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Abstract 

Establishing spatial correspondence between subject and template images is necessary in 

neuroimaging research and clinical applications such as brain mapping and stereotactic 

neurosurgery. Our anatomical fiducials (AFIDs) framework has recently been validated to serve 

as a quantitative measure of image registration based on salient anatomical features. In this study, 

we sought to apply the AFIDs protocol to the clinic, focusing on structural magnetic resonance 

images obtained from patients with Parkinson’s Disease (PD). We confirmed AFIDs could be 

placed to millimetric accuracy in the PD dataset with results comparable to those in normal control 

subjects. We evaluated subject-to-template registration using this framework by aligning the 

clinical scans to standard template space using a robust open preprocessing workflow. We found 

that registration errors measured using AFIDs were higher than previously reported, suggesting 

the need for optimization of image processing pipelines for clinical grade datasets. Finally, we 

examined the utility of using point-to-point distances between AFIDs as a morphometric 

biomarker of PD, finding evidence of reduced distances between AFIDs that circumscribe regions 

known to be affected in PD including the substantia nigra. Overall, we provide evidence that 

AFIDs can be successfully applied in a clinical setting and utilized to provide localized and 

quantitative measures of registration error. AFIDs provide clinicians and researchers with a 

common, open framework for quality control and validation of spatial correspondence and the 

location of anatomical structures, facilitating aggregation of imaging datasets and comparisons 

between various neurological conditions. 

 

 

 

 

 

Keywords: Registration; Accuracy; Fiducials; Deep brain stimulation; Parkinson’s Disease; 

Biomarker.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.12.17.423333doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423333


3 
 

Declarations 

Funding 

No funding was received to assist with the preparation of this manuscript. 

Conflicts of interest/Competing interests 

All authors certify that they have no affiliations with or involvement in any organization or entity 

with any financial or non-financial interest in the subject matter or materials discussed in this 

manuscript. 

Ethics approval 

The study was approved by the Human Subject Research Ethics Board (HSREB) office at the 

University of Western Ontario (REB# 109045). 

Consent to participate 

Not applicable 

Consent for Publication 

Not applicable 

Availability of data and material 

The datasets generated during and/or analysed during the current study are available at: 

https://github.com/afids/afids-clinical 

Code availability 

Processing scripts used for analysis are available at: https://github.com/afids/afids-clinical 

Authors’ contributions 

Study conception and design was performed by Mohamad Abbass, Greydon Gilmore, Terry M. 

Peters, Ali R. Khan and Jonathan C. Lau. Material preparation and data collection was performed 

by Mohamad Abbass, Greydon Gilmore, Alaa Taha, Ryan Chevalier and Magdalena Jach. Data 

analysis and interpretation was performed by Mohamad Abbass, Greydon Gilmore, Terry M. 

Peters, Ali R. Khan and Jonathan C. Lau. The manuscript was written by Mohamad Abbass, 

Greydon Gilmore and Jonathan C. Lau. All authors read and approved the final transcript. 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.12.17.423333doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423333


4 
 

Introduction 

Non-invasive imaging techniques such as magnetic resonance imaging (MRI) have 

allowed for insights into the anatomy and function of the central nervous system. A critical aspect 

in neuroimaging research and clinical application is to establish accurate spatial correspondence 

between images (Chakravarty et al. 2008), allowing for the combination and comparison of 

multimodal data across subjects and populations. Establishing spatial correspondence requires the 

specification of a common stereotactic 3D coordinate reference frame, and the registration of 3D 

images to that reference frame (Pirker and Katzenschlager 2017). Researchers have established 

numerous common reference frames, including those based on both individuals and populations 

(Fonov et al. 2011). 

Establishing correspondence between various brain images has historically relied on linear 

transformations (Fonov et al. 2011; Evans et al. 1992). Over the last few decades, various non-

linear transformations have been implemented allowing for more accurate registration between 

brain images (Fonov et al. 2011). These transformations have most commonly been evaluated 

using measures of overlap between regions of interest (ROIs). ROIs that have been used include 

subcortical structures such as the thalamus or areas of the basal ganglia (Lau et al. 2019; Poldrack 

2007). Measures of spatial correspondence within these relatively large ROIs are known to be 

quite coarse and fail to capture subtle misregistration between images (Rohlfing 2012; Lau et al. 

2019). Inspired by classical stereotactic methods (Talairach et al. 1958), a set of anatomical 

fiducials (AFIDs) were validated using an open framework and proposed as an intuitive way to 

quantify alignment using point-based distance measures between brain structures. This method 

was validated in individual subject and template scans and was found to be more sensitive to 

registration errors than ROI-based voxel overlap measures (Lau et al. 2019). 

With the increasing use of MRI in research and clinical settings, accurate assessment of registration 

between image sequences is necessary. Since clinical outcomes in stereotactic neurosurgery 

depend on accuracy at the millimeter scale (Li et al. 2016), a robust framework for assessing 

correspondence between brain images is required for optimal neurosurgical planning. In this work, 

we sought to evaluate the reproducibility and utility of the AFIDs framework in a clinical 

population with Parkinson’s Disease (PD). 
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Material and Methods 

All raw and processed data along with the processing scripts that were used in this manuscript are 

available at: https://github.com/afids/afids-clinical. This repository is licensed under the MIT 

License. 

Subject demographics and MRI acquisition 

Subject scans used in this study were obtained from 39 individuals diagnosed with PD (age: 

60.2 ± 6.8, sex: 33.3% female).  For all subjects, the MRI sequence used was a post gadolinium 

enhanced volumetric T1-weighted (T1w) image (echo time = 1.5 ms, inversion time = 300 ms, flip 

angle = 20°, receiver bandwidth = 22.73 kHz, field of view = 26 cm x 26 cm, matrix size = 256 × 

256, slice thickness = 1.4 mm, resolution = 1.25 × 1.25 × 1.50 mm) (Signa, 1.5 T, General Electric, 

Milwaukee, Wisconsin, USA). The subject data were collected at University Hospital in London, 

ON, Canada. The study was approved by the Human Subject Research Ethics Board (HSREB) 

office at the University of Western Ontario (REB# 109045). 

AFID placement 

The individual scans were imported into 3D Slicer version 4.10.0 (Fedorov et al. 2012). 

The subject scans were first transformed into anterior commissure (AC)-posterior commissure 

(PC) space (AC-PC space), and the raters were required to initially place 4 of the AFIDs, which 

included: AC (AFID01), PC (AFID02) and two additional on the midline. The built-in “AC-PC 

Transform” function in 3D Slicer was used to align the AC-PC horizontally in-line in the 

anteroposterior plane. Adequate alignment was subjectively judged by each rater, who then placed 

the remaining AFIDs as previously outlined (Lau et al. 2019). An interactive 3-dimensional 

schematic brain with all AFIDs labelled can be found in the supplementary material (Online 

Resource 1) for reference. 

Five raters were initially trained to place AFIDs using publicly available brain images: 

MNI152NLin2009bAsym (Fonov et al. 2011; Ciric et al. 2021), deepbrain7t (Lau et al. 2017) and 

PD25-T1MPRAGE (Xiao et al. 2017). Each template has a set of ideal AFID coordinates (ground 

truth), which represents the mean AFID coordinate between a set of experienced raters. The ground 
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truth standards are included in the GitHub repository (https://github.com/greydongilmore/afids-

clinical/data/fid_standards). Quality assurance was performed to ensure each rater was placing the 

AFIDs on the templates below a minimum threshold of error (Euclidean error < 2.00 mm when 

compared with ground truth placements). Once the raters had received adequate feedback about 

their initial ratings during the training phase, they then independently performed the AFIDs 

protocol in the subject scans. Two raters (MA and GG) had prior neuroanatomy experience and 

were deemed “expert”, while three (AT, MJ and RC) had no prior neuroanatomy experience and 

were deemed “novice”. The novice raters had no experience with medical imaging so additional 

training was provided on navigating an MRI sequence in 3D Slicer (i.e. left/right, 

axial/coronal/sagittal views etc.). A total of 6240 AFIDs were placed. 

Analysis in subject space 

The 3D coordinates of each AFID were exported and subsequently analyzed in MATLAB 

(vR2018b). The anatomical fiducial localization error (AFLE) was calculated as the Euclidean 

distance between each individually placed AFID and the group mean, in each of the 32 AFIDs in 

each scan. Therefore, 6240 AFLE measurements were made for each manually placed AFID. 

Outliers were determined as having an AFLE of greater than 10.0 mm and are reported in the 

results. 

To determine each rater’s deviation from the group mean, the mean rater AFLE across all 39 

subjects was calculated for each AFID. AFLE was then dichotomized between expert and novice 

raters by calculating the mean AFLE among these two groups. Wilcoxon rank-sum tests were used 

to determine significance in AFLEs between expert and novice raters. Bonferroni correction was 

used to account for multiple comparisons with an adjusted p-value of 0.05/32 as a threshold for 

significance. The overall AFLE for each AFID was then calculated as the mean AFLE across all 

raters. 

Rater reliability was assessed using intraclass correlation (ICC), which was calculated in each 

dimension. A two-way random effects model with single measurement type was used, ICC(2,1) as 

determined by Shrout and Fliess (Shrout and Fleiss 1979). ICC among all raters, expert raters and 

novice raters was calculated. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.12.17.423333doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423333


7 
 

Analysis in MNI Space 

To assess and quantify registration error, the subject scans were non-linearly transformed 

to MNI152NLin2009cAsym brain template space using fMRIPrep 1.5.4 ((Esteban et al. 2019); 

RRID:SCR_016216), which is based on Nipype 1.3.1 ((Gorgolewski et al. 2011); 

RRID:SCR_002502). Specifically, the T1-weighted (T1w) image was corrected for intensity non-

uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 

((Avants et al. 2008); RRID:SCR_004757), and used as T1w-reference throughout the workflow. 

The T1w reference was then skull-stripped with a Nipype implementation of the 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as the target template. Brain 

tissue segmentation of cerebrospinal fluid, white-matter and gray-matter was performed on the 

brain-extracted T1w using the fast algorithm from FSL 5.0.9 ((Zhang et al. 2001); 

RRID:SCR_002823). Volume-based spatial normalization to one standard space 

(MNI152NLin2009cAsym) was performed using a symmetric diffeomorphic image registration 

method (antsRegistration; ANTs 2.2.0), using brain-extracted versions of both T1w reference and 

the T1w template. The following template was selected for spatial normalization: ICBM 152 

Nonlinear Asymmetrical template version 2009c ((Fonov et al. 2009); RRID:SCR_008796; 

TemplateFlow ID: MNI152NLin2009cAsym). Many internal operations of fMRIPrep use Nilearn 

0.6.0 ((Abraham et al. 2014); RRID:SCR_001362), mostly within the functional processing 

workflow. For more details of the pipeline, see the section corresponding to workflows in 

fMRIPrep’s documentation. 

We transformed each individually placed AFID to MNI space, and the mean coordinates of each 

AFID across all raters to MNI space. We calculate the Euclidean distance between each 

individually placed AFID transformed to MNI space and the group mean for each AFID placed in 

MNI space. We term this the real-world Anatomical Fiducial Registration Error (AFRE). The 

mean real-world AFRE across all subjects and raters was then calculated in the same manner as 

for the AFLE. We then calculate the Euclidean distance from the mean AFID transformed to MNI 

space, obtained by averaging the coordinates across all raters, and termed this the consensus 

AFRE, consistent with our definition in the original manuscript (Lau et al. 2019). The real-world 

AFRE represents the expected AFRE obtained by a single rater, and we focussed on this analysis 

since it most represents the situation in a clinical setting, although we also computed the consensus 
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AFRE since it represents a better overall measure of registration error within our clinical sample 

and is directly comparable to our prior work. A schematic illustrating these measures is presented 

in Fig.1.  

We calculated the mean AFRE for linearly and non-linearly registered images. Wilcoxon rank-

sum tests were used to determine significance between real-world AFREs obtained following both 

linear and non-linear registration, and significance between non-linearly registered real-world and 

consensus AFREs. Bonferroni correction was used to account for multiple comparisons with an 

adjusted p-value of 0.05/32 as a threshold for significance. 

Distance between AFIDs as a biomarker of disease 

         We sought to investigate a possible secondary benefit of the AFIDs protocol to examine 

unique morphometric features in our PD patient population. As such, we computed all pairwise 

Euclidean distances between AFIDs, generating 496 distance measures (32*31/2). We compared 

these values to distances obtained from a control group of 30 subjects from the OASIS-1 database 

with AFIDs previously placed (Lau et al. 2019). All 30 subjects used had maximum Mini-Mental 

State Exam (MMSE) scores (i.e. 30 out of 30). The mean age is 58.0 ± 17.9, and 17 subjects 

(56.7%) were female. Age between the two groups was compared using an unpaired 2-tailed t-test, 

and sex between the two groups was compared using a chi-square test. Wilcoxon rank-sum tests 

were used to determine significant differences in pairwise distances between the two groups, and 

Bonferroni correction was used to account for multiple comparisons with an adjusted p-value of 

0.05/496 being used as a threshold for significance. 

Results 

AFID Placement 

Out of all 6240 AFIDs placed, 21 were deemed outliers by using a threshold AFLE of 

greater than 10 mm (0.33%). None of the outliers were placed by expert raters, therefore 0.55% 

fiducials placed by novice raters were outliers. All outliers involved placements at some 

component of the lateral ventricles, and were as follows (number of outliers for this structure in 

brackets): right lateral ventricle at AC (5), left lateral ventricle at AC (6), right lateral ventricle at 
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PC (2), right anterolateral temporal horn (1), right superior anteromedial horn (1), left superior 

anteromedial horn (1), right inferior anteromedial horn (2), left inferior anteromedial horn (2) and 

right ventral occipital horn (1). 

Analysis in Subject Space 

Online Resource 2 depicts mean distance from the mid-commissural point by each rater 

for the 32 AFIDs. The mean overall AFLE across all AFIDs was 1.57 mm ± 1.16 mm. The mean 

AFLE across all raters for each AFID can be seen in Fig. 2. AFID 25 and 26 (left and right lateral 

ventricle at AC respectively) had the highest AFLE at 2.63 mm ± 1.75 mm and 2.79 mm ± 1.95 

mm respectively. The AFIDs with the lowest overall AFLE were AFID 01-02 (anterior 

commissure and posterior commissure respectively), with AFLEs of 0.70 mm ± 0.78 mm and 0.55 

mm ± 0.34 mm respectively. 

Table 1 represents the mean AFLE obtained by expert and novice raters. Expert raters overall had 

a lower mean AFLE (1.33 mm ± 0.79 mm), compared to novice raters (1.73 mm ± 1.30 mm). 

Wilcoxon rank-sum tests for AFLE between expert and novice raters with Bonferroni correction 

for multiple comparisons are shown in Table 1. Expert raters had a lower AFLE in 29 of the 32 

AFIDs. 6 AFIDs had significantly different AFLEs between raters, 5 of which were higher in the 

novice raters. The superior interpeduncular fossa (AFID05) however had a greater AFLE obtained 

by expert raters compared to novice raters. 

To illustrate the differences in AFLE obtained across all 39 subjects and 32 AFIDs, the mean 

AFLE across the 5 raters was obtained. This produced a 39 by 32 matrix which is represented as a 

colormap in fig. 2.  Each cell in the matrix represents the mean AFLE across the 5 raters for that 

subject and AFID. This figure illustrates the distribution of errors across the 39 subjects. Some 

fiducials with a high AFLE, such as AFIDs 25 and 26 demonstrate a consistently higher error 

across most subjects. However, other fiducials such as AFIDs 15 and 16 only demonstrate a higher 

AFLE in a subset of subjects. 

Intraclass correlation coefficient (ICC) was calculated for each AFID between all raters, expert 

raters and novice raters, summarized in Table 2. The mean ICC across all AFIDs was 0.814 

between all raters, 0.912 between expert raters and 0.777 between novice raters. The superior 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 15, 2021. ; https://doi.org/10.1101/2020.12.17.423333doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423333


10 
 

interpeduncular fossa (AFID 05) had the lowest ICC among both expert and novice raters (0.708 

and 0.544 respectively). Otherwise, novice raters also had a lower inter-rater agreement when 

placing AFIDs associated with the temporal horns (AFIDs 23 to 26). The left anteromedial 

temporal horn (AFID26) had the second lowest ICC calculated at 0.567 between novice raters, but 

had an ICC of 0.963 between expert raters. 

Analysis in MNI Space 

         To demonstrate the use of AFIDs in determining registration error, subject scans were 

linearly and non-linearly transformed to the MNI152NLin2009cAsym brain template. The mean 

real-world and consensus AFREs were calculated. Linear and non-linear real-world AFREs for 

each AFID are presented in Online Resource 3. The mean non-linear real-world AFRE is 3.34 mm 

± 1.94 mm, and the linear AFRE is 4.15 mm ± 2.03 mm. Wilcoxon rank-sum tests for real-world 

AFREs between linear and non-linear registration with Bonferroni correction for multiple 

comparisons are shown in Online Resource 3. 15 of the 32 AFIDs had a significantly greater AFRE 

when using linear registration compared to non-linear registration. Additionally, the consensus 

AFRE is presented in Online Resource 3, with a mean consensus AFRE of 2.82 mm ± 2.01 mm. 

6 AFIDs had a significantly higher non-linear real-world AFRE compared to consensus AFRE 

(AFIDs 1, 5, 8, 9, 31 and 32).  

Fig. 3 demonstrates the mean non-linear real-world AFRE across all subjects and raters for each 

AFIDs. The anterior commissure (AFID01) had the smallest AFRE calculated at 1.11 mm ± 1.06 

mm. The right and left ventral occipital horns (AFIDs 29 and 30) had the largest AFRE at 6.81 

mm ± 2.94 mm and 7.36 mm ± 3.41 mm respectively. A colormap of non-linear AFRE across the 

5 raters for each subject and AFID is illustrated in fig. 3. This figure demonstrates that the AFIDs 

with the smallest registration error (AFIDs 1, 2, 11, 12, 13, 31 and 32) were robustly decreased 

across most subjects. Alternatively, AFIDs 29 and 30 had large registration errors across multiple 

subjects. 

Distance between AFIDs as a biomarker of disease 

         An unpaired 2-tailed t-test was performed to compare age across the two groups, 

demonstrating no statistical difference in age (p = 0.48). Additionally, a chi-square test 
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demonstrated no difference in sex distribution among the two groups (χ2 (1, N=69 = 3.76, p = 

0.053). 

496 unique Euclidean pairwise distances were calculated between AFIDs for our PD patients (n = 

39) and OASIS-1 subjects (n = 30). Fig. 4 represents the differences between the mean of each 

pairwise distance, calculated by subtracting the mean distances in the OASIS-1 dataset from the 

mean distances in the PD subject dataset (therefore a positive value indicates a greater pairwise 

distance in the OASIS-1 subjects). Wilcoxon rank-sum tests were used, and statistically significant 

differences are indicated in fig. 4. Significance was determined after Bonferroni correction (i.e. by 

obtaining a p-value < 0.05/496). 

Between our PD and OASIS-1 datasets, 40 pairwise distances were statistically significantly 

different (Online Resource 4). The largest distances as a percentage of the distance in the PD 

dataset were in the left anterolateral to left inferior anteromedial temporal horn (AFID 22 and 26; 

2.82 mm, 29.6%), the pontomesencephalic junction to the superior interpeduncular fossa (AFIDs 

4 and 5; 2.47 mm, 26.5%) and the infracollicular sulcus to the pineal gland (AFIDs 3 and 14; 1.90 

mm, 18.7%). 

Discussion 

Summary 

AFIDs were developed as a method to provide a point-based distance to evaluate brain 

image correspondence (Lau et al. 2019). Using a set of standard templates and individual subject 

datasets, we previously found that AFID placement protocol was reproducible and more sensitive 

to local registration error compared to commonly applied voxel overlap measures. The current 

study sought to apply the AFIDs framework to a clinical dataset, using a set of MRI images 

obtained in a population of patients with PD. We first demonstrate that AFIDs can be placed with 

low error by both novices and experts. We then demonstrate the use of AFIDs to evaluate the 

transformation of our clinical images to a standard MNI brain template. We obtained point-based 

measures to evaluate local registration error for each subject. Finally, by comparing patients with 

controls, we provide evidence that the distance between AFIDs could be a biomarker of PD that 
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does not rely on any special imaging scans other than a volumetric structural T1 weighted MRI 

scan. 

Accuracy of AFID placement 

To investigate the accuracy of AFID placement in a clinical setting, we obtained AFLE 

measurements among novice and expert raters. A mean AFLE of 1.57 mm ± 1.16 mm was obtained 

across all raters and clinical images. Expert raters generally placed AFIDs with greater accuracy 

than novice raters, as evidenced by a lower mean AFLE (1.33 mm ± 0.79 mm compared to 1.73 

mm ± 1.30 mm) and a greater inter-rater reliability. This suggests that prior knowledge of 

neuroanatomy does aid in the placement of AFIDs, and that expert raters are more accurate in their 

use of the AFIDs framework in clinical applications reliant on accurate MRI registration. 

The points with lowest AFLE across all raters were the anterior and posterior commissures 

(AFID01-02; 0.70 mm ± 0.78 mm and 0.55 mm ± 0.34 mm respectively), which has also been 

found previously (Liu and Dawant 2015; Lau et al. 2019). Points associated with the ventricular 

system had the largest AFLE. However, we find that errors associated with these AFIDs are not 

always homogeneously distributed across subjects. For instance, while the right and left inferior 

anteromedial temporal horns (AFID25-26) had a high AFLE in most subject scans, the right and 

lateral ventricles at the anterior commissure (AFIDs 15 and 16) only had a high AFLE in select 

subject scans (Fig. 2). This may be a consequence of the decreased quality clinical images may be 

subject to, perhaps making some of these structures more difficult to resolve. Anatomical 

variability across subjects likely also contributes to an increased AFLE. 

Overall, our findings suggest that both novice and expert raters are able to place AFIDs within a 

margin of error in the millimeter range. In fact, our overall AFLE is comparable with errors 

obtained in our previous work (Lau et al. 2019), with a mean AFLE of 1.27 mm in high resolution 

template scans and 1.58 mm in individual scans. We had also found that fiducials around the 

ventricular system had an increased error, with AFLEs in the 2-3 mm range. Therefore, despite the 

heterogeneous nature of clinically obtained imaging, we provide evidence that AFIDs can be 

placed with millimetric accuracy. 

Registration error 
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We evaluated the use of AFIDs to provide a point-based quantitative metric for registration 

of our clinical images to a standard MNI template. We used fMRIPrep to perform linear and non-

linear techniques for our registration. We found a mean non-linear real-world AFRE of 3.34 mm 

± 1.94 mm and mean linear AFRE of 4.15 mm ± 2.03 mm. 15 of the 32 AFIDs had significantly 

lower AFREs with non-linear registration compared to linear registration. Non-linear registration 

has evidence for improved registration accuracy; however, accuracy for these registration methods 

were previously assessed by calculating voxel overlap in specific ROIs (Klein et al. 2009; Modat 

et al. 2010; Chakravarty et al. 2009). We demonstrated that point-based accuracy measures can 

provide a more localized quantification of registration error (Lau et al. 2019). In this paper, we 

provide evidence that the AFIDs protocol can be used in a clinical set of images to provide 

localized quantification of registration error. Furthermore, we demonstrate a decreased registration 

errors obtained through non-linear registration compared to linear registration. 

Fig. 3 demonstrates the distribution of non-linear registration errors across each AFID and subject. 

These findings highlight the utility of performing a point-based measure of registration error, as 

we are able to quantify local areas of registration error for each patient. A schematic such as this 

may have utility in clinical and research settings where brain image registration is required for a 

set of subjects, allowing for focal areas of misregistration to be quickly identified. In our particular 

case, we can see that AFIDs 29 and 30 had a large AFRE across most patients.  

We focussed on examining mean real-world AFREs as these values are representative of 

registration errors obtained in a clinical setting by a single rater. However, as a metric, the real-

world AFRE has the disadvantage of representing a combination of both the localization error of 

a single rater as well as registration error. On the other hand, the consensus AFREs represent the 

registration error obtained from the mean coordinates in template space, obtained by averaging the 

coordinates of multiple raters, prior to transformation to MNI space, following the definition from 

the original manuscript (Lau et al. 2019). Overall, the consensus AFREs are smaller than the real-

world AFREs, since the impact of localization error on the measurement is minimized, and 

represents a more accurate estimation of AFRE although it requires more manual intervention.  

Both non-linear real-world and consensus AFREs we obtained were higher than we previously 

reported using MRI images from the OASIS database (1.80 mm ± 2.09 mm). Registration may 
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have been affected by the variable quality of clinical images, baseline structural differences in PD 

patients, and the use of gadolinium-enhanced images for which fMRIPrep is not optimized. We 

elected to use fMRIPrep due to its focus on robustness rather than accuracy, and because it has 

been demonstrated to achieve accurate registration in the use of traditional voxel overlap measures 

(Liu and Dawant 2015). We used fMRIPrep in our previous work to define a baseline for future 

refinement (Lau et al. 2019) and elected to use it in this study to aid in directly comparing our 

results. 

Distance between AFIDs as a biomarker of disease 

         AFIDs provided us with the additional opportunity to investigate for potential biomarkers 

of PD. We compared pairwise distances between AFIDs in our clinical population to control 

subjects in the OASIS database. A difference in pairwise distance may represent relative 

morphometric changes (atrophy or hypertrophy) in the cerebral tissue between AFIDs. In our 

clinical population, we observed the largest differences between the left anterolateral to left 

inferior anteromedial temporal horn, the pontomesencephalic junction to the superior 

interpeduncular fossa and the infracollicular sulcus to the pineal gland. These distances were all 

smaller in our PD patient population. 

Voxel-based morphometric studies in PD patients have resulted in inconsistent findings, with 

conflicting reports of volumetric changes in the substantia nigra (SN) and various cortical areas 

(Heim et al. 2017; Pyatigorskaya et al. 2014). The SN has reportedly been associated with smaller 

volumes in patients with PD (Menke et al. 2009; Minati et al. 2007); although other studies have 

either reported no difference (Péran et al. 2010) or increased volumes in PD patients (Cho et al. 

2011). Widespread cortical atrophy has been reported in PD patients with no cognitive impairment 

(Jubault et al. 2011; Lyoo et al. 2010), and volumetric decrease in the hippocampus and 

temporoparietal cortex has been associated with cognitive decline in PD patients (Weintraub et al. 

2012). Our results may be in keeping with some of these findings. In particular, a decreased 

distance between the pontomesencephalic junction to the superior interpeduncular fossa and the 

infracollicular sulcus to the pineal gland may be a manifestation of a decrease in SN volume. 

Additionally, hippocampal atrophy may result in a decreased distance between the left 

anteromedial and anterolateral temporal horn. In fact, Camicioli et al. demonstrated a decrease in 
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hippocampal volumes in patients with PD, with an association between decreased left hippocampal 

volumes and cognitive decline in PD (Camicioli et al. 2003). Finally, these significant differences 

in local point-wise distance highlight the need to exercise caution when projecting findings in 

normal controls to patient groups as there can be differences in local brain shape. 

Limitations and future directions 

         This study has a number of limitations. Although we demonstrate that on average expert 

raters had a lower AFLE than novice raters, investigating AFLE in 32 AFIDs introduces multiple 

comparisons which required statistical correction. However, the sample size of this study may not 

provide sufficient power in demonstrating significant differences in AFLE for each AFID. 

Additionally, clinical imaging may be subject to variable image quality which can add subjectivity 

in placing AFIDs. This may result in higher AFLEs and AFREs, although these results may be 

more representative of the AFIDs framework applied in a clinical setting. Given that PD is a 

degenerative disease with minimal imaging findings, we are unable to assess the AFIDs framework 

in a clinical setting with patients who have mass lesions such as brain tumours. Finally, our 

comparisons of pairwise distances between AFIDs may be confounded by demographic and 

imaging differences between our PD patient population and the OASIS-1 subjects. Despite this, 

we provide a novel framework utilizing AFIDs to investigate for biomarkers.  

Further work is required to automate the placement of fiducials, providing clinicians with an 

efficient method to characterize image registration without the subjectivity of manual AFID 

placement.  Although we demonstrate the use of AFIDs to investigate biomarkers for patients with 

PD, further work is required to further investigate the robustness of our findings and provide more 

data that can be used to investigate for subtle biomarkers of neurological diseases. 

Conclusion 

         In summary, we demonstrate that the AFIDs framework can be applied to a clinical 

population of PD patients with millimetric accuracy. Successful utilization of AFIDs in the context 

of neurosurgical planning for stereotactic procedures can provide accurate and quantitative 

measures of image registration, potentially improving outcomes from such procedures. 

Additionally, we demonstrate how distances between AFIDs could be used as a biomarker to 
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investigate morphological differences in neurodegenerative diseases. AFIDs provide researchers 

with the benefit of a common, open framework that can be applied across different studies, 

allowing for an aggregation of clinical datasets and comparisons between various neurological 

conditions. 
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Tables 

 

Fiducial Fiducial Name Expert AFLE (mm) Novice AFLE (mm) 

1 AC 0.54 ± 0.36 0.81 ± 0.45 

2* PC 0.41 ± 0.75 0.65 ± 1.09 

3 Infracollicular sulcus 0.92 ± 1 1.15 ± 0.71 

4 PMJ 0.86 ± 1.28 1.03 ± 1.92 

5* Superior interpeduncular fossa 1.60 ± 1.48 1.16 ± 1.23 

6 R superior LMS 1.35 ± 1.75 1.44 ± 1.35 

7 L superior LMS 1.55 ± 1.5 1.43 ± 1.72 

8 R inferior LMS 1.61 ± 1.45 1.99 ± 1.9 

9 L inferior LMS 1.68 ± 1.27 1.94 ± 1.44 

10 Culmen 1.35 ± 0.6 1.86 ± 0.68 

11 Intermammillary sulcus 0.64 ± 0.71 0.78 ± 0.85 

12 R MB 0.78 ± 0.78 0.87 ± 0.92 

13 L MB 0.85 ± 1.47 0.82 ± 1.34 

14 Pineal gland 1.41 ± 1.35 1.53 ± 1.29 

15* R LV at AC 1.32 ± 1.41 2.74 ± 1.45 

16* L LV at AC 1.43 ± 1.39 2.93 ± 1.2 

17 R LV at PC 1.30 ± 1.31 2.02 ± 1.02 

18 L LV at PC 1.16 ± 1 1.65 ± 0.93 

19 Genu of CC 0.96 ± 0.89 1.22 ± 1.07 

20* Splenium 0.98 ± 1.11 1.47 ± 1.67 

21 R AL temporal horn 1.39 ± 1.35 1.64 ± 1.6 

22 L AL temporal horn 1.48 ± 1.51 2.00 ± 1.38 

23 R superior AM temporal horn 1.45 ± 1.56 1.78 ± 1.55 

24 L superior AM temporal horn 1.56 ± 2.19 1.94 ± 2.4 

25 R inferior AM temporal horn 2.29 ± 2.57 2.85 ± 2.34 

26 L inferior AM temporal horn 2.46 ± 1.55 3.01 ± 1.48 

27 R indusium griseum origin 1.51 ± 1.87 2.10 ± 1.64 

28 L indusium griseum origin 1.75 ± 1.42 2.04 ± 1.26 

29 R ventral occipital horn 1.34 ± 1.37 1.91 ± 1.58 

30 L ventral occipital horn 1.48 ± 2.17 2.24 ± 1.3 

31 R olfactory sulcal fundus 1.73 ± 1.85 2.23 ± 1.25 

32* L olfactory sulcal fundus 1.55 ± 1.34 2.29 ± 1.33 

Mean   1.33  ± 0.79 1.73  ± 1.30 

 

 

 

 

 

 

  

 

Wilcoxon rank-sum tests were obtained for each anatomical fiducial (AFID) between expert and novice 

raters, with a significance threshold of 0.05/32. 6 AFIDs had significantly different AFLEs obtained by 

novice and expert raters. All but one AFID (05) had higher AFLEs obtained by novice raters. AC, anterior 

commissure; AL, anterolateral; AM, anteromedial; CC, corpus callosum; IPF, interpeduncular fossa; MB, 

mammillary body; LMS, lateral mesencephalic sulcus; LV, lateral ventricle; PC, posterior commissure; 

PMJ, pontomesenphalic junction. 

 

Table 1 - Mean anatomical fiducial localization error (AFLE) with standard deviation calculated for expert 

raters (MA and GG) and novice raters (AT, MJ and RC). 
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Fiducial Fiducial Name Novice ICC Expert ICC Total ICC 

1 AC 0.674 0.958 0.771 

2 PC 0.855 0.964 0.895 

3 Infracollicular sulcus 0.877 0.974 0.911 

4 PMJ 0.805 0.917 0.841 

5 Superior interpeduncular fossa 0.544 0.708 0.568 

6 R superior LMS 0.726 0.822 0.747 

7 L superior LMS 0.739 0.831 0.748 

8 R inferior LMS 0.796 0.885 0.814 

9 L inferior LMS 0.818 0.890 0.801 

10 Culmen 0.877 0.936 0.903 

11 Intermammillary sulcus 0.798 0.826 0.816 

12 R MB 0.765 0.849 0.798 

13 L MB 0.770 0.812 0.782 

14 Pineal gland 0.756 0.835 0.757 

15 R LV at AC 0.778 0.972 0.846 

16 L LV at AC 0.764 0.970 0.841 

17 R LV at PC 0.762 0.967 0.830 

18 L LV at PC 0.872 0.971 0.908 

19 Genu of CC 0.937 0.975 0.952 

20 Splenium 0.886 0.979 0.922 

21 R AL temporal horn 0.873 0.961 0.904 

22 L AL temporal horn 0.723 0.953 0.777 

23 R superior AM temporal horn 0.706 0.876 0.755 

24 L superior AM temporal horn 0.637 0.914 0.661 

25 R inferior AM temporal horn 0.625 0.943 0.704 

26 L inferior AM temporal horn 0.567 0.963 0.649 

27 R indusium griseum origin 0.829 0.931 0.866 

28 L indusium griseum origin 0.836 0.866 0.853 

29 R ventral occipital horn 0.924 0.990 0.947 

30 L ventral occipital horn 0.926 0.991 0.946 

31 R olfactory sulcal fundus 0.748 0.884 0.780 

32 L olfactory sulcal fundus 0.673 0.867 0.737 

Mean   0.777 0.912 0.814 

 

 

 

 

 

 

 

 

 

Table 2 - Intraclass correlation coefficient (ICC) calculated for each anatomical fiducial (AFID) across 39 subjects, 

across all raters, expert raters (MA and GG) and novice raters (AT, MJ and RC). 

 

ICC was calculated using a two-way random effects model with a single measurement type. The mean ICC in these 

three groups was obtained across all AFIDs. AC, anterior commissure; AL, anterolateral; AM, anteromedial; CC, 

corpus callosum; IPF, interpeduncular fossa; MB, mammillary body; LMS, lateral mesencephalic sulcus; LV, lateral 

ventricle; PC, posterior commissure; PMJ, pontomesenphalic junction. 
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Figure Legends 

 

Fig. 1 – Schematic of workflow to obtain localization errors (above), and registration errors 

(below). In summary, 5 raters placed 32 anatomical fiducials (AFIDs) on each clinical image 

(blue). The mean location was calculated for each AFID (green), and the Euclidean distance 

from each rater’s placement was calculated (termed the localization error). Each rater 

independently placed AFIDs on the MNI images, and the mean location was calculated (purple). 

Rater placed AFIDs were transformed to MNI space. The Euclidean distance between each 

rater’s transformed AFID to the mean location of that AFID placed in MNI space was calculated 

and termed real-world registration error. Each mean AFID placement on the clinical images was 

transformed to MNI space, its Euclidean distance to that AFID placed in MNI space was 

calculated and termed consensus registration error. 

 

 

Fig. 2 – Mean anatomical fiducial localization error (AFLE) for each anatomical fiducial (AFID) 

and subject. Bottom colormap represents mean AFLEs across all raters for each AFID and 

subject, illustrating the distribution of AFLEs across all subjects and AFIDs. Top bar graph 

represents the mean AFLEs for each AFID across all 39 subjects + standard deviation. AFIDs 1, 

2 had the lowest AFLEs, while AFIDs 25 and 26 had the greatest AFLEs.  

 

 

Fig. 3 – Mean real-world anatomical registration error (AFRE) for each anatomical fiducial 

(AFID) and subject. Bottom colormap represents mean non-linear AFREs across all raters for 

each AFID and subject, illustrating the distribution of non-linear AFREs across all subjects and 

AFIDs. Top bar graph represents the mean non-linear AFRE for each AFID across all 39 

subjects + standard deviation. AFIDs 1, 2, 11, 12, 13, 31 and 32 had decreased AFREs across 

most subjects. AFIDs 29 and 30 had large AFREs across most subjects. 

 

 

Fig. 4 – Summary of mean pairwise distances between each anatomical fiducial (AFID) with 

significant differences. Bottom right shows heatmap representing the difference between mean 

pairwise distances between each AFID for OASIS-1 subjects and Parkinson’s disease (PD) 

patients. Positive differences represent a greater pairwise distance in the OASIS-1 subjects 

relative to PD patients. Significant differences illustrated in top left of figure, designated by a 

black box. Significance is determined by Wilcoxon rank-sum tests with Bonferroni correction, 

with a significance threshold of 0.05/496. 40 pairwise distances reached thresholds of statistical 

significance between PD vs controls (see Online Resource 4 for details). 
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Supplementary Information 

 

Online Resource 1 - Interactive 3-dimensional brain labelled with all anatomical fiducials. 

 

Online Resource 2 - Mean individual rater Euclidean distance from mid-commissural point 

(MCP) for all anatomical fiducials in subject space. 

 

Online Resource 3 - Mean real-world and consensus anatomical fiducial registration error 

(AFRE) with standard deviation obtained with linear and non-linear registration of clinical 

images to MNI space using fMRIPrep. 

 

Online Resource 4 - List of all mean pairwise distances (mm) ± standard deviation that are 

significantly different between OASIS-1 subjects and Parkinson’s disease patients. 
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