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Abstract 

Motor planning plays a critical role in producing fast and accurate movement. Yet, the neural 

processes that occur in human primary motor and somatosensory cortex during planning, 

and how they relate to those during movement execution, remain poorly understood. Here 

we used 7T functional magnetic resonance imaging (fMRI) and a delayed movement 

paradigm to study single finger movement planning and execution. The inclusion of no-go 

trials and variable delays allowed us to separate what are typically overlapping planning and 

execution brain responses. While our univariate results show widespread deactivation during 

finger planning, multivariate pattern analysis revealed finger-specific activity patterns in 

contralateral primary somatosensory cortex (S1), which predicted the planned finger 

movements. Surprisingly, these activity patterns were similarly strong to those found in 

contralateral primary motor cortex (M1). Control analyses ruled out the possibility that the 

detected information was simply an artifact of subthreshold movements during the 

preparatory delay. Furthermore, we observed that finger-specific activity patterns during 

planning were highly correlated to those during movement execution. These findings reveal 

that motor planning activates the specific S1 and M1 circuits that are engaged during the 

execution of a finger movement – while activity in the rest of S1 and M1 is suppressed. We 

propose that preparatory states in S1 may improve movement control through changes in 

sensory processing or via direct influence of spinal motor neurons. 

 

Key words 

Motor planning; Sensorimotor cortex; Finger control; fMRI; Representational geometry.  
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Introduction 

Animals are capable of generating a wide variety of dexterous behaviors accurately and 

effortlessly on a daily basis. This remarkable ability relies on the motor system reaching the 

appropriate preparatory state before each movement is initiated. At the level of behavior, the 

process of motor programming, or planning, has long been shown to be beneficial to 

performance (1–3), leading to faster reaction times (4–6) and more accurate response 

selection (7–10). The behavioral study of motor plans spurred the neurophysiological 

investigation of what movement parameters are specified in the neuronal firing of a number 

of cortical regions including the dorsal premotor cortex, PMd (11–13), the supplementary 

motor area, SMA (14), and the posterior parietal cortex, PPC (15–17). Building on this work, 

human neuroimaging studies have shown that activity in parieto-frontal brain regions during 

planning of prehension movements can be used to decode several movement properties 

such as grip type (18, 19), action order (20), and effector (21–24). At the level of the neural 

population dynamics (25), motor planning can be understood as bringing the neuronal state 

towards an ideal preparatory point. Once this state is reached and the execution is triggered, 

the intrinsic dynamics of the system then let the movement unfold (26, 27). 

While the neuronal correlates of movement planning have largely been studied in non-

human primates using upper limb movements, such as reaching and grasping, motor 

planning plays a crucial role also in finer hand control (7). Despite their importance for 

everyday dexterous behaviors such as typing, writing, or tying a knot, finger movements have 

not been closely investigated at the single neuron level. In humans, previous fMRI studies of 

finger movements have not separated planning from execution (28–35). Therefore, we only 

have a very incomplete picture of how motor planning readies the human sensorimotor 

system for the production of fine finger movements. Based on previous work in reaching, we 

expected that premotor and parietal regions mostly represent planned movements, while the 

primary motor cortex (M1) represents movements during both planning and execution (36–

38). What is unclear, however, is whether the primary somatosensory cortex (S1) also 

receives information about the planned movement before movement onset. Furthermore, we 

currently don’t know how brain representations of planned finger movements relate to those 

during movement execution. To address these gaps, here we designed a high-field (7T) fMRI 

experiment to study what brain regions underlie the planning of individual finger movements. 
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We used no-go trials and variable delays to temporally separate the evoked responses to 

movement planning and execution, and advanced multivariate pattern analyses to examine 

the correspondence between fMRI correlates of planned and executed finger movements. 

 

Results 

Deactivation in sensorimotor regions during planning of finger movements 

We instructed 22 participants to plan and execute repeated keypresses with individual 

fingers of their right hand on a keyboard device while being scanned with 7T fMRI. The key 

to be pressed corresponded to one of three fingers (thumb, middle, and little) and was cued 

during the preparation phase by numbers on the screen (1=thumb, 3=middle, 5=little, e.g., 

Fig. 1A). 

 

 
Figure 1 | fMRI task and BOLD responses. A. Example trial with timing information. 
Background colors indicate different experimental phases (yellow = preparation; green = 
movement (Go) or wait (No-go); purple = reward; gray = inter-trial interval, ITI). B. Example of 
average BOLD response (N = 22) for Go and No-go trials in a region that shows no planning 
evoked activity (Left M1, top), and one that shows some planning evoked activity (Left aSPL, 
bottom). Background colors correspond to trial phases as in A. 
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After a variable delay (4–8 seconds), participants received a color cue indicating whether to 

press the planned finger (Go trials), or not (No-go trials). Upon the Go cue, participants had 

to initiate the correct response as fast as possible and make 6 presses of the designated 

finger, before receiving accuracy points for reward (see Methods). To control for involuntary 

overt movements during the preparation phase, we required participants to maintain a steady 

force on all of the keys during the delay, which were closely monitored online. To ensure that 

planning results would not be biased by the subsequent execution, we restricted all our 

analyses to No-go trials where no subsequent movement occurred (see Methods). First, we 

asked which brain regions showed an evoked response during the planning of finger 

movements (e.g., Fig. 1B). We focused our analysis on the lateral aspect of the contralateral 

(left) hemisphere (purple and white areas of the Fig. 2 inset) which included premotor, 

sensory-motor and anterior parietal brain regions. To examine brain activation during finger 

planning, we performed a univariate contrast of the preparation phase (across the three 

fingers) versus the resting baseline (Fig. 2A). Overall, the instruction stimulus evoked little-

to-no activation in our regions of interest (ROIs, Fig. 2A). In fact, compared to resting 

baseline, we observed significant deactivation (Fig. 2E) in dorsal premotor cortex (PMd, t21= 

-2.642, p = 0.015), primary motor cortex (M1, t21 = -7.592, p = 1.887e-07), and primary 

somatosensory cortex (S1, t21 = -6.618, p = 1.491e-06). In comparison, movement execution 

strongly activated M1 and S1 (Fig. 2C), with activation being significant in all our ROIs (Fig. 

2E, all t21 > 14.469, all p < 2.153e-12). 

 

Planning induces informative patterns in primary motor and somatosensory cortex 

Preparatory processes need not increase the overall activation in a region. Rather, the region 

could converge to a specific preparatory neural state (26), while activity increments and 

decrements within the region (i.e., at a finer spatial scale) average each other out. In this 

case, information about planned movements would be present in the multivoxel activity 

patterns in that region. To test this idea, we calculated the Crossnobis dissimilarity between 

activity patterns. Systematically positive values of this dissimilarity indicate that the patterns 

reliably differentiate between the different planned actions (39, 40). Indeed, a surface-based 

searchlight approach (41) revealed reliably positive Crossnobis dissimilarity between the 

activity patterns related to planning of individual finger movements (Fig. 2B) in both M1 (t21 = 

2.734, p = 0.012) and S1 (t21 = 2.987, p = 0.007, Fig. 2F). 
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Figure 2 | Activation and distance analyses of movement planning and execution. The inset 
shows the inflated cortical surface of the contralateral (left) hemisphere, highlighting the area 
of interest (purple) and the strip used for cross-section analysis (white). Major sulci are 
indicated by white dotted lines. A. Univariate activation map (percent signal change) for the 
contrast planning>baseline (No-go trials only). B. Multivariate searchlight map of the mean 
Crossnobis distance between the planning of the three fingers (No-go trials only). C. Same as 
A, but for the univariate contrast execution>baseline. D. Same as B, but for the mean 
Crossnobis distance between fingers during movement execution. E. Cross-section analysis 
of the mean percent signal change (± SEM) during planning (orange) and execution (blue). 
Horizontal bars indicate significance (p < 0.05) in a 2-sided one-sample t-test vs zero for 
selected ROIs. F. Same as E, but for the mean Crossnobis distance (± SEM). Pre-CS = 
precentral sulcus; CS = central sulcus; Post-CS = postcentral sulcus; PMd = dorsal premotor 
cortex; M1 = primary motor cortex; S1 = primary somatosensory cortex; aSPL = anterior 
superior parietal lobule. 
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Surprisingly, the distribution of these informative patterns was highly similar to the distribution 

of information during movement execution (Fig. 2D). Visual inspection suggested that the 

informative patterns during planning may be concentrated more dorsally in M1 and S1 

relative to execution. However, a Hotelling T2 test revealed no systematic difference in the 

location of the peak vertex between planning and execution across subjects (M1: T22,20 = 

0.725, p = 0.712; S1: T22,20 = 2.424, p = 0.335). Thus, our results show that information about 

single finger movements is already represented during motor planning in the same parts of 

the primary motor and somatosensory cortices that are engaged during execution of the 

movements. Given that we only used the activity estimates from no-go trials only (~40% of 

total trials), this information cannot be explained by a spill-over from subsequent execution-

related activity. An analysis using the estimates of planning activity from all trials yielded very 

similar results (see Fig. S1), demonstrating that we could separate planning from execution-

related signals. 

 

Activity patterns are not caused by small movements during the preparation phase 

The presence of planning-related information in primary sensorimotor regions was surprising, 

especially in S1, where it has not been reported before in comparable fMRI studies (18, 20). 

To ensure that these results were not caused by overt movement, participants were 

instructed to maintain a steady force on the keyboard during the preparation phase, such 

that we could monitor even the smallest involuntary preparatory movements. Inspection of 

the average force profiles (Fig. 3A) revealed that participants were successful in maintaining 

a stable force between 0.2 and 0.4 N during preparation. However, averaging the forces may 

obscure small, idiosyncratic patterns visible during individual trials (Fig. 3B) that could be 

used to distinguish the different movements. To test for the presence of such patterns, we 

submitted both the mean and standard deviation of the force traces on each finger to a 

multivariate dissimilarity analysis (see Methods). 
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Figure 3 | Small involuntary movements do not explain preparatory activity patterns in M1 and 
S1. A. Mean finger force (± SEM) plotted in 10 ms bins, time-aligned to instruction onset 
(dotted vertical line) and end of the preparation phase (dashed vertical lines), separately for 
the three fingers and go (blue) and no-go (orange) trials. B. Example of an individual trial with 
a 6 s preparation phase, followed six presses of the little finger (green). Horizontal solid line 
denotes press threshold (1 N). Dash-dotted lines denote the boundaries of the finger pre-
activation red area in Fig. 1A (see Methods). RT = reaction time; MT = movement time. C. 
Pearson’s correlation (r) between behavioral and neural distances in M1 and S1 (see Methods) 
during the preparation phase (Planning, orange). Each dot represents an individual 
participant (N = 22). Solid line shows linear regression, p-values refers to the slope of the line. 
D. Same as C, but during the movement phase (Execution, blue). 
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Indeed, this sensitive analysis revealed that some participants showed small movement 

patterns predictive of the upcoming finger (Fig. 3C). These differences, however, were ~200-

300 times smaller than the average differences during execution (Fig. 3D). More importantly, 

the magnitude of the behavioural differences for the preparation phase was unrelated to the 

amount of planning information present in sensory-motor regions (both p-values for the slope 

of the linear fit > 0.3). Even after correcting for the influence behavioral patterns, the 

informative patterns in M1 and S1 remained significant, as shown by a significantly positive 

intercept in the linear fit in Fig. 3C (M1: p = 0.032; S1: p = 0.007). Thus, the finding of finger-

specific activity patterns in M1 and S1 cannot be explained by small involuntary movements 

during the preparation phase. 

 

Single finger activity patterns from planning to execution are positively correlated 

How do planning-related activity patterns in M1 and S1 relate to the activity patterns observed 

during execution? Neurophysiological experiments have suggested that patterns of 

movement preparation are orthogonal – or uncorrelated – to the patterns underlying active 

movement (42). This arrangement allows movement preparation to occur without causing 

overt movement. When we compared the planning- and execution-related activity patterns 

as measured with fMRI, a technique that samples neuronal activity at a much coarser spatial 

resolution, we found the opposite result. Planning and movement related patterns for the 

same finger were tightly related. Inspection of the representational dissimilarity matrices 

(RDMs) for M1 and S1 (Fig. 4A), clearly shows that the biggest difference was between 

planning and execution patterns, which can also be seen in a 3D representation of the 

representational geometry (PC1 in Fig. 4B). Within each phase, the pattern for the thumb was 

more distinct than those for the other fingers, replicating previous results from execution 

alone (28, 29). 
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Figure 4 | Correlated representations of single fingers across planning and execution. A. 
Representational dissimilarity matrices (RDMs) of the activity patterns evoked by the three 
fingers during the preparation (No-go planning, orange) and movement (execution, blue) 
phases, separately for the two main ROIs (M1, left; S1, right). B. Multidimensional scaling 
(MDS) projection of the RDMs in A highlighting the first principal component (PC 1, difference 
between planning and execution). The black cross denotes resting baseline. C. Same as B, 
but rotated view to highlight the representational geometries for PC 2 and PC 3. D. Pattern 
component modelling (PCM) evaluation of models of different correlations between planning- 
and execution-related activity patterns (x-axis). Shown is the group-average of the individual 
log likelihood (± SEM) curve expressed as a difference from the mean log-likelihood across 
models. Horizontal gray bars indicate models that perform statistically equivalently (p > 0.05) 
to the best fitting model (determined in a cross-validated fashion, see Methods). Red dots 
indicate points of individually best fitting correlations (N = 22). Red dashed lines denote the 
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average winning models across participants. Dotted lines show the projections of horizontal 
bars and dashed lines on the respective axes. 

 

Importantly, however, a rotated view of the representational geometry (Fig. 4C) showed that 

the finger patterns were arranged in a congruent way, with planning and execution related 

activity patterns for the same finger being closer to one another. To more precisely quantify 

the correspondence between planning and execution pattern for each finger, we used 

Pattern Component Modeling (PCM) to evaluate the likelihood of the data, assuming a true 

correlation between 0 and 1. This approach automatically corrects for the biasing effect of 

measurement noise, which would lead to simple empirical pattern correlations to be lower 

than the true correlation. From the individual fits, we found that the average best correlation 

model was at 0.83 (± 0.053 SEM) for M1 and at 0.81 (± 0.061 SEM) for S1 (Fig. 4D, dotted 

lines). Using a cross-validated approach (see Methods), we compared the log likelihoods to 

test whether the best fitting model was significantly better than any of the other correlation 

models. In both ROIs, the best fitting model was significantly better than the zero-correlation 

model (i.e., activity patterns across planning and execution totally uncorrelated, both p < 

0.005), but not better than the one-correlation model (i.e., activity patterns are scaled version 

of each other, both p > 0.1). By applying this method to every other model, we have evidence 

that the true (i.e., noiseless) correlation between planning and execution finger-specific 

activity pattern was between 0.41–1.0 in M1 and between 0.54–1.0 in S1 (Fig. 4D, horizontal 

bars). In sum, at the resolution of fMRI, the process of movement planning seems to induce 

a finger-specific pattern, which then gets fully activated during movement execution. 

 

Discussion 

In the present study we asked participants to produce repeated single finger movements 

while undergoing 7T fMRI. We used a variable preparatory delay and no-go trials to cleanly 

dissociate the responses to successive preparation and movement phases. We found that 

information about planned finger movements is present in both S1 and M1 before movement 

onset, even though the overall level of activation in these regions was below resting baseline. 

Moreover, while execution elicited much higher brain activation, the fine-grained, finger-

specific activity patterns were highly similar across planning and execution. Control analyses 

confirmed that the observed results were not caused by pre-movement finger activity. 
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Our finding that motor planning activates M1 in a finger-specific fashion was not 

necessarily surprising given many neurophysiological studies reporting anticipatory activity 

of M1 neurons related to movement intentions (37, 43, 44), as well as human neuroimaging 

showing shared information between delayed and immediate movement plans (36). In 

contrast, the robust activity patterns related to single finger planning in S1 were more 

surprising, given that this region is often considered to be mostly concerned with processing 

incoming sensory information from tactile and proprioceptive receptors arising after 

movement onset (18, 20–22). So, what could then be the role of S1 during movement 

planning? 

First, it is worth noting that there are substantial projections from S1 (area 3a) that 

terminate in the ventral horn of the cortico-spinal tract (45, 46). Although prior stimulation of 

area 3a in macaques has failed to evoke overt movement or to facilitate motoneuron activity 

(47), it has been suggested that this population of cortico-motoneurons specifically projects 

to gamma motoneurons that control the sensitivity of muscle spindle afferents (46). Thus, it is 

possible that S1 plays an active role in movement generation by preparing the spindle 

apparatus in advance of the movement. 

Second, the finger-specific preparatory state in S1 may reflect the anticipation or 

prediction of the upcoming sensory stimulation, allowing for a movement-specific sensory 

gain control (48). On the one hand, some sensory stimuli could become attenuated to 

maintain movement stability and filter out irrelevant or self-generated signals. Indeed, 

multiple studies have shown that both somatosensation and somatosensory-evoked 

potentials in S1 decrease during voluntary movement (49–52). On the other hand, sensory 

processing of the expected salient signals could be enhanced to improve movement 

execution and adaptation. 

Our findings of encoding of movement-related information in S1 before the onset of a 

movement is consistent with a recent non-human primate study (53). During a delayed 

reaching and grasping task, the authors showed movement-specific information in the 

electrocorticography (ECoG) signals from S1 well before movement initiation, and only 

slightly later than in M1. Here we show that motor planning induces a movement-specific 

preparatory state also in human S1. Together, these results suggest that the somatosensory 

system not only passively receives signals from the external world but also actively processes 

them via interactions with anticipatory information from the motor system. 
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One may wonder why such movement-specific encoding in S1 during planning has not 

been reported in previous human fMRI studies. One contributing reason may be that we had 

higher sensitivity to detect these signals than previous studies, as we used finger rather than 

arm movements (the former having more distinct cortical representation in S1), higher field 

strength (7T) and spatial resolution, and a more sensitive multivariate analysis method 

(crossnobis dissimilarity vs. pattern classification, Walther et al., 2016). 

Our second main finding – the close correspondence between finger-specific activity 

patterns across planning and execution – appears to be at odds with the idea that these two 

processes occupy orthogonal neural subspaces to avoid overt movement during planning 

(42, 54). We think that there are at least two possible explanations for this. First, the divergent 

results could be caused by the difference between spatially directed arm movements and 

non-spatial finger movements. If for single finger movements even single-neuron activity 

patterns are highly correlated between planning and execution, then overt movement during 

planning would need to be actively supressed, for example through the deactivation that we 

observed around the central sulcus. An alternative and perhaps more likely explanation of 

the discrepancy lies in the different measurement modalities. While the orthogonality was 

derived from electrophysiological recordings of individual neurons, the fMRI measurements 

we employed here mainly reflect excitatory postsynaptic potentials (55) and average 

metabolic activity across hundreds of thousands of cortical neurons. Thus, it is possible that 

planning pre-activates the specific cortical columns in M1 and S1 that are also most active 

during movement of that finger. Within each of these cortical micro-circuits, however, 

planning-related activity could still be orthogonal to the activity observed during execution at 

the single neuron level (e.g., see Arbuckle et al., 2020, for a similar observation for cortical 

representations of flexion and extension finger movements). This would suggest a new 

hypothesis for the architecture of the sensory-motor system where movement planning pre-

activates the movement-specific circuits in M1 and S1. However, it does so in a fashion that 

the induced planning-related activity is, in terms of the firing output of neurons, orthogonal to 

the patterns during movement execution.  
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Methods 

Participants 

Twenty-three right-handed neurologically healthy participants volunteered to take part in the 

experiment (13 F, 10 M; age 20–31 years, mean 23.43 years, SD 4.08 years). Criteria for 

inclusion were right-handedness and no prior history of psychiatric or neurological disorders. 

Handedness was assessed with the Edinburgh Handedness Inventory (mean 82.83, SD 

9.75). All experimental procedures were approved by the Research Ethics Committee at 

Western University. Participants provided written informed consent to procedures and data 

usage and received monetary compensation for their participation. One participant withdrew 

before study completion and was excluded from data analysis (final N = 22). 

 

Apparatus 

Repeated presses of right-hand finger movements were performed on a custom-made MRI-

compatible keyboard device (Fig. 1A). The keys of the device did not move but force 

transducers underneath each key measured isometric force production at an update rate of 

2 ms (Honeywell FS series; dynamic range 0-25 N; sampling 200 Hz). A keypress/release 

was detected when the force crossed a threshold of 1 N. The forces measured from the 

keyboard were low-pass filtered to reduce noise induced by the MRI environment, amplified, 

and sent to PC for online task control and data recording. 

 

Task 

We used a task in which participants produced repeated keypresses with their right-hand 

fingers in response to numerical cues appearing on the screen (white outline, Fig. 1A). On 

each trial, a string of 6 numbers (instruction) instructed which fingers to plan (1 = thumb, 3 = 

middle, 5 = little). After a variable delay (4, 6, or 8 s randomly sampled from a geometric 

distribution with p = 0.5; preparation phase, yellow background), participants received a 

color cue (Go/No-go cue) indicating whether to perform the planned finger movements (blue 

outline = Go, p = 0.6), or not (orange outline = No-go, p = 0.4). The role of No-go trials was 

to de-couple the hemodynamic response to the successive planning and execution events. 

To encourage planning during the delay period, at the Go/No-go cue the digits were masked 

with asterisks, and participants had to perform the movements from memory (movement 
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phase, green background). Participants had 2.5 seconds to complete the movement phase, 

and a vanishing white bar under the asterisks indicated how much time was left to complete 

all of the keypresses. To limit and monitor unwanted movements during the preparation 

phase, we required participants to pre-activate their fingers by maintaining a steady force of 

around 0.2-0.3 N on all of the keys during the Preparation phase. As a visual aid, we 

displayed a red area (between 0 and 0.5 N) and asked participants to remain within the 

middle of that range with all the fingers (touching either boundary of the red area would incur 

an error, counting as unwanted movement). In the case of a No-go trial, participants were 

instructed to remain as still as possible maintaining the finger pre-activation until the end of 

the movement phase (i.e., releasing any of the keys would incur an error). During the 

movement phase participants also received online feedback on the correctness of each 

press with asterisks turning either green, for a correct press, or red, for incorrect presses. 

After the movement phase, participants received points based on their performance (reward 

phase, 0.5 s, purple background). Participants were instructed to perform the movements as 

accurately as possible. As long as they remained within task constraints (i.e., 6 keypresses 

in less than 2.5 seconds), an exact movement speed was not enforced. On a trial-by-trial 

basis, during the reward phase participants received points for their performance according 

to the following scheme: -1 point in case of No-go error or Go cue anticipation (timing errors); 

0 points for pressing any wrong key (press error); 1 point in case of a correct No-go trial; and 

2 points in case of a correct Go trial. Inter-trial-intervals (ITIs) varied between 1 and 16 

seconds within the domain ITI = {1, 2, 4, 8, 16}. To reduce the overlap in brain responses 

from one trial to the next, actual ITIs were randomly picked from a geometric distribution with 

p = 0.5. This meant a higher probability of shorter intervals (1 and 2 s) and occasional very 

long intervals (8 and 16 s). The design was optimized to minimize the variance inflation factor 

(VIF): 

 

VIF = var(E) / var(X), 

 

the ratio of the mean estimation variance of all the regression weights (planning- and 

execution-related regressors for each finger), and the mean estimation variance had these 

regressors been estimated in isolation. For our design, the average VIF was quite low, on 
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average between 1 and 1.2, indicating that we could separate planning and execution 

related activity without a large loss of experimental power. 

 

Design 

Participants underwent one fMRI session consisting of 10 functional runs and 1 anatomical 

scan. In an event-related design, we randomly interleaved 3 types of repeated single finger 

movements involving the thumb (1), the middle (3), and the little (5) fingers (e.g., 111111 for 

thumb movement, Fig. 1A) and 3 types of multi finger sequences (e.g., 135315). The day 

before the fMRI scan, participants familiarized themselves with the experimental apparatus 

and the Go/No-go paradigm in a short behavioral session of practice outside the scanner (5 

blocks, about 15-30 min in total). For the behavioral practice, inter-trial intervals were kept to 

a fixed 1 s to speed up the task, and participants were presented with different sequences 

from what they would see while in the scanner. These 6-item sequences were randomly 

selected from a pool of all possible permutations of the numbers 1, 3, and 5, with the 

exclusion of sequences that contained consecutive repetitions of the same number. Given 

that the current paper is concerned with the relationship between representations of simple 

planning and execution, here we will focus only on the results for single finger movements. 

The results for multi finger sequences will be reported in a future paper. Each single finger 

trial type (e.g., 111111) was repeated 5 times (2 No-go and 3 Go trials), totalling 30 trials per 

functional run. Two periods of 10 s rests were added at the beginning and at the end of each 

functional run to allow for signal relaxation and provide a better estimate of baseline 

activation. Each functional run took about 5.5 minutes and the entire scanning session 

(including the anatomical scan and setup time) lasted for about 75 minutes. 

 

Imaging data acquisition 

High-field functional magnetic resonance imaging (fMRI) data were acquired on a 7T 

Siemens Magnetom scanner with a 32-channel head coil at Western University (London 

Ontario, Canada). The anatomical T1-weighted scan of each participant was acquired 

halfway through the scanning session (after the first 5 functional runs) using a Magnetization-

Prepared Rapid Gradient Echo sequence (MPRAGE) with voxel size of 0.75x0.75x0.75 mm 

isotropic (field of view = 208 x 157 x 110 mm [A-P; R-L; F-H], encoding direction coronal). To 

measure the blood-oxygen-level dependent (BOLD) responses in human participants, each 
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functional scan (330 volumes) used the following sequence parameters: GRAPPA 3, multi-

band acceleration factor 2, repetition time [TR] = 1.0 s, echo time [TE] = 20 ms, flip angle 

[FA] = 30 deg, slice number: 44, voxel size: 2x2x2 mm isotropic. To estimate and correct for 

magnetic field inhomogeneities, we also acquired a gradient echo field map with the following 

parameters: transversal orientation, field of view: 210 x 210 x 160 mm, 64 slices, 2.5 mm 

thickness, TR = 475 ms, TE = 4.08 ms, FA = 35 deg. 

 

Preprocessing and univariate analysis 

Preprocessing of the functional data was performed using SPM12 (fil.ion.ucl.ac.uk/spm) and 

custom MATLAB code. This included correction for geometric distortions using the gradient 

echo field map (56), and motion realignment to the first scan in the first run (3 translations: x, 

y, z; 3 rotations: pitch, roll yaw). Due to the short TR, no slice timing corrections were applied. 

The functional data were co-registered to the anatomical scan, but no normalization to a 

standard template or smoothing was applied. To allow magnetization to reach equilibrium, 

the first four volumes of each functional run were discarded. The pre-processed images were 

analyzed with a general linear model (GLM). We defined separate regressors for each 

combination of the 6 finger movements (single, multi) x 2 phases (preparation, movement). 

To control for the effect of potential spill-over of movement execution activity on the preceding 

planning activity, we also estimated a separate GLM with separate regressors for the 

preparation phases of Go and No-go trials, resulting in a total of 18 regressors (12 Go + 6 

No-Go), plus the intercept, for each run. Each regressor consisted of a boxcar function (on 

for 2 s of each phase duration and off otherwise) convolved with a two-gamma canonical 

hemodynamic response function with a peak onset at 5 s and a post-stimulus undershoot 

minimum at 10 s (Fig. 1B). Given the relatively low error rates (single: 8.51 ± 1.52 %, multi: 

17.21 ± 3.38 %; timing errors, single: 7.58 ± 0. 62 %, multi: 10.23 ± 0.85 %; press errors, 

single: 1.18 ± 0.26 %, multi: 9.04 ± 1.03 %), all trials were included to estimate the regression 

coefficients, regardless of whether the execution was correct or erroneous. Ultimately, the 

first-level analysis resulted in activation images (beta maps) for each of the 18 conditions per 

run, for each of the participants. 
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Surface reconstruction and ROI definition 

Individual subject’s cortical surfaces were reconstructed using Freesurfer (57). First, we 

extracted the white-gray matter and pial surfaces from each participant's anatomical image. 

Next, we inflated each surface into a sphere and aligned it using sulcal depth and curvature 

information to the Freesurfer average atlas (Fischl et al., 1999). Both hemispheres in each 

participant were then resampled into Workbench’s 164k vertex grid. This allowed us to 

compare similar areas of the cortical surface in each participant by selecting the 

corresponding vertices on the group atlas. Anatomical regions of interest (ROIs) were 

defined using a probabilistic cytoarchitectonic atlas (59) projected onto the common group 

surface. Our main ROIs were defined bilaterally as follows: primary motor cortex (M1) was 

defined by including nodes with the highest probability of belonging to Brodmann area (BA) 

4 within 2 cm above and below the hand knob anatomical landmark (60); primary 

somatosensory cortex (S1) was defined by the nodes related to BA 1, 2 and 3; dorsal 

premotor cortex (PMd) was defined as the lateral part of the middle frontal gyrus; finally, the 

anterior part of the superior parietal lobule (aSPL) included areas anterior, superior and 

ventral to the intraparietal sulcus (IPS). ROI definition was carried out separately in each 

subject using FSL’s subcortical segmentation. When resampling functional onto the surface, 

to avoid contamination between M1 and S1 activities, we excluded voxels with more than 

25% of their volume in the grey matter on the opposite side of the central sulcus. 

 

Multivariate distance analysis 

To detect single finger representations across the cortical surface, we used representational 

similarity analysis (RSA; Diedrichsen and Kriegeskorte, 2017; Walther et al., 2016) with a 

surface-based searchlight approach (62). For each node, we selected a region (the 

searchlight) corresponding to 100 voxels (12 mm disc radius) in the gray matter and 

computed cross-validated Mahalanobis (Crossnobis, Walther et al., 2016) dissimilarities 

between pairs of evoked activity patterns (beta estimates from first level GLM) of single finger 

sequences, during both preparation and movement phases. Prior to calculating the 

dissimilarities, beta weights for each condition were spatially pre-whitened (i.e., weighted by 

the matrix square root of the noise covariance matrix, as estimated from the residuals of the 

GLM. The noise covariance matrix was slightly regularized towards a diagonal matrix (63). 

Multivariate pre-whitening has been shown to increase the reliability of dissimilarity estimates 
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(39). The resulting analyses (one RDM per participant containing the dissimilarities between 

the three single fingers during planning and execution: 6 conditions, 15 dissimilarity pairs) 

were then assigned to the central node and the searchlight was moved across all nodes 

across the surface sheet obtaining a cortical map (Fig. 2B-2D). Cross-validation ensures the 

distances estimates are unbiased, such that if two patterns differ only by measurement noise, 

the mean of the estimated value would be zero. This also means that estimates can 

sometimes become negative. Therefore, dissimilarities significantly larger than zero indicate 

that two patterns are reliably distinct, similar to an above-chance performance in a cross-

validated pattern-classification analysis. Additionally, to the searchlight analysis, the 

multivariate analysis was conducted separately for each anatomically defined ROI (e.g., Fig. 

4A). 

 

Correlation between behavioral and neural distances 

To ensure that our planning results were not contaminated by unwanted micro-movements 

during the preparation phase, we calculated the behavioral distance between sequences on 

the basis of keyboard force data and correlated behavioral and neural distances. For 

behavioral distances, we first extracted force data (2 ms temporal resolution, smoothed with 

a gaussian kernel of 9.42 full width at half maximum, FWHM) and binned it in 10 ms steps 

(down sampling largely due to memory constraints) for both the preparation and movement 

phases (Fig. 3A). Next, for each subject, we calculated the mean (5) and the standard 

deviation (5) of the time-averaged force of each finger for each condition (3 sequences x 2 

phases = 6) and block (10). These subject-specific finger force patterns (60 x 10) were 

multivariately pre-whitened using their covariance matrix. Finally, we calculated the cross-

validated squared Euclidean distances for each condition (6 x 6 RDM) and averaged 

distances between the 3 finger movements for each phase (preparation, movement). These 

mean finger force distances for each subject were correlated with the mean voxel activity 

distances from the two phases for 2 ROIs (M1 and S1, Fig. 3C-3D). 

 

Pattern component modelling correlation models 

We used pattern component modelling (PCM) to quantify the correspondence of sequence-

specific activity patterns across planning and execution (64). This method has been shown 

to be advantageous in estimating correlations. In contrast to simple Pearson’s or cross-
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validated correlation estimated from raw activity patterns, PCM separately models the noise 

and signal components. We created 100 correlation models with correlations in the range [0–

1] in equal step sizes and assessed the likelihood of the observed data from each participant 

under each model. Fig. 4D shows average log-likelihoods for each model, relative to the 

mean log-likelihood across models. Differences between the log-likelihoods can be 

interpreted as log-Bayes factors. Group inferences were performed using a simple t-test on 

log-likelihoods. To compare each model to the best fitting model, we had to correct for the 

bias arising from picking the best model and testing it on the same data: We used n-1 

subjects to determine the group winning model, and then chose the log-likelihood of this 

model for the left-out subject (for whom this model may not be the best one) as the likelihood 

for the “best” model. This was repeated across all subjects and a one-sided paired-sample 

t-test was performed on the recorded log-likelihood and every other model. This test revealed 

which of the correlation models were significantly worse (i.e., associated with a lower log-

likelihood) than the winning model that was independently estimated via cross-validation.  
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Supplementary figures 

 

 
Figure S1 | Activation and distance analyses using planning of both Go and No-go trials. A. Activation 
map (percent signal change) for the contrast planning>baseline. The selected area of interest is the 
same as shown in purple in the inset of Fig. 2A. B. Crossnobis distance searchlight map for 
movement planning. C. Same as A, but for the contrast execution>baseline. D. Same as B, but for 
movement execution. E-F. Cross-section analysis corresponding to the same area shown in white in 
the inset of Fig. 2A. E. Mean percent signal change (± SEM) during planning (orange) and execution 
(blue). F. mean Crossnobis distance (± SEM). Horizontal bars indicate significance (p < 0.05) in a 
2-sided one-sample t-test against zero. All other figure conventions are the same as in Fig. 2. 
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