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Abstract

Data binning can cope with overplotting and noise, making it a versatile tool

for comparing many observations. However, it goes awry if the same observa-

tions are used for binning and contrasting. This creates an inherent circularity,

leaving noise and regression to the mean insufficiently controlled. Here, we use

population receptive field analyses – where data binning is commonplace – as

an example to expose this flaw through simulations and empirical repeat data.

Main text1

Data binning is often applied to large data sets in order to prevent overplotting2

and control noise. As such, it has become commonplace in population receptive3

field (pRF) modeling (Dumoulin & Knapen, 2018; Dumoulin & Wandell, 2008),4
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where researchers are commonly interested in comparing visual field maps with5

thousands of observations between different (experimental) conditions. However,6

pRF modeling is only one out of several research areas where some form of differential7

data binning has been adopted, such as psychology (Gignac & Zajenkowski, 2020;8

Holmes, 2009; Preacher, MacCallum, Rucker, & Nicewander, 2005; Shanks, 2017),9

systems neuroscience (Holmes, 2009; Kriegeskorte, Simmons, Bellgowan, & Baker,10

2009), epidemiology (Barnett, van der Pols, & Dobson, 2005), and presumably many11

more.12

Although differential data binning can help us see an overall pattern in the face13

of an abundance of details, it goes awry if the same noisy observations are used for14

binning (selection) and contrasting (selective analysis). This is because dipping into15

noisy data more than once violates assumptions of independence, favoring some noise16

components over others, and eventually biasing descriptive and inferential statistics17

(Kriegeskorte et al., 2009). As such, double-dipping in differential data binning18

prevents us from – amongst other things – controlling for regression to the mean19

(e.g., Galton, 1886; Gignac & Zajenkowski, 2020; Holmes, 2009; Makin & De Xivry,20

2019; Shanks, 2017). Regression to the mean is a statistical phenomenon operating21

when two variables are imperfectly correlated (e.g., due to random noise). In this22

case, extreme observations for one variable will on average be less extreme (closer to23

the mean) for the other variable (Campbell & Kenny, 1999; Cohen, Cohen, West,24

& Aiken, 2003; Shanks, 2017)1. The magnitude of regression to the mean tends to25

be higher the lower the correlation between the variables.26

Regression to the mean and/or double-dipping are of particular concern in what27

is better known as post hoc subgrouping (Preacher et al., 2005), post hoc data se-28

lection (Shanks, 2017), and extreme groups approach (Preacher et al., 2005), all of29

which can be considered as subtypes of data binning. Post hoc subgrouping refers30

to collecting two measures, defining extreme subgroups post hoc using one measure31

(e.g., the lower and upper quantile), and then performing statistics on these mea-32

1To be precise, regression to the mean refers to standard scores (z-scores; Campbell & Kenny, 1999; Kenny,

2005).
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Figure 1. Population receptive field estimates. The two circles represent a pRF that changes its position (gray
solid line) in an Interest (magenta) compared to a Baseline (gray) condition. The black solid square represents
a cutout of the visual field and the black dashed arrows a Cartesian coordinate system. The pRF was modeled
as a 2D Gaussian function. The center of the 2D Gaussian (tiny gray dot and small magenta dot) represents
the position of the pRF. PRF position can be expressed in terms of x0 and y0 coordinates (green arrow heads)
or eccentricity (blue dashed line) and polar angles (orange solid line). Eccentricity corresponds to the Euclidean
distance between the center of gaze (origin) and the center of the 2D Gaussian. Polar angle corresponds to the
counter-clockwise angle running from the positive x-axis to the eccentricity vector. The standard deviation of
the Gaussian (1σ; black solid line) represents pRF size. Both pRF position and size are typically expressed in
degrees of visual angle. Polar angles are typically expressed in degrees. Ecc = eccentricity. pRF = population
receptive field.

sures for the extreme subgroups (Preacher et al., 2005). Post hoc data selection33

is similar but involves only one extreme subgroup (Shanks, 2017). Both of these34

practices are different from the extreme groups approach, where extreme subgroups35

are selected a priori based on one measure; that is, without collecting the whole36

range of the other measure (Preacher et al., 2005). Here, we focus on a post hoc37

scenario where essentially all subgroups are considered, not just the extreme ones38

(see also Gignac & Zajenkowski, 2020; Holmes, 2009). We label this procedure post39

hoc binning analysis.40

Imagine we conduct a retinotopic mapping experiment (Dumoulin & Wandell,41
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2008), where we estimate pRF position and size for each voxel in the brain under42

a Baseline condition as well as a condition of Interest (see Figure 1 for a single43

pRF). We can think of the Interest and Baseline conditions as repeat data (e.g.,44

Benson et al., 2018; van Dijk, de Haas, Moutsiana, & Schwarzkopf, 2016), different45

attention conditions (e.g, de Haas, Schwarzkopf, Anderson, & Rees, 2014; Klein,46

Harvey, & Dumoulin, 2014; van Es, Theeuwes, & Knapen, 2018; Vo, Sprague, &47

Serences, 2017), mapping sequences (e.g., Binda, Thomas, Boynton, & Fine, 2013;48

Infanti & Schwarzkopf, 2020), mapping stimuli (e.g., Alvarez, de Haas, Clark, Rees,49

& Samuel Schwarzkopf, 2015; Binda et al., 2013; Le, Witthoft, Ben-Shachar, &50

Wandell, 2017; Yildirim, Carvalho, & Cornelissen, 2018), scotoma conditions (e.g.,51

Barton & Brewer, 2015; Binda et al., 2013; Haak, Cornelissen, & Morland, 2012;52

Prabhakaran et al., 2020), pRF modeling techniques (e.g., Carvalho et al., 2020) or53

uni- and multisensory conditions (Holmes, 2009) – to name but a few examples. As54

a pRF model, we adopt a 2D Gaussian, where pRF position represents the center of55

a pRF in visual space (the center of the Gaussian) and pRF size its spatial extent56

(the standard deviation of the Gaussian; see Figure 1). We then fit this model to57

the voxel-wise brain responses we measured in the retinotopic mapping experiment58

(Dumoulin & Wandell, 2008). To compare pRF positions in the Interest and Baseline59

condition voxel-by-voxel, we bin the pRF positions from both conditions according60

to the pRF positions from the Baseline condition. Subsequently, we quantify for each61

voxel the position shift from the Baseline to the Interest condition (see Figure 1 for62

a single pRF). Finally, we calculate the bin-wise mean shift. This is conceptually63

equivalent to calculating the bin-wise simple means for each condition and comparing64

them subsequently, be it descriptively or inferentially.65

Either way, by adopting such a post hoc binning analysis, we essentially assume66

that the mean pRF position we quantify for each bin in the Baseline condition67

approximates the true mean pRF position. In particular, we presuppose that binning68

voxels according to pRF positions from the Baseline condition and aggregating them69

subsequently for this condition ensures that bin-wise noise components cancel out70

on average (see also Shanks, 2017). This, however, is not the case.71

To illustrate this flaw, we generated a simplified contrast scenario with a null ef-72
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Figure 2. Simulated 1D post hoc binning analysis on eccentricity | Null effect. A. Bin-wise eccentricity
values and means in the Interest and Baseline condition for a simulated null effect and different data binning
scenarios. Eccentricity values in the Baseline and Interest condition were either binned according to eccentricity
values in the Baseline (1st column), Interest (2nd column), or an Independent condition (equivalent to repeat
data of the Baseline condition; 3rd column). The gray marginal histograms (bin width = 0.5 dva; y-axis: relative
frequency) show the simulated eccentricity distributions for each condition, obtained by repeatedly disturbing
the x0 and y0 values of an empirical visual field map with random Gaussian noise (sd = 2 dva) and subsequently
converting them to eccentricity values. Note that the range of the marginal y-axis is the same for all histograms.
The red crosshair indicates the location of the overall mean for the Interest and Baseline condition. The red
dashed line corresponds to the identity line. B. Bin-wise mean errors for the x0 and y0 values in the Interest and
Baseline condition for the same binning scenarios as in A. The dashed red lines reflect the zero error line. Dark
brown colors correspond to lower and dark blue-green colors to higher decile bins. The maximal eccentricity of
the stimulated visual field area subtended 8.5 dva. Dva = Degrees of visual angle. Ecc = Eccentricity.
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fect. In particular, we used random Gaussian noise to repeatedly disturb voxel-wise73

x0 and y0 coordinates (Figure 1) of a V1 visual field map from a single participant74

(Nrepeat = 200; sdnoise = 2 degrees of visual angle, dva). We did this twice to gener-75

ate a Baseline and an Interest condition. We then converted the voxel-wise x0 and76

y0 samples to eccentricity values (Figure 1), as is often done in the pRF literature77

(see Figure 1-figure supplement 1 for interpretational difficulties with eccentricity78

when it comes to position shifts). This resulted in a gamma-like eccentricity dis-79

tribution. Lastly, we binned the eccentricity values in both conditions according80

to the eccentricity values in the Baseline condition using deciles and calculated the81

bin-wise means for each condition2.82

We plotted the bin-wise eccentricity means in the Baseline and Interest condi-83

tion against one another along with individual observations per bin and marginal84

histograms (bin width = 0.5 dva) reflecting the simulated distributions3 (Figure 2,85

A., 1st column). Importantly, since there was no true difference between conditions,86

the bin-wise means should lie on the identity line. Contrary to this prediction, the87

bin-wise means systematically diverged from the identity line. Strikingly, when us-88

ing the Interest instead of the Baseline condition for binning, the systematic pattern89

of divergence flipped (Figure 2, A., 2nd column). This bidirectionality is a typical90

sign of regression to the mean (Campbell & Kenny, 1999; Shanks, 2017) and due91

to circularity that leads to asymmetric bins (see bin-wise ranges of observations for92

Baseline and Interest, Figure 2, A., 1st and 2nd columns) and biases bin-wise noise93

components. In particular, for the condition that was used for contrasting and bin-94

ning (henceforth circular condition), the bin-wise noise components of the x0 and95

y0 values were skewed on average. For the other condition (henceforth non-circular96

condition), however, the bin-wise noise components cancelled out on average (Fig-97

2Note that when evaluating data distributions with unequal means, variances, or non-linearity, z-standardization

might be necessary to detect regression to or away from the mean (Campbell & Kenny, 1999; Shanks, 2017). In

particular, z-standardization makes data distributions directly comparable. As such, bin-wise means should regress

to wherever they intersect the identity line. Here, we always display data in native space, as this is typically done

in the pRF literature. However, we use crosshairs to indicate the location of the mean and thus provide a visual

guideline.
3Note that apart from the visualizations provided here, it might be beneficial to additionally look at Galton

squeeze diagrams to detect regression to or away from the mean (Campbell & Kenny, 1999; Shanks, 2017).
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ure 2, B., 1st and 2nd columns).98

The skew in average noise renders the bin-wise eccentricity means of the circular99

condition more extreme, especially for lower and higher decile bins. As a result,100

the bin-wise eccentricity means for the non-circular condition regress – by statistical101

necessity – to the overall mean4 for this condition (red crosshair); that is, they are102

less extreme (see different ranges of bin-wise means for the circular and non-circular103

conditions in Figure 2, A., 1st and 2nd columns). If the Interest condition is then104

contrasted to the Baseline condition, a mean increase in eccentricity for lower deciles105

and a mean decrease for higher deciles or vice versa occurs, depending on whether106

the data are binned on the Baseline or Interest condition (Figure 2, A., 1st and 2nd
107

column). This artifact arises because we did not use independent conditions for108

binning and contrasting; that is, conditions with independent noise components.109

Importantly, how the artifact manifests can change when data are thresholded110

across conditions (i.e., corresponding observations are deleted in a pair-wise fashion;111

Figure 2-figure supplement 1-2, A. and B., 1st and 2nd columns) and/or noise scales112

with eccentricity (heteroskedasticity; Figure 2-figure supplement 3, A. and B., 1st
113

and 2nd columns; see also Holmes, 2009). In fact, in the event of cross-thresholding,114

noise components are modified and might not necessarily cancel out for the non-115

circular condition (Figure 2-figure supplement 1-2, B., 1st and 2nd columns). The116

case of eccentricity-scaled noise furthermore shows that the artifact can include some117

clear regression away from the mean5 (egression; Figure 2-figure supplement 3, A.,118

1st and 2nd columns; e.g., Campbell & Kenny, 1999; Schwarz & Reike, 2018).119

Condition cross-thresholding is common practice in the pRF literature where120

data are cleaned across conditions according to eccentricity, goodness-of-fit (R2),121

pRF size, missing data or other criteria from one or multiple conditions. Eccentricity-122

scaled noise is an equally likely scenario that might arise from fitting errors due to123

4Note that for skewed distributions (such as the gamma-like distribution here), the regression effect might be

actually towards the mode and away from the mean of the overall distribution (Schwarz & Reike, 2018). If the

location of the overall mode and mean are sufficiently close, our visualizations would be unable to distinguish these

two cases.
5Note that the regression was presumably towards the nearest modes of the simulated bimodal distribution (see

marginal histograms in Figure 2-figure supplement 3, A., 1st and 2nd columns; Schwarz & Reike, 2018).
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Figure 3. Simulated 2D post hoc binning analysis on x0 and y0 | Null effect. Bin-wise x0 and y0 means in
the Interest and Baseline condition for a simulated null effect and different data binning scenarios. X0 and y0
values in the Baseline and Interest condition were either binned according to eccentricity and polar angle values
in the Baseline (1st column, 1st row), Interest (2nd column, 1st row), or an Independent condition (equivalent to
repeat data of the Baseline condition; 2nd row). The marginal histograms (bin width = 0.5 dva; y-axis: relative
frequency) show the simulated x0 and y0 distributions for each condition, obtained by repeatedly disturbing the
x0 and y0 values of an empirical visual field map with random Gaussian noise (sd = 2 dva). Magenta histograms
correspond to the Interest condition and gray histograms to the Baseline condition. Note that the range of the
marginal y-axis is the same for all histograms. The large magenta dots (arrow tip) correspond to the means in
the Interest condition and the tiny gray dots (arrow knock) to the means in the Baseline condition. The gray
line (arrow shaft) depicts the shift from the Baseline to the Interest condition. The magenta crosshair indicates
the location of the overall x0 and y0 means for the Interest condition and the gray crosshair the location of
the overall means for the Baseline condition. Please note that if there is no systematic difference between the
Baseline and Interest condition, the histograms and crosshairs coincide (as is the case here). The light gray
radar grid demarks the bin segments. Polar angle bins ranged from 0° to 360° with a constant bin width of 45°
and eccentricity bins from 0 to 20 dva with a constant bin width of 2 dva. The maximal eccentricity of the
stimulated visual field area subtended 8.5 dva. Dva = Degrees of visual angle.

8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422942doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422942
http://creativecommons.org/licenses/by/4.0/


partial stimulation of pRFs (especially near the edge of the stimulated mapping124

area), higher variability in pRF position estimates for wider pRFs as well as fluctu-125

ations in the signal-to-noise ratio of brain responses due to central fixation and/or126

manipulating attention across visual space6.127

The artifact also replicated when simulating a true effect (i.e., a radial shift of 2128

dva in the Interest condition; Figure 2-figure supplement 4, A. and B., 1st and 2nd
129

columns). The same was true for equidistant binning (Figure 2-figure supplement 5,130

A. and B., 1st and 2nd columns), which is frequently applied in the pRF literature.131

However, unlike decile binning, equidistant binning resulted in a lower number of132

observations for higher equidistant bins (due to the gamma-like eccentricity distri-133

bution; Figure 2-figure supplement 5, A., 1st and 2nd columns). Consequently, for134

higher equidistant bins, the skew in average noise for the circular condition was135

generally larger here. Similarly, for higher equidistant bins, noise components did136

not always cancel out for the non-circular condition (see all Figure 2-figure supple-137

ment 5, B., 1st and 2nd columns). This is because for random noise to cancel out on138

average, the number of observations needs to be sufficiently large.139

For all presented simulation cases, the artifact likewise manifested for another140

kind of binning analysis, namely, when binning the x0 and y0 values according to141

both eccentricity and polar angle (i.e., 2D segments) and computing shift vectors142

(Figure 1 as well as Figure 3 and Figure 3-figure supplement 1-4, 1st row). Here, the143

bin-wise means regressed towards and away from the overall means of the x0 and y0144

distribution.145

Notably, for empirical repeat data from the Human Connectome Project (Benson146

et al., 2018, 2020), both kinds of binning analyses produced patterns consistent147

with the artifact (Figure 4-5 and Figure 4-figure supplement 1-3 and Figure 5-figure148

supplement 1-3, A.-C.). This establishes its practical relevance. Moreover, some149

of us recently retracted an article on attention-induced differences in pRF position150

6Note that floor/ceiling effects (due to physiological and methodological constraints on the minimum and maxi-

mum observable value) and/or the calculation of absolute (raw) vs proportional (%) differences are further factors

influencing the artifact’s appearance (de Haas et al., 2014; de Haas, Schwarzkopf, Anderson, & Rees, 2020; Holmes,

2009).
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C. Empirical repeat data | 25th %ile | Dorsal – Cross-thresholding (Baseline and Interest)
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Figure 4. Caption on next page.
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Figure 4. Empirical 1D post hoc binning analysis on eccentricity | Repeat data | 25th %ile participant |
Dorsal. Bin-wise eccentricity values and means in the Interest and Baseline condition for repeat data from the
HCP belonging to the 25th %ile participant of the median R2 distribution and different data binning scenarios.
A. Data from the dorsal complex (V3A/B and IPS0–5) without condition cross-thresholding. B. Same as A.,
but with condition cross-thresholding. To this end, eccentricity values falling outside a certain eccentricity range
(≥ 0 and ≤ 8 dva) and below a certain R2 cut-off (≤ 2.2%) in the Baseline condition were removed from both
conditions. C. Same as B., although here, condition cross-thresholding was based on both the Baseline and
Interest condition. Eccentricity values in the Baseline and Interest condition were either binned according to
eccentricity values in the Baseline (1st column in A.-C.) or Interest (2nd column in A.-C.) condition. The gray
marginal histograms (bin width = 0.5 dva; y-axis: relative frequency) show the eccentricity distributions for each
condition. Note that the range of the marginal y-axis is the same for all histograms. The red crosshair indicates
the location of the overall mean for the Interest and Baseline condition. The red dashed line corresponds to
the identity line. Dark brown colors correspond to lower and dark blue-green colors to higher decile bins. The
maximal eccentricity of the stimulated visual field area subtended 8 dva. HCP = Human connectome project.
Dva = Degrees of visual angle. Ecc = Eccentricity. %ile = percentile.

and size in V1-V3 (de Haas et al., 2014) because an in-house reanalysis suggested151

that post hoc binning along with condition cross-thresholding and heteroskedasticity152

yielded artifactual (or artifactually inflated) results in the form of egression from153

the mean (de Haas et al., 2020). In this case, the apparent significant effect was154

an increase in eccentricity and pRF size in the Interest vs Baseline condition for155

eccentricity bins in the middle of the tested range.156

Taken together, the heterogeneity in manifestation we exposed here makes it157

hard to spot the artifact by visual inspection alone and highlights its dependency158

on exact distributional properties of the data at hand (see also Campbell & Kenny,159

1999; Holmes, 2009; Schwarz & Reike, 2018, for similar points).160

How can we omit double-dipping and control for regression to the mean? We161

could, for instance, use an Independent condition for binning (such as repeat data or162

odd or even runs for the Baseline condition; Figure 2 and Figure 2-figure supplement163

1-5, A., 3rd column as well as Figure 3 and Figure 3-figure supplement 1-4, 2nd row)164

or an anatomical criterion (Kriegeskorte et al., 2009), such as cortical distance.165

This way, noise components should nullify on average in both the Baseline and166

Interest condition (Figure 2 and Figure 2-figure supplement 1-5, B., third column),167

albeit not necessarily for sparsely populated bins (Figure 2-figure supplement 5,168

B., 3rd column as well as Figure 3 and Figure 3-figure supplement 1-3, 2nd row).169

Similarly, given that cross-thresholding reshapes noise components, they might not170
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Figure 5. Caption on next page.
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Figure 5. Empirical 2D post hoc binning analysis on x0 and y0 | Repeat data | 25th %ile participant |
Dorsal. Bin-wise x0 and y0 means in the Interest and Baseline condition for repeat data from the HCP belonging
to the 25th percentile participant of the median R2 distribution and different data binning scenarios. A. Data
from the dorsal complex (V3A/B and IPS0–5) without condition cross-thresholding. B. Same as A., but with
condition cross-thresholding. To this end, eccentricity values falling outside a certain eccentricity range (≥ 0
and ≤ 8 dva) and below a certain R2 cut-off (≤ 2.2%) in the Baseline condition were removed from both
conditions. C. Same as B., although here, condition cross-thresholding was based on both the Baseline and
Interest condition. X0 and y0 values in the Baseline and Interest condition were either binned according to
eccentricity and polar angle values in the Baseline (1st column in A.-C.) or Interest (2nd column in A.-C.)
condition. The marginal histograms (bin width = 0.5 dva; y-axis: relative frequency) show the x0 and y0
distributions for each condition. Magenta histograms correspond to the Interest condition and gray histograms
to the Baseline condition. Note that the range of the marginal y-axis is the same for all histograms. The large
magenta dots (arrow tip) correspond to the means in the Interest condition and the tiny gray dots (arrow knock)
to the mean in the Baseline condition. The gray line (arrow shaft) depicts the shift from the Baseline to the
Interest condition. The magenta crosshair indicates the location of the overall x0 and y0 means for the Interest
condition and the gray crosshair the location of the overall means for the Baseline condition. Please note that
for subtle differences between the Baseline and Interest condition, the histograms and crosshairs almost coincide
(see figure supplements). The light gray radar grid demarks the bin segments. Polar angle bins ranged from 0°
to 360° with a constant bin width of 45° and eccentricity bins from 0 to 18 dva with a constant bin width of 2
dva. The maximal eccentricity of the stimulated visual field area subtended 8 dva. HCP = Human connectome
project. Dva = Degrees of visual angle.

average out with an Independent condition (Figure 2-figure supplement 1-2, B., 3rd
171

column as well as Figure 3-figure supplement 1-2, 2nd row). The same can evidently172

also happen with an anatomical criterion if the Baseline and Interest condition173

are subjected to cross-thresholding. Consequently, unless cross-thresholding can be174

omitted or demonstrated to be unbiased, an Independent condition might not be a175

safe option. Alternatively, we could use analyses without binning that control for176

circularity and regression artifacts or effects could be evaluated against appropriate177

null distributions that take into account all statistical dependencies (e.g., Holmes,178

2009; Kriegeskorte et al., 2009). A combination of these approaches might be most179

fruitful. Regardless of the specific mitigation strategy, we believe that in light of180

the many layers of complexity in our analysis pipelines, we need to make it common181

practice to perform sanity checks using null simulations and empirical repeat data.182

Uncontrolled post hoc binning analyses come in many flavours (e.g., centroids,183

shift vectors, eccentricity differences, x0 and y0 differences, and 1D or 2D bins) and184

are not restricted to pRF position estimates. For instance, biases should manifest185

equally when binning pRF size in a Baseline and Interest condition according to186

pRF positions from either of these conditions. Moreover, partial stimulation of187
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pRFs likely results in heteroskedasticity and positively correlated errors for pRF188

size and position. This would, for instance, bias bin-wise pRF size vs eccentricity189

or pRF size vs pRF size comparisons where binning is based on non-independent190

eccentricity values. Likewise, fitting errors due to partial stimulation should be more191

pronounced whenever pRF size is larger, leading to stronger artifactual effects (for192

simulations using different levels of noise see Holmes, 2009). The same is to be193

expected based on a higher variability in pRF position estimates for wider pRFs.194

These factors might potentially explain why pRF position and size differences have195

been reported to be larger in higher-level areas where pRFs are wider. Moreover, the196

distribution of errors likely depends on the toolbox that was used for fitting (Lerma-197

Usabiaga, Benson, Winawer, & Wandell, 2020), making it hard to generalize across198

studies. Importantly, uncontrolled single bin (i.e., region of interest) analyses are199

equally affected by post-hoc binning (Kriegeskorte et al., 2009). And of course,200

delineations of visual areas in post hoc binning analyses should ideally also be based201

upon independent criteria as this is where selection starts.202

The application of uncontrolled post hoc binning analyses in the pRF literature203

might have led to spurious claims about the plasticity of pRFs (see de Haas et al.,204

2014, 2020, for a possible example). Consequently, we urge researcher who engaged205

in post hoc binning to check for the severity of biases in their analyses by running206

adequate simulations and reanalyzing the original data wherever possible.207

Without doubt, circularity and/or regression to the mean are thorny and om-208

nipresent problems that can manifest subtly and diversely (e.g., Ball, Squeglia,209

Tapert, & Paulus, 2020; Barnett et al., 2005; Campbell & Kenny, 1999; Eriks-210

son & Häggström, 2014; Gignac & Zajenkowski, 2020; Holmes, 2009; Kilner, 2013;211

Kriegeskorte et al., 2009; Preacher et al., 2005; Shanks, 2017; Vul, Harris, Winkiel-212

man, & Pashler, 2009). As such, we need to ensure that the validation of analysis213

procedures becomes part and parcel of the scientific process.214
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Materials and Methods215

Post hoc binning using simulations216

Stimuli and procedure217

For the simulation analyses, we used data from a population receptive field (pRF)218

experiment involving a dynamic horizontal bar aperture (length of major axis: 17.15219

degrees of visual angle, dva; length of minor axis: 1.27 dva). The bar aperture was220

centered and presented within the boundaries of a circular mapping area (diameter:221

17.15 dva). It moved consecutively across the mapping area along cardinal (0/180°222

and 90/270°) and oblique axes (45/225° and 135/315°) and was superimposed onto a223

random dot kinematogram (RDK). The RDK comprised moving black dots (diame-224

ter: 0.13 dva) positioned within a square field (size: 17.03 × 17.03 dva). If a dot left225

the square field, it was moved back by 1 field width/height. The dots had a density226

of 6.89 dots/dva2, a lifetime of 36 frames, were repositioned randomly once they had227

died, and oscillated according to a sine wave (A = 1.29 dva, f = 1 Hz, ω = 6.28228

rad/s, φ = 0 rad). The sine wave was rotated with the current orientation of the229

bar aperture. The bar aperture and RDK were centered at the screen’s midpoint.230

A semi-transparent (α = 50%) array of 5 vertical ovals was superimposed onto231

the bar aperture. One of the ovals was centered at the screen’s mid-point (length232

of major axis: 0.43 dva; length of minor axis: 0.28 dva) and the remaining ovals233

at an eccentricity of 4.29 dva (length of major axis: 0.86 dva; length of minor234

axis: 0.57 dva) and different polar angles (45°, 135°, 225°, and 315°). The ovals235

were presented as a rapid serial visual presentation (RSVP) task, where each trial236

started with 200 ms of oval presentation, followed by a blank (no ovals) of 600 ms.237

The ovals’ orientation (45° left- or rightwards from vertical) and color (red, yellow,238

cyan, orange, brown, white, black, green, and blue) changed pseudorandomly in239

each trial with the exception that ovals of the same color were never presented240

simultaneously. Participants had to press a button whenever a rightwards oriented241

oval was presented in blue or green color. A black radar grid (line width: 0.02 dva)242

at low opacity (α = 20%) with 12 radial lines (at polar angles: 0 to 330° with a step243
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size of 30°) and 18 circles (diameters: 0.95 to 51.42 dva with a step size of 2.97 dva)244

was superimposed onto the screen. The radial lines ran from the midpoint of the245

screen to the outermost circle.246

The experiment comprised 4 attention conditions, in which participants were247

required to perform the RSVP task on different oval streams whilst ignoring other248

streams and the bar aperture. The condition of relevance here is the Center con-249

dition, where participants performed the task on the central oval stream. This250

condition resembles a standard pRF mapping experiment. Participants performed251

2 sessions à 4 runs per condition on consecutive days. The order of conditions was252

pseudorandomized.253

Within each run, the bar aperture moved along each axis twice, so that the254

starting point covered all chosen polar angles. Specifically, the sequence of starting255

points in each run was: 90°, 225°, 180°, 315°, 270°, 45°, 0°, and 135°. One bar sweep256

lasted 28 s (1 step/s). Consecutive bar apertures overlapped by 50%. After 4 bar257

sweeps, a blank interval of 28 s (without the bar apertures and RDK) was presented,258

during which participants had to refrain from doing the RSVP task (a brief tone259

cued the beginning and end of this interval). The position and lifetime of each260

dot in the RDK at the start of every 28s-interval was randomized. Experimental261

procedures were implemented in Matlab 2014a (8.3; https://uk.mathworks.com/)262

using Psychtoolbox-3 (3.0.11; Brainard, 1997; Kleiner et al., 2007) and approved263

by the University College London ethics committee. Written informed consent was264

obtained from all participants.265

Apparatus266

Functional and anatomical images were acquired at a field strength of 1.5 T on a267

Siemens Avanto magnetic resonance imaging (MRI) scanner. All stimuli were pro-268

jected onto a screen (resolution: 1920 × 1080 pixels; refresh rate: 60 Hz; background269

color: gray) at the back of the MRI scanner. Participants viewed the experiment270

through a head-mounted mirror. The viewing distance was approximately 67 cm.271

To ensure that participants could view the screen without obstruction, the front272

visor of a 32 channel coil was removed, leaving 30 effective channels.273
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MRI acquisition274

We collected anatomical images using a T1-weighted magnetization-prepared rapid275

acquisition with gradient echo sequence (repetition time, TR = 2.73 s; echo time,276

TE = 3.57 ms; voxel size = 1 mm isotropic; flip angle = 7°; field of view, FoV = 256277

mm × 224 mm; matrix size = 256 × 224; 176 sagittal slices) and functional images278

using a T2*-weighted multiband 2D echo-planar imaging sequence (Breuer et al.,279

2005, TR = 1 s; TE = 55 ms; voxel size = 2.3 mm isotropic; flip angle = 75°; FoV =280

224 mm × 224 mm, no gap, matrix size: 96 × 96, acceleration = 4, 36 transverse281

slices). The slice tab for the functional images was aligned to be roughly parallel to282

the calcarine sulcus so that the posterior third of the cortex was well covered.283

Preprocessing284

The initial 10 volumes of each run were discarded to allow for magnetisation to285

reach equilibrium. Using SPM8 (6313; https://www.fil.ion.ucl.ac.uk/spm/286

software/spm8/), functional images were then bias-corrected, realigned, unwarped,287

coregistered to the anatomical image, and finally projected onto an anatomical sur-288

face model constructed in FreeSurfer (5.3.0; Dale, Fischl, & Sereno, 1999; Fischl,289

Sereno, & Dale, 1999). We generated vertex-wise functional MRI (fMRI) time se-290

ries per run by determining the functional voxel at half the distance between corre-291

sponding vertices in the pial surface and gray-white matter mesh. We then applied292

linear detrending to the time series of each run and z-standardized them. Sur-293

face projection, detrending, and z-standardization were performed in Matlab 2016b294

(9.1; https://uk.mathworks.com/) using SamSrf7 (7.05; https://github.com/295

samsrf/samsrf/tree/3c7a0e25090e9097d5e2fd95696c00774acd26d6).296

PRF estimation and delineations297

The vertex-wise preprocessed time series of the Center condition were averaged298

across the 2 sessions. We then fit a 2D isotropic Gaussian pRF model with 5299

free parameters (x0, y0, σ, β0, and β1) to the vertex-wise average time series. To300

this end, we first predicted pRF responses by calculating the overlap between the301
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pRF model and an indicator function of the bar aperture for each volume using a302

100 × 100 pixel matrix. Specifically, we used a 3D search space of possible values303

for σ (8.5×2-5.6:0.2:1), x0 and y0, and generated pRF responses for each combina-304

tion of these values. Values for x0 and y0 were first sampled from the polar angle305

system (polar angles: 0:10:350°; eccentricities: 8.5×2-5:0.2:0.6) and then transformed306

to Cartesian coordinates. The pRF response per volume was expressed as mean307

percent overlap with the pRF model.308

To obtain a predicted fMRI time series, we then convolved these pRF responses309

with a canonical hemodynamic response function (de Haas et al., 2014). Next, we310

calculated the Pearson correlation between the predicted and the observed fMRI311

time series and retained the combination of parameter values showing the largest312

R2 with all R2s ≥ .01. These initial parameter estimates were then used as seeds313

for an optimization procedure aimed at further maximizing the Pearson correlation314

between the observed and predicted fMRI time series using a Nelder-Mead algo-315

rithm (Lagarias, Reeds, Wright, & Wright, 1998; Nelder & Mead, 1965). Lastly,316

we estimated β0 and β1 by performing linear regression between the observed and317

predicted time series. The final parameter maps were smoothed with a spheri-318

cal Gaussian kernel (FWHM = 3mm). Vertices with a very poor R2 (< .01) or319

artifacts (σ ≤ 0, β1 ≤ 0 or β1 > 3) were removed prior to smoothing. V1 hemi-320

field maps were manually delineated based on smooth polar angle maps using polar321

angle reversals (Engel, Glover, & Wandell, 1997; Sereno et al., 1995; Wandell, Du-322

moulin, & Brewer, 2007). These delineations were used as a mask to extract V1 ver-323

tices. Fitting, smoothing, and manual delineations were performed in Matlab 2016b324

(9.1; https://uk.mathworks.com/) using SamSrf7 (7.05; https://github.com/325

samsrf/samsrf/tree/3c7a0e25090e9097d5e2fd95696c00774acd26d6).326

Simulations327

As outlined in the main text, we generated 6 simulation cases: a null effect, a328

null effect with condition cross-thresholding based on the Baseline condition, a null329

effect with condition cross-thresholding based on both the Baseline and Interest330

condition, a null effect with eccentricity-scaled noise, a true effect, and a null effect331
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with equidistant binning (instead of decile binning which was applied to the other332

cases). These cases were chosen to illustrate a given issue in a clear fashion using333

an empirical pRF parameter distribution as a basis, not to mimic the exact prop-334

erties of empirical data (which is unfeasible without explicit knowledge of the noise335

distribution).336

For all simulation cases, x0 and y0 estimates from both cortical hemispheres were337

pooled and empty data points or obvious artifacts removed (σ ≤ 0 and β1 ≤ 0).338

Moreover, all simulation cases followed the same general procedure of the null effect339

involving eccentricity as outlined in the main text (including parameters settings340

and the same seed for random number generation) with exceptions as follows.341

1D post hoc binning analyses on eccentricity. For the simulation cases in-342

volving condition cross-thresholding, we removed simulated observations falling out-343

side a certain eccentricity range (≥ 0 and ≤ 6 dva) in the Baseline or Baseline and344

Interest condition from all conditions (i.e., Baseline, Interest, and Independent).345

For the simulation case involving eccentricity-scaled noise, we used a small standard346

deviation (sd = 0.25 dva) of random Gaussian noise to disturb original observations347

with smaller eccentricities (≥ 0 and < 3 dva) and a larger standard deviation (sd =348

2 dva) to disturb original observations with larger eccentricities (≥ 3 dva). For the349

simulation case involving a true effect, we induced a radial increase in eccentricity350

of 2 dva in the Interest condition. For the simulation case involving equidistant bin-351

ning, we used a constant bin width of 1.75 dva and an overall binning range of 0 to352

19.25 dva eccentricity. For all simulation cases, the Independent condition consisted353

of a second draw (resample) of the Baseline condition.354

2D post hoc binning analyses on x0 and y0. Apart from a 1D binning analysis355

on eccentricity, we also conducted a 2D binning analysis on the simulated x0 and356

y0 values. To this end, we converted the x0 and y0 values to polar coordinates, that357

is, polar angle and eccentricity (Figure 1). We then binned the x0 and y0 values358

in the Baseline or Interest condition according to their polar coordinates in the359

Baseline, Interest, or Independent condition using equidistant bins and calculated360

the bin-wise x0 and y0 means for each condition. The condition-wise means were361
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visualized as vector graphs. The polar angle bins ranged from 0° to 360° with a362

constant bin width of 45°. The eccentricity bins ranged from 0 to 22 dva (for the363

simulation case involving a true effect) or from 0 to 20 dva (for all other simulation364

cases) with a constant bin width of 2 dva. The 2D binning analysis was performed365

for all aforementioned simulation cases (apart from the case of equidistant binning366

of course).367

Post hoc binning using repeat data368

For the repeat data analysis, we used publicly available pRF estimates from the369

Human Connectome Project 7 T Retinotopy Dataset (Benson et al., 2018, 2020).370

These estimates stem from a split-half analysis where a 2D isotropic Gaussian with371

a subadditive exponent was fit to fMRI time series from the first and second half of372

6 pRF mapping runs. For each half, 6 estimates were obtained for each grayordinate373

(vertex), that is, pRF polar angle, pRF eccentricity, pRF size, pRF gain, percentage374

of R2, and mean signal intensity. The maximal eccentricity of the mapping area375

subtended 8 dva. For further details, see Benson et al. (2018).376

Following Benson et al. (2018), we analysed complexes of visual areas across377

hemispheres for the 25th and 75th percentile participants of the R2 distribution using378

delineations from Wang et al.’s (2015) atlas. Benson et al. (2018) generated the R2
379

distribution by calculating the median R2 for each participant across grayordinates380

from both cortical hemispheres within all areas of Wang et al.’s (2015) atlas. The381

posterior complex consisted of V1-V3, the ventral complex of VO-1/2 and PHC-1/2,382

the dorsal complex of V3A/B and IPS0–5, and the lateral complex of LO-1/2 and383

TO-1/2. For our purposes, we focused on the posterior and dorsal complexes, as384

those came with a larger number of available data points (which was particularly385

necessary to perform the 2D post hoc binning analysis and generate vector graphs).386

To obtain x0 and y0 estimates, polar angle and eccentricity estimates were con-387

verted to Cartesian coordinates. The eccentricity, x0, and y0 estimates of the first388

half were used as a Baseline condition and those of the second half as an Interest389

condition. Grayordinates with unusual/implausible values (R2 ≤ 0% or σ ≤ 0) in390

either condition were removed from both conditions.391
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Similar to the simulation-based analyses, binning was either based on the Interest392

or Baseline condition and bin-wise means were calculated. Moreover, binning was393

either performed with or without condition cross-thresholding. As for the latter394

case, we removed observations falling outside a certain eccentricity range (≥ 0 and395

≤ 8 dva) or below a certain R2 cut-off (≤ 2.2%) in the Baseline or Baseline and396

Interest condition from both conditions. The R2 cut-off of 2.2% was adopted from397

Benson et al. (2018).398

The 1D binning analysis involving eccentricity and the 2D binning analysis in-399

volving x0 and y0 were conducted as for the simulated data, although, here, the400

eccentricity bins for the 2D analysis ranged from 0 to 18 dva with a constant bin401

width of 2 dva. All binning analyses (including those on simulated data) were im-402

plemented in Matlab 2016b (9.1; https://uk.mathworks.com/) using custom code.403

Data and code availability404

Preprocessed data, custom code, and figures are available at https://doi.org/405

10.17605/OSF.IO/WJADP.406
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Supplementary figures558

x-axis

y-
ax
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outwards?
inwards?

ecc=0.25°

ecc=0.5°

Interest
Baseline

Figure 1-figure supplement 1. Interpretation of changes in eccentricity. The same as Figure 1, although here,
the pRFs shifts from one visual field quadrant to another in the Interest compared to the Baseline condition.
This can happen due to noise or when visual field maps partially cover the ipsilateral hemifield. In such cases,
an increase or decrease in eccentricity does not necessarily correspond to an outwards or inwards shift in the
traditional sense. For instance, imagine that a pRF sits at x0 = -0.18 dva and y0 = -0.18 dva in the Baseline
condition (ecc = 0.25 dva) but at x0 = 0.36 dva and y0 = 0.36 dva in the Interest condition (ecc = 0.5 dva).
This would result in an increase in eccentricity, which might be interpreted as an outwards shift, although the
pRF shifts effectively radially inwards until it reaches the origin and then outwards. We can likewise imagine that
the pRF shifts horizontally to x0 = 0.36 dva and y0 = -0.36 dva in the Interest condition. Importantly, removing
such shifts would again bias noise components in non-predictable ways (see condition cross-thresholding in the
main text and Figure 2-figure supplement 1-2) and therefore does not seem a valid option. Dva = Degrees of
visual angle.
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A. Simulated null effect - Cross-thresholding (Baseline)

B. Errors
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Figure 2-figure supplement 1. Simulated 1D post hoc binning analysis on eccentricity | Null effect —
Cross-thresholding (Baseline). The same as in Figure 2, although here, simulated observations falling outside
a certain eccentricity range (≥ 0 and ≤ 6 dva) in the Baseline condition were removed from all conditions —
a simulation case we term cross-thresholding (Baseline).
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A. Simulated null effect - Cross-thresholding (Baseline and Interest)

B. Errors
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Figure 2-figure supplement 2. Simulated 1D post hoc binning analysis on eccentricity | Null effect —
Cross-thresholding (Baseline and Interest). The same as in Figure 2-figure supplement 1, although here,
condition cross-thresholding was based on both the Baseline and Interest condition — a simulation case we
term cross-thresholding (Baseline and Interest).
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A. Simulated null effect - Eccentricity-scaled noise

B. Errors
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Figure 2-figure supplement 3. Simulated 1D post hoc binning analysis on eccentricity | Null effect —
Eccentricity-scaled noise. The same as in Figure 2, although here, original observations having smaller eccen-
tricities (≥ 0 and < 3 dva) were disturbed by random Gaussian noise with a smaller standard deviation (sd =
0.25 dva) and those having larger eccentricities (≥ 3 dva) by random Gaussian noise with a larger standard
deviation (sd = 2 dva) — a simulation case we term eccentricity-scaled noise.
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A. Simulated true effect - Radial shift

B. Errors
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Figure 2-figure supplement 4. Simulated 1D post hoc binning analysis on eccentricity | True effect —
Radial shift. The same as in Figure 2, although here, we simulated a true effect, that is, a radial increase in
eccentricity of 2 dva in the Interest as compared to the Baseline condition.
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A. Simulated null effect - Equidistant binning

B. Errors
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Figure 2-figure supplement 5. Simulated 1D post hoc binning analysis on eccentricity | Null effect —
Equidistant binning. The same as in Figure 2, although here, equidistant binning was used. The equidistant
bins ranged from an eccentricity of 0 dva to an eccentricity of 19.25 dva with a constant bin-width of 1.75 dva.
Please note the different x- and y-axis ranges in B. relative to Figure 2 and other figure supplements (-4.5 to
-4.5 vs -0.4 to 0.4, respectively) as well as the different number of bins (11 vs 10, respectively).
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Simulated null effect - Cross-thresholding (Baseline)

-10 10

x
0

-10

0

10

y 0

Binning: Baseline

0.2 -10 10

x
0

-10

0

10

y 0

Binning: Interest

0.2

-10 10

x
0

-10

0

10

y 0

Binning: Independent

0.2

Figure 3-figure supplement 1. Simulated 2D post hoc binning analysis on x0 and y0 | Null effect — Cross-
thresholding (Baseline). The same as in Figure 3, although here, simulated observations falling outside a
certain eccentricity range (≥ 0 and ≤ 6 dva) in the Baseline condition were removed from all conditions — a
simulation case we term cross-thresholding (Baseline).
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Simulated null effect - Cross-thresholding (Baseline and Interest)
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Figure 3-figure supplement 2. Simulated 2D post hoc binning analysis on x0 and y0 | Null effect —
Cross-thresholding (Baseline and Interest). The same as in Figure 3-figure supplement 1, although here,
condition cross-thresholding was based on both the Baseline and Interest condition — a simulation case we
term cross-thresholding (Baseline and Interest).
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Simulated null effect - Eccentricity-scaled noise
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Figure 3-figure supplement 3. Simulated 2D post hoc binning analysis on x0 and y0 | Null effect —
Eccentricity-scaled noise. The same as in Figure 3, although here, original observations having smaller eccen-
tricities (≥ 0 and < 3 dva) were disturbed by random Gaussian noise with a smaller standard deviation (sd =
0.25 dva) and those having larger eccentricities (≥ 3 dva) by random Gaussian noise with a larger standard
deviation (sd = 2 dva) — a simulation case we term eccentricity-scaled noise.
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Simulated true effect - Radial shift
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Figure 3-figure supplement 4. Simulated 2D post hoc binning analysis on x0 and y0 | True effect — Radial
shift. The same as in Figure 3, although here, we simulated a true effect, that is, a radial increase in eccentricity
of 2 dva in the Interest as compared to the Baseline condition. Note that the eccentricity bins ranged from 0
to 22 dva (instead of 0 to 20 dva) here.
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B. Empirical repeat data | 25th %ile | Posterior – Cross-thresholding (Baseline)
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C. Empirical repeat data | 25th %ile | Posterior – Cross-thresholding (Baseline and Interest)
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Figure 4-figure supplement 1. Empirical 1D post hoc binning analysis on eccentricity | Repeat data | 25th

%ile participant | Posterior. The same as in Figure 4, although here, we used data from the posterior complex
(V1-V3).
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A. Empirical repeat data | 75th %ile | Dorsal
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B. Empirical repeat data | 75th %ile | Dorsal – Cross-thresholding (Baseline)
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C. Empirical repeat data | 75th %ile | Dorsal – Cross-thresholding (Baseline and Interest)
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Figure 4-figure supplement 2. Empirical 1D post hoc binning analysis on eccentricity | Repeat data | 75th

%ile participant | Dorsal. The same as in Figure 4, although here, we used the 75th %ile participant of the
median R2 distribution.
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A. Empirical repeat data | 75th %ile | Posterior
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B. Empirical repeat data | 75th %ile | Posterior – Cross-thresholding (Baseline)
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C. Empirical repeat data | 75th %ile | Posterior – Cross-thresholding (Baseline and Interest)
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Figure 4-figure supplement 3. Empirical 1D post hoc binning analysis on eccentricity | Repeat data | 75th

%ile participant | Posterior. The same as in Figure 4-figure supplement 1, although here, we used the 75th

%ile participant of the median R2 distribution.
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A. Empirical repeat data | 25th %ile | Posterior

-9 9

x
0

-9

0

9

y 0
Binning: Baseline

0.3 -9 9

x
0

-9

0

9

y 0

Binning: Interest
0.3

B. Empirical repeat data | 25th %ile | Posterior – Cross-thresholding (Baseline)
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C. Empirical repeat data | 25th %ile | Posterior – Cross-thresholding (Baseline and Interest)
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Figure 5-figure supplement 1. Empirical 2D post hoc binning analysis on x0 and y0 | Repeat data | 25th

%ile participant | Posterior. The same as in Figure 5, although here, we used data from the posterior complex
(V1-V3).

40

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422942doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422942
http://creativecommons.org/licenses/by/4.0/


A. Empirical repeat data | 75th %ile | Dorsal
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B. Empirical repeat data | 75th %ile | Dorsal – Cross-thresholding (Baseline)
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C. Empirical repeat data | 75th %ile | Dorsal – Cross-thresholding (Baseline and Interest)
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Figure 5-figure supplement 2. Empirical 2D post hoc binning analysis on x0 and y0 | Repeat data | 75th

%ile participant | Dorsal. The same as in Figure 5, although here, we used the 75th %ile participant of the
median R2 distribution.
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A. Empirical repeat data | 75th %ile | Posterior
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B. Empirical repeat data | 75th %ile | Posterior – Cross-thresholding (Baseline)
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C. Empirical repeat data | 75th %ile | Posterior – Cross-thresholding (Baseline and Interest)
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Figure 5-figure supplement 3. Empirical 2D post hoc binning analysis on x0 and y0 | Repeat data | 75th

%ile participant | Posterior. The same as in Figure 5-figure supplement 1, although here, we used the 75th

%ile participant of the median R2 distribution.
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