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Abstract 

Motivation: With the increasing availability of genome-wide genetic data, methods to combine genetic variables 

with other sources of data in statistical models are required. This paper introduces quantitative genetic scoring 

(QGS), a dimensionality reduction method to create quantitative genetic variables representing arbitrary genetic 

regions. 

Methods: QGS is defined as the sum of absolute differences in the genetic sequence between a subject and a 

reference population. QGS properties such as distribution and sensitivity to region size were examined, and QGS 

was tested in six different existing genomic data sets of various sizes and various phenotypes. 

Results:  QGS can reduce genetic information by >98% yet explain phenotypic variance at low, medium, and 

high level of granularity. Associations based on QGS are independent of both size and linkage disequilibrium 

structure of the underlying region. In combination with stability selection, QGS finds significant results where a 

traditional genome-wide association approaches struggle. In conclusion, QGS preserves phenotypically 

significant genetic variance while reducing dimensionality, allowing researchers to include quantitative genetic 

information in any type of statistical analysis.  

Availability: https://github.com/machine2learn/QGS 

Contact: gido.schoenmacker@radboudumc.nl 

Supplemental information: Supplemental data are available online. 
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1 Introduction 

The rise of affordable, high throughput genotyping and next generation 

sequencing techniques in the past decade has made whole genome 

genotyping and sequencing affordable options for biomedical research.  

With increasing sample sizes and thus statistical power, genome-wide 

association studies (GWAS) have effectively replaced candidate gene 

studies for complex multifactorial conditions (Duncan et al., 2019). These 

GWAS show through estimation of variant-wide explained variance that 

genetics can explain a significant portion of variance in these complex, 

multifactorial phenotypes, ranging from easily measurable traits such as 

height and body mass index (BMI) (Yengo et al., 2018) to complex 

psychiatric disorders such as schizophrenia (Pardiñas et al., 2018) and  

attention deficit/hyperactivity disorder (ADHD) (Grigoroiu-Serbanescu et 

al., 2020). 

The growing availability of genome-wide genetic information 

combined with its proven ability to explain variance in complex 

phenotypes further fuels the wish to combine genetic variables with other 

outcomes (e.g. neuroimaging or behaviour) in building disease-

explanatory statistical models. However, methods to transform measured 

genetic values into meaningful numeric variables are currently lacking.  

This paper introduces a new method to summarise genetic information: 

quantitative genetic scoring (QGS). QGS is a genetic dimensionality 

reduction method to create quantitative genetic variables representing 

arbitrary genetic regions. In contrast to the GWAS based summary 

statistics, QGS is phenotype-agnostic and therefore does not depend on 

previous association results. Our approach estimates a numeric value 

corresponding to the observed allelic variation of arbitrary genetic regions 

selected by the user (exons, genes, gene sets, genetic pathways, intergenic 

regions) irrespective of allele frequency and impervious to the size and 

linkage disequilibrium patterns of the selected region. The estimated QGS 

can be used in any downstream statistical analysis approach as a 

quantitative variable. Because it can drastically reduce the number of 

variables in genome-wide analyses while retaining genetic information, it 

also allows for the use of more computationally complex genome-wide 

methods. 

The goal of this paper is to introduce QGS as a method to summarise 

genetic variation within a region into a numeric value. We show that QGS 

retains genetic information while reducing dimensionality. Software to 

calculate QGS scores working with PLINK-format (Purcell et al., 2007) 

or Variant Call Format (VCF; Danecek et al., 2011) data is available at 

https://github.com/machine2learn/QGS. 

2 Materials and Methods  

2.1 QGS 

While not categorically true, in genetics the rarer allele (i.e. the minor 

allele) often is associated with increased disease risk instead of protection. 

This holds for rare mutations (Kryukov et al., 2007) as well as common 

variants (Park et al., 2011). Continuing this reasoning, QGS extends the 

concept of population similarity beyond single variant MAF to whole 

genetic regions.  

QGS assigns a numeric value 0 ≤ QGS ≤ 1 to any arbitrary genetic 

region. The QGS is based on the average difference between an 

individual’s genetic information (in the form of genotypes) and that of a 

reference population. Intuitively, QGS can be interpreted as a measure of 

genetic “distance” compared to the reference population: a low score 

indicates higher similarity to the reference population, whereas a high 

score indicates a lower similarity. 

To compute the QGS the following structures are defined: 

• An arbitrary genetic region defined by Nvar number of variants; 

• A sample individual genetic dosage (or hard calls) information 

vector s = {s1, …, sNvar} where each element represents genetic 

dosage data (or hard calls) 0 ≤ si ≤ 2, i.e. the (probabilistic 

approximation of the) minor allele count for variant 𝑖; 

• A reference population matrix of Nrefs individuals containing 

genetic dosage (or hard call) data: 

𝑅 = [

𝑅1
1 ⋯ 𝑅𝑁𝑣𝑎𝑟

1

⋮ ⋱ ⋮

𝑅1
𝑁𝑟𝑒𝑓𝑠 ⋯ 𝑅𝑁𝑣𝑎𝑟

𝑁𝑟𝑒𝑓𝑠
] 

 

Finally, the QGS itself is defined as the grand sum of the absolute 

difference between 𝑅 and s, scaled to 0-1 by dividing by the total number 

of alleles in the reference population: 

 

𝑄𝐺𝑆 =
∑ ∑ |𝑅𝑖

𝑟 − 𝑠𝑖|
𝑁𝑣𝑎𝑟
𝑖=1

𝑁𝑟𝑒𝑓𝑠
𝑟=1

2𝑁𝑟𝑒𝑓𝑠𝑁𝑣𝑎𝑟

 

QGS was implemented in C++ and is available as a command-line 

program to compute QGS from VCF or PLINK files. An example of a 

QGS calculation is given in the supplement. 

 

2.2 Related works 

Below is a non-exhaustive overview of methods for collapsing genetic 

information into a numeric construct. For common variants, methods exist 

for combining summary statistics from single nucleotide polymorphisms 

(SNPs), i.e. effects sizes or p-values) into a single statistic using meta-

analysis and/or permutation techniques (e.g. Huang et al., 2016; Liu et al., 

2010; S. Purcell et al., 2007; Wang, Li, & Bucan, 2007). These methods 

provide a combined estimate for the effect or p-value, but do not create a 

numeric construct. One exception is MAGMA (de Leeuw et al., 2015), 

which translates a genetic region into a vector of varying length using 

SNP-based principal components. 

Another method, polygenic risk scoring (PRS; S. M. Purcell et al., 

2009), does provide a single construct by multiplying the number of minor 

alleles with a previously found effect size for a certain phenotype in an 

independent population and summing the result across all variants. While 

PRS has proven ability to explain phenotypic variance in independent 

samples, like the meta-analysis techniques its use depends on the public 

availability of large-sample based GWAS results, because the explanatory 

power of PRS is proportional to the sample size of the original GWAS 

(Dudbridge, 2013). 

Burden scores for rare variants attempt to quantify the genetic burden 

of such variants by dichotomising or counting of mutations (e.g. Asimit, 

Day-Williams, Morris, & Zeggini, 2012; B. Li & Leal, 2008; 

Morgenthaler & Thilly, 2007). Other rare variant association methods 

exist (Lee et al., 2014), but burden scores are conceptually closest to QGS, 

because they also attempt to put an association-independent value to a 

genetic region. QGS differs from burden scores and unweighted PRS that 

count minor alleles by calculating a difference from a reference population 

and working with dosages. This allows QGS to work for both common as 

well as rare variants. 

2.3 Data sets 

 

In total, six data sets of different sizes and outcomes were used. A 

schematic overview of the genetic data sets and analyses can be found in 

Figure 1. The largest sample was the UK Biobank (UKBB) with the 

continuous psychiatric phenotype sociability (UKBB-s) (Bralten et al., 

2019). The second largest sample was also from UKBB with the binary 

phenotype of lifetime cannabis use (UKBB-c) (Pasman et al., 2018). Third 

was the Lundbeck Foundation Initiative for Integrative Psychiatric 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2021. ; https://doi.org/10.1101/2020.12.15.422886doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422886
http://creativecommons.org/licenses/by-nc-nd/4.0/


Quantitative Genetic Scoring 

Research (iPSYCH) sample with the binary phenotype of ADHD status 

(Demontis et al., 2019). Fourth was the Nijmegen Biomedical Study 

(NBS) with the continuous phenotype of body mass index (BMI) 

(Galesloot et al., 2017). Fifth was the public 1000 Genomes Project phase 

three (1000G) (1000 Genomes Project Consortium et al., 2015). Sixth was 

the public International HapMap Project phase three (HapMap3) (Frazer 

et al., 2007). iPSYCH is a case/control cohort, whereas the others are 

general population cohorts. A more detailed description of the samples 

and data collection is given in the supplement. 

 

 

Figure 1: Schematic overview of the data sets and analyses. The six data 

sets used are shown in the middle in descending order of size. On the 

left-hand side, the QGS properties that were examined are displayed. On 

the right-hand side, the performed genetic analyses are shown. The sec-

tion numbers in the circles (e.g. “§2.4.2” for PCA and “§2.6” for stabil-

ity selection) refer to Methods sections. The lines link the data sets with 

the properties and analyses for which they have been used. PCA: princi-

pal component analysis; LD: linkage disequilibrium; GWAS: genome-

wide association study. 

 

2.4 Analyses 

The main goal of QGS is to quantify and summarise genetic 

information into a numeric value and make it available for downstream 

statistical analyses. To this end, it was important to verify that QGS indeed 

retains useful genetic information while reducing dimensionality. In 

addition, we have examined several properties of QGS, including its 

distribution, effects of region size and linkage disequilibrium structure 

(LD; correlation structure across genetic variants) on association, effects 

of including flanking regions of genes, pruning steps, and imputation 

quality control. Thirdly, QGS was compared to GWAS in different study 

designs (case/control and population-based) and for different phenotypes. 

Fourthly, stability selection, a computationally intensive method for 

variable selection, was applied with QGS. Lastly, the efficacy of QGS was 

shown in two gene set based associations. 

2.4.1 QGS Calculation 

QGS values were calculated for all genes in all data sets using the 

European population of 1000G Phase 3 (n=503) as a reference population, 

except in the case of HAPMAP3 and UKBB which were used as their own 

reference. Gene regions were defined by the GENCODE gene annotation 

release 29 (Harrow et al., 2012). 

QGS can be calculated using, for example, only protein-coding genes 

but, because the gene-based QGS results only include gene regions, a large 

portion of the genome will not be covered. To gain coverage for intergenic 

regions, a block-based QGS was also calculated for NBS and UKBB with 

uniform blocks of 66kb length, which is the mean size of protein-coding 

genes in the above annotation. This was done to make block regions 

roughly comparable to gene regions in terms of size and information 

contents. A sliding window of 10kb was used to place the 66kb-sized 

blocks, resulting in over 250k block scores. 

2.4.2 Principal Component Analysis (PCA) 

The HapMap3 data set was used to calculate and plot the first two 

principal components from both variant based data and QGS based data. 

The QGS values were derived using HapMap3 itself as a reference set and 

the GENCODE gene annotation v3c release. Correlations between 

components were calculated. The full analysis scripts are available in the 

QGS repository. 

2.4.3 QGS distribution 

The distribution of a metric can be important for statistical tests. The sta-

tistical distribution of QGS was demonstrated using two histograms 

based on (i) 1 variant and (ii) >1000 variants from UKBB-c.  

2.4.4 Effects of region size 

A common problem for genetic aggregation methods is the influence of 

the size of the aggregated region on subsequent association (e.g. Liu et al., 

2010). The influence of region size on QGS association was tested using 

a permutation approach using UKBB-c, NBS, and 1000G. The a priori 

distribution of region sizes (in this case, gene sizes) was compared to the 

distribution of region sizes in the top one-percent of associated genes from 

1000 simulated binary phenotype permutations. QQ plots were made to 

visualise all three distributions and a Kolmogorov–Smirnov (K-S) test was 

used to quantify differences in distribution. 

2.4.5 Effects of LD structure 

In addition to the effects of region size, genetic aggregation methods 

also have to account for inflation of results because of LD correlation 

structure. The effects of LD structure on QGS were tested in a similar way 

as the effects of region size above: 1000 associations based on permutation 

of a simulated binary phenotype resulted in LD strength distribution of top 

one-percent associated genes, which was compared to the a priori LD 

strength distribution. LD strength here was defined as the mean pairwise 

R2 for neighbouring SNPs within a gene. 

2.4.6 Effects of flanking regions 

Important genetic information sometimes lies outside the immediate 

genetic regions of interest, for example in case of promotor and enhancer 

regions of genes (depending on the gene definition used). Moreover, a 

large portion of significant GWAS association results have been found in 

intergenic regions (Bartonicek et al., 2017). Because of this, it is common 

to include flanking regions of varying size in region-based genetic 

analyses. The Pearson correlation between QGS without flanking regions 

and QGS including varying sizes of symmetrical flanking regions was 

examined in UKBB-c, NBS, and 1000G. 
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2.4.7 Effects of LD pruning 

LD pruning is the removal of highly correlated variants based on LD 

and is sometimes employed before genetic aggregation, for example in 

polygenic risk scoring applications. The effects of LD pruning on the 

Pearson product-moment correlation coefficient of QGS without pruning 

and with various pruning thresholds were tested in NBS and 1000G. 

2.4.8 Effects of imputation quality control 

Imputation is a statistical technique used in genetics to assign values to 

unmeasured variants based on genotyped variants using LD structure (Li 

et al., 2009). Every imputed variant carries a measure of quality control, 

generally expressed as an estimated correlation (R2) or info score between 

the imputed and the real, unknown genotype. Imputed variants with poor 

quality are often removed from subsequent analyses. The correlation 

between QGS values using different thresholds of imputation quality 

control were examined in NBS. Imputed data was used at four levels of 

imputation quality control to determine the effects of the quality control 

step: (a) the raw imputed variants (no quality control); (b) imputed variants 

with a threshold of R2 > 0.3 (low quality control); (c) imputed variants 

with a threshold of R2 > 0.6 (medium quality control); and (d) imputed 

variants with a threshold of R2 > 0.9 (strict quality control). 

2.4.9 Estimated number of independent tests 

In GWAS, each genetic variant can give rise to a hypothesis test. 

However, due to LD structure, the tests are not independent. The typical 

multiple-testing corrections performed in genetic association studies rely 

on an accurate estimate of the number of independent tests (Benjamini et 

al., 2001). Therefore, the number of independent tests for QGS genes was 

estimated in NBS using the method by Li and Ji (Li and Ji, 2005). 

 

2.5 Traditional association studies 

Three association studies were performed using the following 

phenotypes and data: ADHD diagnosis in the iPSYCH data set (binary 

outcome), BMI in the NBS data set (quantitative trait outcome), lifetime 

cannabis use in UKBB-c (binary outcome), and sociability in UKBB-s 

(quantitative trait outcome). Sex, age (for iPSYCH and NBS only), and 

the first 20 principal components were included as covariates. To 

maximise coverage, all types of gene regions (including non-coding genes 

and pseudogenes) were included, as well as 66kb blocks as described in 

section 2.4.1. Results of QGS were compared to previously published 

GWAS results to study overlap and differences. The focus of the 

comparison lies with identifying which variant-based information is 

captured in both GWAS and QGS as well as where results differ.  

 

2.6 Stability selection study 

Because QGS reduces the number of variables in GWAS, it may have 

more statistical power to detect genetic associations in small samples by 

leveraging computationally intensive methods. To demonstrate, stability 

selection using randomized lasso (Meinshausen and Bühlmann, 2010) was 

performed using the same NBS BMI data set described above. The 

stability selection method uses a permutation-based LASSO approach 

which, compared to GWAS, is computationally expensive. It was selected 

as an example of more complex methods that may be performed after 

dimensionality reduction that works well for data sets with many variables 

(i.e. genes) with a limited sample size that are underpowered for traditional 

GWAS analysis. 

In short, whereas the goal of GWAS is to find the strongest associations, 

the goal of stability selection with QGS is to find the most stable 

associations. Since individual genetic effect sizes for multifactorial 

diseases tend to be small, looking for the most stable effects instead of the 

largest effects can help identify novel candidates.  

  

2.7 Gene set analyses 

Genetic effects on multifactorial conditions are often found distributed 

across the genome (Cookson et al., 2009). Whereas the previous section 

focused on single region, this section explores the combined effects of sets 

of genes. Here, we constructed gene sets based on previous association 

study findings. Alternatively, gene sets could also be defined based on 

other methods, e.g. pathway analyses or specific hypotheses.  

2.7.1 BMI gene set analysis 

A BMI gene set QGS sum score was constructed using 48 BMI risk 

genes from (Locke et al., 2015). The sum score was calculated by 

summing QGS values for all 48 risk genes together into a single variable. 

Two association tests were performed in NBS, one focussing on the 

continuous BMI outcome, and a second on the binary BMI>25 overweight 

outcome. Both association tests included age and gender as covariates, as 

well as the first 10 principal components. 

2.7.2 Lifetime cannabis use gene set analysis 

A lifetime cannabis use QGS sum score was constructed using 38 risk 

genes from (Pasman et al., 2018) and tested in UKBB-c. Like above, the 

sum score was calculated by summing up the QGS values from individual 

risk genes. Since these risk genes were found in a largely overlapping 

sample, they do depend on our UKBB-c data. The goal of this analysis is 

not to verify the risk genes, but instead to show that QGS can capture gene 

set based information. An association test was done using gender and the 

first 10 principal components as covariates. 

3 Results & Discussion 

First, the results from the PCA analysis will be presented. Second, the 

analytical properties of QGS will be shown. Third, GWAS results from 

iPSYCH, NBS, and UKBB will be presented. Fourth, the stability 

selection results from NBS will be set out. Last, results from the two gene 

set based analyses will be shown. 

 

3.1 PCA 

After quality control, the HapMap3 data included 458,572 variants. 

QGS reduced this number of variables by 95% to 21,792 genes (without 

guaranteeing the same coverage: around 40% of variants was wholly 

discarded because they lie outside of gene regions). The results from the 

QGS-based PCA analysis are shown in Figure 2. The variant-based results 

are close to identical to the QGS-based results, with high correlation 

r>0.99 between the components. The proportion of genetic variance 

explained differs somewhat: 9.1% for the variant-based first component 

compared to 6.6% for QGS. A larger version of Figure 2 and the related 

variant-based PCA plot can be found in supplemental Figure S1. 
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Figure 2: Principal component population stratification plot of 21,792 

QGS values based on the genotypes of HapMap3 (N = 1,184). The axes 

show the first and second principal component (PC); the percentages rep-

resent the proportion of variance explained. ASW: African ancestry in 

Southwest USA; CEU: Utah residents with Northern and Western Euro-

pean ancestry; CHB: Han Chinese in Beijing, China; CHD: Chinese in 

Metropolitan Denver, Colorado; GIH: Gujarati Indians in Houston, 

Texas; JPT: Japanese in Tokyo, Japan; LWK: Luhya in Webuye, Kenya; 

MXL: Mexican ancestry in Los Angeles, California; MKK: Maasai in Kin-

yawa, Kenya; TSI: Toscani in Italia; YRI: Yoruba in Ibadan, Nigeria. 

3.2 QGS Properties 

In this section, the analytical properties of QGS will be presented. 

3.2.1 Distribution of QGS 

QGS scores based on a single called variant follow a binomial 

distribution with n=2, because there are three possible QGS values an 

individual can have based on a single variant: (a) one for individuals 

homozygous for the major allele, (b) one for heterozygous individuals, and 

(c) one for individuals homozygous for the minor allele. The distribution 

of these groups depends on the minor allele frequency (MAF) of the 

variant. In supplemental Figure S2A an example is given of the QGS 

distribution based on a single variant with low MAF. As the number of 

variants in a QGS value increases, this distribution approaches normality 

following the central limit theorem. This is illustrated in supplemental 

Figure S2B. 

No clear guideline can be given for how many variants need to be 

included in a QGS value before it can be treated as approximately normal, 

because this depends on the MAF and LD of the included variants. In case 

of doubt or low amount of variation in a region, it is recommended to use 

statistical tests that do not depend on normality of the variable. 

3.2.2 Effects of region size and LD structure 

The effects of gene size and LD structure on association results in three 

genetic data sets were examined. For both gene size and LD structure, no 

significant effects were observed, meaning that the associations based on 

QGS were not significantly affected by either of the two. For region size 

no effects were found in 1000G (p=0.14), NBS (p=0.99), or UKBB 

(p=0.96). Similarly, for LD structure no effects were found in 1000G 

(p=0.32), NBS (p=0.99), or UKBB (p=0.99). These findings are illustrated 

in supplemental Figures S3 and S4. 

3.2.3 Effects of flanking regions 

Using symmetrical flanking regions of 5kb resulted in a correlation of 

0.74-0.85 (with the QGS estimated without flanking regions) across the 

three data sets, whereas 25kb gives a correlation of 0.58-0.75, 50kb gives 

a correlation of 0.51-0.68, and 100kb 0.42-0.59. Since the mean size of a 

gene in our datasets is 66kb, a flanking region of 5kb on both sides 

increases the mean gene region size by about 15%, and 25kb increases the 

size by about 76%. The correlation is highest in the small NBS sample and 

lowest in the large UKBB-c sample. The full correlation matrices are 

shown in supplemental Figure S5.  

3.2.4 Effects of pruning 

Since most closely neighbouring variants are highly correlated, the 

removal of all variants with a correlation threshold of R2>0.99 already 

resulted in a removal of 30-50% of variants from our data sets. The 

correlation between QGS without pruning and QGS with R2>0.99 pruning 

threshold is between r=0.91-0.93. At a pruning threshold of R2=0.9 

through which more than half of the variants have been removed from the 

original data, the QGS correlation is r=0.83-0.88. The complete data is 

shown in supplemental Figure S6: (A) shows the effects of the pruning 

threshold on the QGS correlation and (B) shows the percentage of variants 

removed at each pruning threshold. 

3.2.5 Effects of imputation quality control 

The correlation between QGS without quality control (R2 >= 0) and 

with (a) low quality control (R2 > 0.3) was r=0.99, (b) with medium 

quality control (R2<0.6) was r=0.97, and (c) with high quality control 

(R2>0.9) was r=0.89. The full correlation matrix is shown in supplemental 

Figure S7. 

3.2.6 Estimated number of independent tests 

When testing a set of 32,221 known gene regions taken from NBS using 

a GWAS-like approach, the estimated number of independent tests was 

24,263, or 76% of the total number of tests. This percentage was used 

subsequently in this paper to correct for the number of tests performed in 

QGS-based GWAS. The breakdown per chromosome can be found in 

supplemental Table S1.  

3.3 Traditional association studies 

3.3.1 ADHD Case/control 

 A Manhattan plot for chromosome 1 containing both the variant-based 

GWAS and the QGS-based GWAS can be found in Figure 3. A genome 

wide Manhattan plot can be found in supplemental Figure S8 and a full 

overview of overlapping and differing regions can be found in 

supplemental Tables S2 and S3. The genome wide top hit in both analyses 

implicates the same region containing the SLC6A9 gene. The second-

highest GWAS peak also contains the second-most significant QGS gene 

on this chromosome. This shows that information contained in QGS 

overlaps with variant-based information. 

Differences can also be found, for example the variant-based GWAS 

finds a significant variant on chromosome 16 contained in the LINC01572 

gene that the QGS-based association does not identify. Vice versa, QGS-

based association finds a suggestive result in a region on chromosome 7 

containing the TRIM73 gene that the variant-based GWAS does not pick 

up. This suggests that individual variant-level associations can be lost in 

QGS. Overall, the highest variant-based peaks (top hit p=3.2e-11) have 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2021. ; https://doi.org/10.1101/2020.12.15.422886doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422886
http://creativecommons.org/licenses/by-nc-nd/4.0/


G.H. Schoenmacker et al. 

higher statistical significance than the QGS-based peaks (top hit p=6.5e-

06).  

 

 

Figure 3: Manhattan plot of chromosome 1 for the variant-based and 

QGSgene-based association results of ADHD status. Negative log10 of the 

p-value is plotted on the y-axis and base pair position in million base pairs 

is plotted on the x-axis. The variant-based results are represented by grey 

bars. The QGS-based results are represented by black points.  

3.3.2 UKBB  

3.3.2.1 Lifetime cannabis use case/control 

Similar to the ADHD results above, a Manhattan plot containing both 

the variant-based GWAS and the QGS-based GWAS for UKBB-c can be 

found in supplemental Figure S9. Whereas the variant-based GWAS finds 

significant results, the QGS-based GWAS does not. The top variant-based 

finding (rs28732378/3:85,403,892, p=3.4e-10) overlaps with top (but non-

significant) block-based QGS results (rank 16 and 22). Apart from one 

other location on chromosome 4, little overlap is seen between the top 

variant-based results and QGS results. Conversely, the top QGS-based 

results do tend to have a low variant-based p-value. The top results from 

variant-based GWAS and QGS-based GWAS can be found in 

supplemental Tables S4 and S5.  

3.3.2.2 Sociability 

Results in UKBB-s show a similar pattern as UKBB-c above. While the 

top variant-based GWAS hit is among the top 100 QGS-based results, the 

overlap between top variant-based results and QGS-based results is low 

(supplemental Table S6). Again and vice versa, top QGS-based results do 

tend to have a low variant-based p-value (supplemental Table S7). The 

full results can be seen in supplemental Figure S10. 

3.3.3 BMI GWAS in NBS 

A GWAS analysis was performed for BMI in the smaller NBS sample. 

The variant-based GWAS identified one genome-wide significant variant 

(15:98876579/rs184852001, p=1.9e-08), but this SNP is not found in the 

largest BMI meta-GWAS to date (closest variant downstream rs1372847 

with p=1.7e-01 and closest upstream rs4965808 with p=8.7e-01) (Yengo 

et al., 2018). Neither the gene-based nor the block-based QGS finds 

significant results in this data set. QGS reduced the number of variables 

tested by 99.8% from 20,011,335 variants to 35,550 genes. Overlapping 

findings include regions on chromosome 5 (TMEM173) and 19 

(ENSG00000267448). A Manhattan plot containing both the variant-

based GWAS and the QGS-based results can be found in supplemental 

Figure S11 and a full overview can be found in supplemental Tables S8 

and S9. 

3.4 BMI stability selection 

 

In contrast to the GWAS approach described in section 3.3.3, the 

stability selection with QGS yields stable results for BMI in the smaller 

(n=4,454) NBS data set, as shown in Figure 4. The three stable genes are 

VSX1, GON7, and EPGN. Each of these has (or contains variants that 

have) previously been associated with obesity (Locke et al., 2015; Fox et 

al., 2007; Winkler et al., 2015; Akiyama et al., 2017; Rankinen et al., 

2006). Moreover, the first two genes have been replicated in the largest 

BMI meta GWAS to date (VSX1 with rs6138482, p= 5.8e-13 and GON7 

with rs7148516, p=1.3e-17) (Yengo et al., 2018). 

 

 

Figure 4: Stability selection results for BMI using NBS; N = 4,454, Nvariant 

= 8,476,119, NQGS-gene = 18,942 (protein coding genes only). The E(V) 

value on the x axis represents the upper limit for the expected number of 

false positives (see Meinshausen and Bühlmann, 2010) and is a function 

of the strength of the LASSO penalty: the more relaxed the penalty, the 

higher E(V). The selection probability on the y axis represents the proba-

bility that a gene is included in the LASSO-selected set for the current 

E(V)/LASSO penalty. The y=0.6 dotted line represents our cut-off point 

for stability. 

3.5 Gene set analyses 

3.5.1 BMI gene set 

The QGS sum of the BMI gene set consisting of 48 obesity risk genes 

is associated with BMI (p=.026, b(se)=32.7(14.7), 95%CI 3.8/61.6) as 

well as with an obesity construct consisting of BMI>25 (p=.021, 

b(se)=18.1(7.9), 95%CI=2.7/33.6) in NBS. The QGS sum explained 0.46-

0.48% of BMI variance in the NBS sample. Associations including every 

gene in the gene set univariately as well as all together (in a multiple 

regression) did not provide any multiple-testing-corrected significant 

results, the top hit being the gene VKORC1 (p=.014).  These results are 

shown in supplemental Table S10. 

3.5.2 Lifetime cannabis use gene set 
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Quantitative Genetic Scoring 

A lifetime cannabis use QGS sum score was constructed using 38 risk 

genes. This sum score was associated with lifetime cannabis use (p=0.024, 

b(se)=-0.022(0.01), 95%CI -0.042/-0.003). The QGS sum score explained 

0.006% of cannabis use variance in the UKBB sample. The regression 

results can be found in supplemental Table S11. 

4 Conclusion 

This work introduced QGS, a method to create meaningful quantitative 

variables for arbitrary genetic regions. Using complex phenotypes in 

differently sized real samples, QGS was shown to reduce the number of 

variables with 98-99% yet conserve relevant information at low, medium, 

and high level of granularity using respectively PCA, gene sets, and 

individual genes. In combination with stability selection, it was shown to 

be successful in correctly identifying relevant genes where traditional 

GWAS was not. 

At low level of granularity, PCA analysis shows that QGS retains the 

same rough population-level demographic information that can be found 

in variant-level data. 

At a medium level of granularity, gene set analyses show that a QGS 

value for a selected set of genes can explain a small but significant portion 

of phenotypical variance for BMI and cannabis use. This shows that QGS 

can highly compress genetic information – in this case, to a single number 

for 40-50 genes – and still capture phenotypic variance. The gene set score 

based on QGS is agnostic to the direction of effect, so while it is likely 

that not all genes in the gene sets have the same direction of effect, this 

does not prevent us from finding significant effects. 

At a high level of granularity, stability selection results show that the 

combination of QGS with more complex variable selection methods can 

yield results in cases where traditional GWAS-like screening struggle. In 

addition, the three stable and verified genes show that – despite a 99.8% 

reduction in variables – QGS retains relevant genetic information for 

complex phenotypes at the gene level. 

Limitations of QGS include information loss at the single variant level 

because of the significant dimensionality reduction, shown in the 

moderate overlap between variant-based and QGS-based GWAS. In 

addition, QGS appears sensitive to the effects of data pruning, where the 

removal of highly correlated variants leads to a proportionally larger 

reduction in QGS correlation. Because pruning (if performed) is done data 

set wide, this sensitivity does not affect association results. In contrast, 

QGS is insensitive to factors that have previously been shown to affect 

association, such as region size and LD structure, and it is stable when 

including flanking regions. 

Because QGS is phenotype-agnostic, it only needs to be calculated 

once. After that, it can be used in any downstream analysis for any 

available phenotype. Applications include the use of genes, gene sets, or 

genetic regions in regressions, in common statistics software such as 

SPSS, or more complex methods like stability selection, random forests, 

or causal discovery. By reducing genetic sequencing data to a single 

construct of arbitrary resolution, QGS enables the combination of genetic 

information with other information sources into complex models. QGS is 

available at https://github.com/machine2learn/QGS. 
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