into 10 equal sized subsets and nine of the ten subsets are used as the training data to get 201 

the score. This process is repeated 10 times with different training dataset, achieved by leaving out 202 

each of the ten subsets exactly once from the training dataset. The overall score, which is used as 203 

the ranking measure, is calculated as the average of the scores from the ten folds. 204 

 205 

Classification Algorithm 206 

The prediction ability of the selected top-ranked biomarkers is evaluated by fitting a 207 

classification model, using Support Vector Machine (SVM) with 10-fold CV as the classification 208 

algorithm. SVM is chosen due to its power of avoiding overfitting when the feature space is very 209 
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large.29 In a 10-fold CV, the data are randomly divided into 10 equal sized folds, and among them 210 

9 folds are used as the training dataset to generate classification model with the remaining fold as 211 

prediction test.53 The classification is conducted for 10 times by using each subset as the test 212 

dataset exactly once and the remaining nine subsets as training dataset. 213 

Classification Performance Measuring Criteria  214 

Receiver operating characteristics (ROC)54 curve of the classification models are obtained from 215 

the fitted models, and the area under the ROC curve (AUC) is estimated to evaluate the 216 

classification model efficiency.55-56 The classification accuracy, sensitivity, and specificity are also 217 

calculated as additional performance measures. Accuracy is defined as the proportion of all the 218 

samples (both true positives and true negatives) that are identified correctly among the total 219 

number of samples.57 Sensitivity measures the proportion of positives that are correctly identified 220 

and specificity measures the proportion of negatives that are correctly identified as such.58 The 221 

accuracy, sensitivity, and specificity of the models are estimated from the test datasets of all 10 222 

folds, mentioned above, and average of the classification models of the 10 folds are reported as 223 

the CV-accuracy, -sensitivity, and -specificity. Both MRMR feature selection and SVM 224 

classification algorithm are implemented in MATLAB 2017a (Mathworks, Natick, MA). 225 

 226 

Gene Ontology 227 

Gene ontology (GO) analysis is performed using the Functional Specification resource, 228 

FunSpec,59 to determine the significantly represented functional categories that are associated with 229 

the selected top-ranked biomarkers. The significant biological categories are obtained using a 230 

hypergeometric distribution with a p-value threshold of 0.01 — which represent that, the 231 

association between a given gene set and a given functional category does not occur at random.60  232 
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 233 

RESULTS AND DISCUSSION 234 

Identification of Toxicogenomics-based Biomarkers for In-vivo Carcinogenicity Prediction 235 

The most relevant protein biomarkers are identified based on their rank measures and ability to 236 

differentiate the altered expression level between the carcinogenicity-positive and -negative 237 

compounds. Three separate scores according to the three ranking criteria, namely t-stat, MRMR-238 

TCD and MRMR-TCQ, as described in the methods section, were used. Figure 1 shows the most 239 

relevant biomarkers that have higher scores and assumingly higher relevancy to in-vivo 240 

carcinogenicity. The higher t-stat score represents a larger difference of the altered expression level 241 

between the average biomarker-responses in the carcinogenicity-positive and -negative chemicals 242 

(Figure 1-a). However, presence of collinearity with other potential biomarkers may result in 243 

redundancy among the top-ranked biomarkers, with higher scores. The MRMR scoring criteria 244 

helps to eliminate redundancy by penalizing the co-linearity for redundancy elimination. Two 245 

MRMR-based ranking criteria (MRMR-TCD, and MRMR-TCQ) rank the proteins after penalizing 246 

the t-stat score for the presence of collinearity, which is used as a measure of redundancy (Figure 247 

1-b, c). Due to the penalization for redundancy, the rank of a few of the biomarkers are different 248 

for the MRMR-based ranking methods than those for the t-stat-based ranking. As the relevance is 249 

divided by the redundancy in the MRMR-TCQ, the penalty for collinearity is high in this case. 250 

Subsequently, the margin between the high ranked biomarkers and low ranked biomarkers are 251 

higher in the case of MRMR-TCQ ranking than the results obtained from MRMR-TCD score. 252 

Disregard the ranking algorithms used, the top-ranked five protein biomarkers are identified to be 253 

the same for all three scoring methods, although their rank sequences varied. These five proteins, 254 

namely NTG2, RAD34, RAD27, MSH2, and YKU70, can be considered to have high relevance 255 
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with very little redundancy, which make them suitable as potential biomarkers for in-vivo 256 

carcinogenicity prediction.  257 

A heat-map of the molecular genotoxicity quantifier, PELI (protein effect level index) values, 258 

shows the differential expression pattern of the top-ranked biomarkers among 259 

carcinogenicity-positive and -negative chemicals (Figure 2). The preferred top-ranked 260 

biomarker(s) exhibited significantly higher altered protein expression level in 261 

carcinogenicity-positive chemicals, whereas significantly less or negligible (below detection limit 262 

PELI < 1.5)2,49 altered expression level for the carcinogenicity-negative chemicals. In contrast, the 263 

bottom-ranked protein had similar average PELI values in both carcinogenicity-positive 264 

and -negative chemicals. 265 

Performance evaluation of the top-ranked biomarkers for in-vivo carcinogenicity prediction 266 

We evaluate the number and the ability of the top-ranked protein biomarkers as 267 

biomarker-ensemble to predict chemical-induced in-vivo carcinogenicity. Support vector machine 268 

(SVM) is used to classify and predict the carcinogenetic compounds with varying number of top-269 

ranked biomarkers. The area under the receiver operating characteristics curve (AUC) is used as 270 

the classifier performance evaluation criterion, which indicates the stability of classification model 271 

with AUC value closer to 1 representing a stable classifier.61 For the in-vivo carcinogenicity 272 

prediction, AUC is 0.81 with SVM model using the top-five ranked biomarkers (Table 1). The 273 

increase in the number of biomarkers in the classifier model, as expected, leads to increase in the 274 

AUC. The maximum AUC value of the models is 0.88, when all the 38 proteins in the library are 275 

used. 276 
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 277 

Figure 1. Scores of the biomarker based on different scoring criteria for Carcinogenicity endpoint prediction. The biomarkers are sorted 278 

in descending order of their score. The higher the score, the more important the biomarker is. a) Ranking criterion: t-stat. This ranking 279 

method is based on maximum relevance alone. The t-stat measures the significant differences between the mean of the biomarker feature 280 

(in this specific case: PELI) in the positive and negative carcinogenic chemicals. The higher the difference in mean of the biomarkers 281 

in the two classes, the more important the biomarker is. b) Ranking criterion: MRMR-TCD. This ranking criterion is based on the 282 

maximum relevance and minimum redundancy. The t-stat measures the relevance to the endpoint. Collinearity among different 283 

biomarkers can measure the redundancy of the biomarker. In the MRMR-TCD ranking method, average correlation of the biomarker is 284 

subtracted from the t-stat score to remove the redundancy. c) Ranking criterion: MRMR-TCQ. This criterion is also based on the 285 

maximum relevance and minimum redundancy. The t-stat is divided by the average correlation, to get the maximum relevance and 286 

minimum score. 287 
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 288 

Figure 2. Heatmap of the PELI values (colormap as indicated by the color bar) of all the protein 289 

biomarkers covering all known DNA damage and repair pathways in yeast (Saccharomyces 290 

cerevisiae), upon exposure to 20 chemicals (rows). For each chemical, responses to 6 doses are 291 

presented with concentrations vary from lowest to highest from top to bottom (noted on the right-292 

side of vertical axis, all concentrations are listed in Table S1). The Biomarkers (columns) are 293 
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sorted (from left to right) as per their ranks based on the MRMR-TCQ score (Figure 1-c). The 294 

carcinogenicity-positive chemicals (rows) are labeled in red color, and the 295 

carcinogenicity-negative chemicals are labeled in black color. 296 

 297 

Table 1. Prediction model performance of the two case-studies. The model performance measures 298 

include AUC, classification accuracy, sensitivity, and specificity. The prediction models are 299 

generated with top-ranked biomarkers as well as with all the proteins in the assay library. 300 

Number of 

Biomarkers utilized in 

the classification model 

AUC 
Classification Performance Metric 

Accuracy Sensitivity Specificity 

In-vivo carcinogenicity prediction models   

Top Five 0.81 76% 74% 79% 

All 0.88 83% 81% 86% 

Ames genotoxicity prediction models   

Top Five 0.75 70% 63% 81% 

All 0.84 78% 79% 75% 

 301 

Furthermore, the cross-validated accuracy, sensitivity, and specificity of the 10-fold models are 302 

estimated as additional performance measuring criteria. Top-ranked five biomarkers can obtain 303 

76% accuracy for the carcinogenicity prediction, while the classification model with all the 304 

proteins can achieve 83% accuracy. The sensitivity and specificities also increase with the increase 305 

of the number of biomarkers in the classifier models. For example, sensitivity of the classification 306 

model is 74% for the prediction model with top five biomarkers and it reached 81% with all the 307 

proteins. Specificity increases from 79%, for the model with the top five biomarkers, to 86% for 308 

the model where all the proteins are used as features. Relatively high CV-accuracies, which are 309 

measured from the prediction of the test dataset, indicate the robustness of the prediction model 310 
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obtained through the SVM classification model. Although, as expected, higher number of features 311 

in the classification models improves the accuracy and the stability, the top five identified most 312 

relevant biomarkers can achieve classification accuracy of ~75%, implying a possible cost- and 313 

time-effective in-vivo carcinogenicity screening tool with the time-series toxicogenomic assay.  314 

 315 

Identification of Toxicogenomics-based Biomarkers for Ames Genotoxicity Prediction 316 

We performed a second case study, where we attempted to identify the protein biomarkers for 317 

the Ames genotoxicity endpoint prediction. The most important biomarkers are identified from 318 

their ranking scores, which are based on their difference in altered protein expression level between 319 

the Ames genotoxicity-positive and -negative compounds. The three separate scores of each 320 

biomarker, obtained from the three ranking criteria (t-stat, MRMR-TCD and MRMR-TCQ), are 321 

presented in Figure 3. The higher difference between the altered expression level of a protein in 322 

the genotoxicity-positive and -negative chemicals results in relatively higher t-stat scores (Figure 323 

3-a). Hence, the top-ranked proteins, with higher t-stat scores, have the higher relevance to 324 

differentiate Ames genotoxicity-positive chemicals from the genotoxicity-negative chemicals. The 325 

MRMR-TCD and MRMR-TCQ based scores differ from the t-stat score, especially for the proteins 326 

that possess collinearity with other proteins in the assay (Figure 3-b, c). However, the identified 327 

top-ranked five protein biomarkers remain the same irrespective of the ranking methods employed, 328 

although their rank sequences varied. These five proteins, namely APN2, RFA2, NTG2, RAD2, 329 

and MSH6, are considered as potential biomarkers for the Ames genotoxicity prediction. 330 
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 331 

Figure 3. Scores of the biomarker based on different scoring criteria for Ames-genotoxicity assay prediction. The biomarkers are sorted 332 

in descending order of their score. The higher the score, the more important the biomarker is. a) Ranking criterion: t-stat. This ranking 333 

method is based on the maximum relevance. The t-stat measures the significant differences between the mean of the biomarker feature 334 

(in this specific case: PELI) in the chemicals with Ames assay positive and negative responses. The higher the difference in mean of the 335 

biomarkers in the two classes, the more important the biomarker is. b) Ranking criterion: MRMR-TCD. This ranking criterion is based 336 

on the maximum relevance and minimum redundancy. The t-stat measures the relevance to the endpoint. Collinearity among different 337 

biomarkers can measure the redundancy of the biomarker. In the MRMR-TCD ranking method, average correlation of the biomarker is 338 

subtracted from the t-stat score to remove the redundancy. c) Ranking criterion: MRMR-TCQ. This criterion is also based on the 339 

maximum relevance and minimum redundancy. The t-stat is divided by the average correlation, to get the maximum relevance and 340 

minimum score. 341 
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A heat-map of the molecular genotoxicity quantifier, PELI, further shows the distinct expression 342 

profiles of the top ranked biomarkers in the genotoxicity-positive and -negative chemicals (Figure 343 

4). The top-ranked biomarkers show relatively higher protein expression level in 344 

genotoxicity-positive chemicals than the expression level in genotoxicity-negative chemicals that 345 

are often below toxicity threshold (PELI < 1.5).2,49 For the bottom-ranked proteins, the difference 346 

in expression levels across genotoxicity-positive and -negative chemicals decreases, which further 347 

suggests their inadequacy to separate genotoxicity-positive chemicals from the 348 

genotoxicity-negative chemicals. 349 

Performance evaluation of the top-ranked biomarkers for Ames genotoxicity prediction 350 

The prediction ability of the top-ranked biomarker-ensemble is evaluated by using the SVM to 351 

classify and predict compounds with Ames genotoxicity with varying number of top-ranked 352 

biomarkers. The classifier performances are evaluated by estimating the AUC of the SVM models 353 

(Table 1). AUC of the model with top-ranked five biomarkers is 0.75 and that of the model with 354 

all 38 proteins is 0.84. AUC values of both the models represent stable classification models, since 355 

the AUC value equal to 0.5 indicates a random classification model and closer to 1 represents a 356 

stable model61. As expected, the prediction model with all the proteins has higher AUC than the 357 

model with the top-five biomarkers.  358 

 359 
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 360 

Figure 4. Heatmap of the PELI values (colormap as indicated by the color bar) of all the protein 361 

biomarkers covering all known DNA damage and repair pathways in yeast (Saccharomyces 362 

cerevisiae), upon exposure to 20 chemicals (rows). For each chemical, responses to 6 doses are 363 

presented with concentrations vary from lowest to highest from top to bottom (noted on the right-364 

side of vertical axis, all concentrations are listed in Table S1).The Biomarkers (columns) are sorted 365 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.12.18.423486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.18.423486
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

(from left to right) as per their ranks based on the MRMR-TCQ score (Figure 3-c). The Ames 366 

genotoxicity-positive chemicals (rows) are labeled in red color, and the genotoxicity-negative 367 

chemicals are labeled in black color. 368 

The estimated model accuracy, sensitivity, and specificity provide additional measures of the 369 

prediction performance. Using only the top-ranked five biomarkers can achieve 70% accuracy, 370 

which increased to 78% for the model with all 38 proteins. The sensitivity (63% for top-five 371 

biomarkers and 79% for all 38 proteins) of the prediction model also increases with the increase 372 

in number of biomarkers in the classification model. Though the specificity of the prediction model 373 

with top-ranked five biomarkers (81%) is higher than that of the model with all 38 proteins (75%), 374 

the specificity of the model with all the protein biomarkers are closer to its accuracy representing 375 

relatively low model-bias. It can be inferred that, though higher number of biomarkers results in 376 

improvement of prediction, the top-ranked five biomarkers can achieve relatively high prediction 377 

accuracy (70%). Therefore, possible application of time-series toxicogenomic assay with the most 378 

relevant top-ranked biomarkers may provide a balance of cost- and time-effective Ames 379 

genotoxicity screening for Ames effect assessment and for further in-depth studies.  380 

 381 

Gene Ontology Analysis Reveals the Biological Processes and Molecular Functions of the 382 

Top-Ranked Biomarkers 383 

Gene ontology (GO)60 analysis is conducted to reveal the biological processes and molecular 384 

functions of the top-ranked biomarkers. Biological processes and molecular functions that are 385 

significantly associated with the top-ranked five biomarkers are determined using the 386 

hypergeometric distribution with a threshold p-value of 0.01, which indicates that the associations 387 

between the biomarkers and the GO terms are not at random.59-60 388 

Biological processes and molecular functions of the biomarkers for carcinogenicity prediction 389 
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GO analysis reveals that, the most significantly enriched biological processes of the top-ranked 390 

five biomarkers (RAD34, RAD27, YKU70, NTG2, MSH2), for the in-vivo carcinogenicity 391 

prediction, are associated with DNA repair and response to DNA damage stimulus (Table S3). 392 

Additionally, none of the biomarkers is annotated with the functional categories that represent 393 

other types of response pathways. RAD27 and YKU70 are associated with double strand break 394 

repair. DNA recombination involves YKU70 and MSH2. The biomarkers are also relevant to the 395 

base-excision repair and double-strand break.  396 

The significantly enriched molecular functions associated with the top-ranked five biomarkers 397 

are also relevant to the DNA damage and repair activities. Damaged DNA binding is associated 398 

with RAD34 and YKU70. Endonuclease activity is associated with RAD27, and NTG2. The other 399 

relevant molecular functions, associated with at least one of the top-ranked five biomarkers, 400 

include single base insertion or deletion binding, DNA binding, DNA insertion of deletion binding, 401 

double-strand/single-strand DNA junction binding, and mismatched DNA binding (Table S3). 402 

The top-ranked five biomarkers for the in-vivo carcinogenicity prediction mainly focused on 403 

double strand break repair and DNA recombination, which result in a severe type of DNA damage 404 

and may lead to genomic instability and cancer.62-63 This suggests that the selected biomarker-405 

ensemble have the potential to identify severe DNA damage and relevant carcinogenic potency of 406 

a chemical. 407 

 408 

Biological processes and molecular functions of the biomarkers for Ames genotoxicity prediction 409 

The most significantly enriched biological processes of the top-ranked five biomarkers for the 410 

Ames genotoxicity prediction are also revealed via GO analysis. These biological functional 411 

categories are also associated with DNA damage and repair activities, and do not show any 412 
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association with other stress response pathways. The top-ranked five biomarkers (APN2, RFA2, 413 

NTG2, RAD2, MSH6) are associated with the DNA repair process and four of them (APN2, 414 

NTG2, RAD2, MSH6) are related to the response to DNA damage stimulus biological process. 415 

Other biological processes, which show significant association with at least one of the top-ranked 416 

biomarkers, include base-excision repair, nucleotide-excision repair, DNA unwinding involved in 417 

replication, and double-strand break repair via homologous recombination (Table S3). 418 

The most significantly enriched molecular functions of the top-ranked five biomarkers are also 419 

related to DNA damage and repair activities. Endonuclease activity is associated with three of the 420 

top-five biomarkers (APN2, RAD2, NTG2). DNA binding molecular function is also associated 421 

with three biomarkers, which are APN2, MSH6, and RAD2. Other relevant molecular functions 422 

that are significantly associated with at least one of the top-five biomarkers include DNA (apurinic 423 

or apyrimidinic site) lyase activity, single-stranded DNA binding, double-stranded DNA specific 424 

3'-5' exodeoxyribonuclease activity, single base insertion or deletion binding, four-way junction 425 

DNA binding, DNA binding, and mismatched DNA binding. The selected top-ranked biomarkers 426 

for Ames genotoxicity prediction are associated with base- and nucleotide-excision repair. Since 427 

Ames genotoxicity test only detects the frame-shift mutation and base-pair substitution,64-65 it 428 

captures certain genotoxicity effects, and results in the selection of different biomarker-ensemble 429 

than those in the in-vivo carcinogenicity prediction case-study. 430 

Environmental Implications 431 

Presence of numerous contaminants from various (e.g., wastewater effluent, industrial 432 

wastewater discharge, oil and chemical spills, urban runoff, agricultural runoff) sources make the 433 

risk assessment and monitoring challenging.17 High-throughput in vitro assays and  AOP-based 434 

approach is promising for the assessment of health and ecotoxicological risks from exposure to 435 
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pollutants and their mixtures.17-21 Establishment of a quantitative AOP framework through 436 

integration of computational modeling with in-vitro assays would require identification and 437 

selection of relevant biomarkers from appropriate bioassays that link to risk assessment pathways 438 

and phenotypic impacts.18,21,66 Current toxicomics approach still mostly rely on large number of 439 

redundant markers without pre-selection or ranking;3,51,67 therefore, selection of relevant 440 

biomarkers with minimal redundancy would reduce the number of markers to be monitored and 441 

reduce the cost, time, and complexity of the toxicity risk monitoring. The method developed in 442 

this study will help to fill in the knowledge gap in phenotypic anchoring and predictive toxicology, 443 

and contribute to the progress in the implementation of tox 21 vision for environmental and health 444 

applications.  445 

 446 

 447 

SUPPORTING INFORMATION 448 

Tables listing the selected concentration ranges and sources of the chemicals, in-vivo 449 

carcinogenicity and Ames genotoxicity endpoints along with their sources, description and data 450 

processing steps of the yeast proteomic library used in this study, and the summary of gene 451 

ontology analysis of the selected biomarkers are provided in the Supporting Information (SI). This 452 

material is available free of charge via the Internet at http://pubs.acs.org. 453 
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