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InSegtCone: Interactive Segmentation of crystalline Cones in compound 1 

eyes 2 
 3 
Abstract 4 
 5 
Understanding the diversity of eyes is crucial to unravel how different animals use vision to 6 
interact with their respective environments. To date, comparative studies of eye anatomy are 7 
scarce because they often involve time-consuming or inefficient methods. X-ray micro-8 
tomography is a promising high-throughput imaging technique that enables to reconstruct the 9 
3D anatomy of eyes, but powerful tools are needed to perform fast conversions of anatomical 10 
reconstructions into functional eye models. We developed a computing method named 11 
InSegtCone to automatically segment the crystalline cones in the apposition compound eyes of 12 
arthropods. Here, we describe the full auto-segmentation process, showcase its application to 13 
three different insect compound eyes and evaluate its performance. The auto-segmentation 14 
could successfully label the full individual shapes of 60%-80% of the crystalline cones, and is 15 
about as accurate and 250 times faster than manual labelling of the individual cones. We 16 
believe that InSegtCone can be an important tool for peer scientists to enable extensive 17 
comparisons of the diversity of eyes and vision in arthropods. 18 
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Introduction 38 
 39 
Arthropods comprise more than 80% of animals living on the planet (Roskov et al., 2000) but 40 
little is known about the diversity of the visual systems in this phylum (Rosenthal et al. 2017). 41 
Many arthropods make extensive use of visual information to perform essential behaviours, 42 
such as locating suitable mates, finding food or avoiding predators (Cronin et al., 2014). To 43 
better understand how these animals interact with their environment, it is therefore important 44 
to carry out anatomical and functional investigations of the myriad of arthropod eyes. 45 
Moreover, better understanding the eyes of arthropods will not only inform us about the visual 46 
ecology of these species, but also about fundamental aspects of animal vision. 47 

Most Arthropods have a pair of compound eyes consisting of repeated units called 48 
ommatidia. An ommatidium typically consists of three elements: an external lens that forms a 49 
regular facet visible on the external surface of the eye, a crystalline cone and a rhabdom (Land 50 
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and Nilsson, 2012). The light-sensitive rhabdom is the ‘sensor’ unit that collects light provided 51 
by unique (in apposition compound eyes) or multiple (in superposition compound eyes) 52 
transparent ‘optics’ unit – the lens and the crystalline cone. Each ommatidium samples light 53 
from a small angular portion of the world that, once integrated, enables arthropods to generate 54 
detailed and colourful images across the field of view (FOV) of the compound eye. 55 

To be able to resolve an object in a given light regime, each portion of a compound eye 56 
trades-off adequate spatial resolution and sufficient light capture, or optical sensitivity (Land, 57 
1997). This is because spatial resolution is ultimately determined by the angular spacing of the 58 
neighbouring ommatidia – the inter-ommatidial (IO) angle – such that a reduction in IO angle 59 
increases resolution. On the contrary, optical sensitivity depends on the angular area over 60 
which photons are captured; a bigger IO angle therefore leads to better sensitivity. The optical 61 
properties of ommatidia thus typically vary across the topology of compound eyes to optimise 62 
resolution and/or sensitivity in different parts of the FOV in a way that reflects the ecology of 63 
the animal. For example, the frontal region of the eye of the male carpenter bee Xylocopa 64 
tenuiscapa has enlarged ommatidia with small IO angle, which enhances both sensitivity and 65 
resolution and probably is an adaptation for detecting and chasing mates (Somanathan et al., 66 
2017). Thus, anatomical comparisons of compound eyes across sexes, castes, life-stages, 67 
populations or species, provide formidable opportunities to better understand the visual 68 
ecology and behaviour of arthropods. 69 

Exploring how the ecology of arthropods relates to their visual anatomy requires large-70 
scale and detailed analysis of eye structures, something that is challenging for two major 71 
reasons. Firstly, it necessitates investigations into the inner anatomy of compound eyes, 72 
because properties such as the elongation axes of crystalline cones and the diameters and 73 
lengths of rhabdoms are needed for accurate calculations of optical sensitivity and IO angle 74 
(Land, 1997). Furthermore, these properties must be measured in high-resolution across the 75 
eye to obtain reliable topological information (Taylor et al., 2019a). Traditional methods to 76 
study visual anatomy provide incomplete information and/or are too time consuming to enable 77 
large-scale analyses. Imaging methods such as Transmission Electron Microscopy (TEM), a 78 
technique that is typically used to measure rhabdom properties, are slow and produce coarse 79 
topologies from only a few slices in each eye sample. The pseudopupil technique (Berry et al., 80 
2007), which measures the topology of IO angle, is relatively fast but requires live animals and 81 
typically generates coarse resolution maps that do not include the full extent of the FOV (Taylor 82 
et al., 2019a), sometimes filtering out precious fine-scale information (Bagheri et al., 2020). 83 

How can we quickly obtain fine-scale topological data, both on the outside and the 84 
inside of compound eyes that typically possess thousands of ommatidia? X-ray 85 
microtomography (micro-CT) is a promising method to generate fast (a scan typically lasts 86 
from a few minutes to a few hours) and accurate (with isotropic spatial resolution of a 87 
micrometre or less) 3D models of an eye (Baird and Taylor, 2017). This method has the 88 
advantage of keeping the eye geometry intact, unlike 2D methods that inherently lose part of 89 
the geometrical information through the physical sectioning process. In a recent study, Taylor 90 
et al. (2019a) used micro-CT to obtain maps of the optical properties across the entire FOV of 91 
Bombus terrestris compound eyes in unprecedented detail to explore the effect of body size on 92 
the topological scaling of visual parameters. 93 

Paradoxically, micro-CT generates more information than is currently feasible to 94 
process, in particular, it provides a high level of detail about the geometry of the rhabdoms and 95 
crystalline cones that has been left out of previous modelling approaches (e.g. Taylor et al., 96 
2019a, 2020). Information about the geometry of individual rhabdoms would enable optical 97 
sensitivity calculations, and measuring the orientation of crystalline cones is crucial to produce 98 
accurate estimates of the visual IO angle over the entire eye surface (Stavenga, 1979). This is 99 
because crystalline cones are often skewed relative to the surface of the cornea, which is visible 100 
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in Figure 1d in Taylor et al. (2019a), so that the topology of their viewing directions determines 101 
the angular spacing of neighbouring ommatidia (Baumgärtner, 1928; Stavenga, 1979). In other 102 
words, measurements solely based on the angular spacing of facets on the eye surface, called 103 
the corneal IO angle, generate biased estimates of resolution and FOV (Bergman and Rutowski, 104 
2016; Taylor et al., 2019a). This difference is particularly striking at the edges of the FOV, 105 
where corneal measurements of the IO angle often overestimate the actual visual IO angle 106 
(Seidl and Kaiser, 1981; Taylor et al., 2019a). To address this problem, manual segmentation 107 
(or labelling) of each crystalline cone ‘by hand’ in volumetric analysis programs is an option. 108 
Unfortunately, unless it is possible to infer the elongation axes of the cones from their specific 109 
geometry, as is the case in fiddler crabs (Bagheri et al., 2020), manual segmentation across 110 
more than a few samples becomes nearly unfeasible for eyes that frequently consist of several 111 
thousands of ommatidia. More generally, the current time-limiting factor of micro-CT is often 112 
not the scanning itself but the volumetric analysis of the images it produces, particularly when 113 
segmentation is required. If it is to become a widespread tool for large-scale anatomical studies 114 
in arthropod vision, new methods are needed to automate the analysis of micro-CT scans. 115 

In this paper, we start to bridge this gap by developing a computing method, 116 
InSegtCone, that segments crystalline cones in arthropod compound eyes with little input from 117 
the user, i.e. nearly automatically. Our auto-segmentation method is based on an algorithm for 118 
interactive segmentation (Dahl et al., 2020) that automatically labels repeated objects after a 119 
short manual training. Here, we explore the functionality of InSegtCone by applying it to three 120 
insect species with differently shaped apposition compound eyes: the Western honeybee Apis 121 
mellifera, the buff-tailed bumblebee Bombus terrestris, and the green-veined white butterfly 122 
Pieris napi. We demonstrate that the auto-segmentation process can successfully extract the 123 
full shapes of 60%-80% of the total number of crystalline cones (~6000). We evaluate the 124 
performance of the InSegtCone and compare it to manual labelling. We then discuss the 125 
remaining limitations and new opportunities that this new technique generates. 126 
 127 
Material and Methods 128 
 129 
Study animals 130 
Micro-CT image stacks of eye samples of adult workers (females) of Apis mellifera (specimen: 131 
LU:3_14:AM_F_5) and Bombus terrestris (specimen: LU:4_16_: BT_F_CE_10) were the 132 
same as those previously analysed in Taylor et al. (2019b), where the sample preparation and 133 
data acquisition method are described in detail. An adult female of Pieris napi was obtained 134 
from laboratory stock at the Department of Zoology, Stockholm University, Sweden. 135 
 136 
Sample preparation 137 
The left or right compound eyes of the bee specimens were dissected, fixated, stained, and 138 
embedded in epoxy resin according to the procedure described in Taylor et al. (2019a). The 139 
left half head of the sample of P. napi was fixated for 7 days at 4˚C in a 0.5% phosphotungstic 140 
acid (PTA) solution (0.5 mg/mL of PTA in 70/30% ethanol/water solution) for staining. The 141 
sample of P. napi was not embedded in resin but scanned directly in a 70% ethanol solution. 142 
 143 
X-ray microtomography (micro-CT) 144 
Micro-CT imaging of bee eyes was conducted at Diamond Light Source Beamline I13-2 (Peić 145 
et al., 2013; Rau et al., 2011), Harwell Science and Innovation Campus, Oxfordshire (UK). 146 
The voxel size of the bee eyes was 1.6 µm. A detailed description of the scanning procedure 147 
can be found in Taylor et al. (2019a).  148 

The P. napi sample was scanned at the Stockholm Brain Imaging Center - SUBIC 149 
(Lacerda and Lindblom, 2014) at Stockholm University (Sweden) using the 3D submicron 150 
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imaging system Xradia Versa 520 (Zeiss, Jena, Germany). The imaging was performed with 151 
the X-ray source running with a voltage of 80 kV and a power of 7 W. A 4x optical objective 152 
was used, combined with the geometrical magnification, leading to an effective voxel size of 153 
1.08 µm. The tomography contained 2401 projections over 360˚. The exposure time was 1 s 154 
per projection. The projection images were then reconstructed automatically using the Zeiss 155 
Scout-and-Scan software. 156 
 157 
Volumetric segmentation of the eye and the external cornea 158 
To perform the auto-segmentation of the cones, InSegtCone required input labels of key eye 159 
features that were extracted from the reconstructed microCT images. The external cornea and 160 
the full eye volume of each compound eye were labelled by volumetric segmentation in Amira 161 
(FEI, Hillsboro, USA) using a method modified from Taylor et al. (2019a) . The original 32-162 
bit images reconstructed from the scans were cropped and re-saved in 8-bit files in the program 163 
Drishti Paint (Limaye, 2012). The images were resampled to 4 µm voxels. The eye volume 164 
was labelled thanks to a combination of automatic thresholding, filling of holes on each slice, 165 
shrinking and growing of the labelled volume, and selection of connected components. The 166 
outer surface of the cornea was extracted from the eye label by manually drawing a geodesic 167 
path at the border of the cornea and extracting the enclosed surface. The two labels were saved 168 
as volumetric images for later analysis in MATLAB (The MathWorks Inc., USA). 169 
 170 
Manual segmentation of the crystalline cones 171 
Crystalline cones were labelled manually in the full-resolution 8-bit images using the brush 172 
tool of Amira across 2D slices. Care was taken to obtain a collection of segmented cones 173 
distributed as uniformly as possible across the eye. To compare with the segmentation time of 174 
the automatic method, the time required for a user to perform manual segmentation of the cones 175 
of P. napi in Amira was estimated. 176 
 177 
Automatic segmentation of the crystalline cones 178 
The schematic of the automatic segmentation (or auto-segmentation) process of the crystalline 179 
cones called InSegtCone is described in Figure 1. The process was performed in MATLAB 180 
and the code is available for download on Github (link will be provided before publishing). 181 
The main innovative aspect of the segmentation method consists in the unfolding of the original 182 
eye volume into a 2D coordinate system referenced to the external surface of the cornea. This 183 
simplifies the segmentation problem, as the actual texture-based segmentation (Dahl et al., 184 
2020) can then take place in two instead of three dimensions. To allow accurate unfolding, 185 
despite the variable curvature of the external surface of the cornea, the eye was divided into 186 
sub-regions prior to the unfolding. The effect of this step on the performance of the method 187 
was tested by independently applying the auto-segmentation method to the eye of A. mellifera 188 
divided into increasing numbers of sub-regions (1, 2, 4, 6, 9, 12). The eye of B. terrestris (resp. 189 
P.napi) was divided into 12 (resp. 9) sub-regions. 190 

The crystalline cone auto-segmentation process consisted of six steps: (a) reorientation 191 
of the eye; (b) division of the outer cornea voxels into sub-regions and surface modelling using 192 
polynomial fitting; (c) extraction and unfolding of a sub-volume of the data capturing the 193 
crystalline cone layer; (d) auto-segmentation of the cones using a texture-based approach; (e) 194 
back-transformation of the segmented labels into the original space; (f) post-processing to 195 
identify the valid cones. The details of each step are described below. The mathematical 196 
explanation of each step is given in supplementary. 197 

 198 
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 199 
Figure 1: Outline of the process to automatically segment crystalline cones. The method is illustrated with images 200 
of Apis mellifera as an example. (a) Reorientation of the eye (volume rendering) and the labelled external cornea 201 
(red) into the ‘PCA space’. (b) Division of the cornea surface voxels into subregions (each plotted with a different 202 
colour) and modelling of each subregion using polynomial fitting in its ‘PCA space’ (top). (c) Extraction and 203 
unfolding of a subvolume of the eye data. Note that the cornea surface in the unfolded subvolume is almost flat, 204 
so that the pattern of crystalline cones in the cross-section is regular. (d) Auto-segmentation of the raw cones 205 
using a texture-based approach. The results of this step are displayed on one slice from the unfolded images (top) 206 
and in the whole eye subvolume (bottom). The white arrow indicates the location of a circular artefact that locally 207 
prevented the segmentation of a few cones. (e) Back-transformation of the raw auto-segmented cones into the 208 
original eye volume (3D rendering). (f) Post-processing of the raw cones labels (right subfigure) to eliminate noisy 209 
detections (red on the right subfigure) and retain valid cones (green on the right subfigure - left subfigure). 210 

 211 
(a) Global alignment of the eye 212 
In general, the position and orientation of the eye in the volumetric data is arbitrary, depending 213 
on how the sample was mounted during scanning. However, later steps of the analysis rely on 214 
the eye surface being approximately aligned with the xy-plane. Therefore, the first step of the 215 
analysis is to rotate the eye. 216 

To align the eye, we used the previously segmented (see Volumetric segmentation of 217 
the eye) volumetric images (tiffs, nifty, or any other image file format), where voxels labeled 218 
as cornea formed a point cloud that represented the surface of the eye. Using Principal 219 
Component Analysis (PCA), as shown in Figure 1a, the eye was rotated to have the longest 220 
side (first principal component) aligned with the x-axis, and the external-to-internal (or 221 
proximodistal) direction (third principal component) aligned with the z-axis. This step allows 222 
for a more systematic procedure that facilitates comparison and automation by transforming 223 
the set of points corresponding to the label of the external surface of the cornea into a coordinate 224 
system called ‘PCA space’, (x’, y’, z’). 225 
 226 
(b) Division into sub-regions, local alignment and surface modelling 227 
The goal of this step is to obtain a sensible 2D coordinate system of the compound eye by 228 
building a 3D polynomial surface model for the external cornea voxels. For the eyes that have 229 
high curvature, such as the Pieris napi sample that has an almost hemispherical eye, it would 230 
be difficult to achieve an accurate polynomial fitting on the complete external cornea. We 231 
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therefore divided the external surface of the cornea of such highly curved eyes into sub-regions 232 
in the ‘PCA space’. Practically, the division of the external surface of the cornea can be realized 233 
by defining a grid of 2D rectangular masks in the dimension of (x’, y’), with a small overlapping 234 
area at the borders of the sub-regions, in order to avoid the loss of cones near the borders of 235 
the sub-regions in later steps. 236 

The cornea surface in each sub-region was then locally aligned by preforming a PCA-based 237 
rotation as in (a). With the eye surface roughly aligned with the xy-plane, we could fit a 238 
polynomial surface z=f(x,y) to the voxels labelled as cornea. We chose to fit a fifth order 239 
polynomial surface. An example of the surface fitting on a sub-region of the honeybee eye is 240 
displayed in Figure 1b.  241 
 242 
(c) Sub-volume extraction and unfolding 243 
The purpose of this process is to extract a sub-volume of the original data volume including 244 
the crystalline cone layer in each sub-region. 245 

As the external sub-surface of the cornea is now modelled as a polynomial function, it 246 
could be resampled to a matrix of points with a density that offers sufficient resolution and 247 
optimizes the computational time. Each sub-surface sample point was then paired with a unit 248 
direction vector that was defined as the surface normal at the sample point on the cornea and 249 
pointing towards the inside of the eye. By sampling along the unit vectors, we obtain a sub-250 
volume aligned with the “flattened” cornea surface within a defined displacement along the 251 
cornea surface normal. 252 

In order to extract the intensity of the query points, they are back-transformed to the 253 
original coordinate system, and the image intensity is sampled from the data volume, using 254 
tricubic interpolation. Due to the step-wise extraction of displaced cornea layers, the sub-255 
volume is in some sense “unfolded”, as illustrated in Figure 1c. 256 
  257 
(d) Texture based auto-segmentation of the cones 258 
In the unfolded sub-volumes, the crystalline cones should ideally appear as ‘cylinders’ aligned 259 
with the z-axis (the displacement layers), with a predictable repeated pattern of small circular 260 
structures. The segmentation of cones is thus simplified to a two-dimensional problem. 261 

In this paper, we chose the texture-based segmentation tool InSegt (Dahl et al., 2020). 262 
To train InSegt, a user selected a single slice from the unfolded volume. This slice should be 263 
within the crystalline cone layer. The user provided a sparse manual annotation of this slice by 264 
marking some pixels as belonging to the background class, and some pixels as belonging to 265 
the cone class. The corresponding full segmentation of the slice is presented to the user for 266 
inspection, such that labelling continues until segmentation is satisfactory (cyan and magenta 267 
overlay in Figure 1d, movie S1). Based on this input, a dictionary was trained and applied to 268 
all other slices in the unfolded sub-volume. 269 
 270 
(e) Back-transformation 271 
The labelled voxel coordinates were finally mapped back into the original coordinate system, 272 
using the transformation described in supplementary Equation 1. A label containing multiple 273 
raw segmented cones in the original 3D image was thus obtained (Figure 1e). 274 
 275 
(f) Post-processing of the raw cones 276 
The automatically segmented labels unavoidably contain pixels that are not cones. A post-277 
processing is necessary to exclude noisy detections while keeping as many correctly segmented 278 
cones as possible (Figure 1f). In order to differentiate, the automatically segmented labels 279 
before post-processing are hereby called “raw cones”. The post-processing was divided into 280 
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three main steps: identification of the individual raw cones, calculation of the raw cone 281 
characteristics, stepwise elimination of noisy detections (Figure S1). 282 

i. Identification of individual raw cones 283 
A connected component analysis in the original coordinate system was performed to 284 
detect and individually label each raw cone (some of which are artefacts). 285 

ii. Calculation of raw cone characteristics 286 
A PCA was performed on each raw cone to calculate its geometric properties and detect 287 
outliers. The coefficients, eigenvalues of the covariance matrix and estimated mean 288 
were used to calculate its elongation axis, length and radius, and cone centre, 289 
respectively. The sign of the elongation axis was chosen so that it points towards the 290 
surface of the cornea. The cone size was the number of voxels included in the raw cone 291 
volume. The distance to neighbouring cones was the average distance between the raw 292 
cone centre and the centres of the three closest neighbouring raw cones. 293 

iii. Stepwise elimination of noisy detections 294 
In this part, the cone characteristics were used to detect outliers in four consecutive 295 
sorting steps: 296 
1. Raw cones with a cone size lower than ten voxels were immediately removed 297 

because they were likely to be noisy detections. 298 
2. As in an earlier step (see Modelling of the outer cornea surface), the coordinates of 299 

the cone centres were transformed in the ‘PCA space’ given by the coefficients of 300 
a PCA of the cornea surface in each eye sub-region. A polynomial fitting (method 301 
poly55) was implemented on the normalised transformed cone centres using the z-302 
component as a dependent variable. In each eye sub-region, the residuals of the 303 
polynomial fitting were used to cluster the cone candidates into one, two or three 304 
groups according to the gaussian mixture model (function fitgmdist) with the best 305 
Akaike Information Criterion (AIC). The user then indicated through visual 306 
inspection which groups of raw cones appeared valid in each eye subregion. Invalid 307 
cones generally stick out from the clusters of valid cones that gradually follow the 308 
eye curvature, making visual inspection relatively fast (~2 min per specimen) and 309 
straightforward. Groups of raw cones that were not validated by the user were 310 
discarded in the following steps. 311 

3. The coordinates of the remaining cone centres were transformed into the coordinate 312 
system now given by the coefficients of a PCA of the full cornea surface. Five 313 
polynomial (poly55) fittings were implemented in the (x, y) components of the cone 314 
centres on the following dependent variables: normalised z-component of the cone 315 
centres, size, length, radius and distance to neighbouring cones. These variables 316 
were chosen for the detection of outliers because they are conserved in the true 317 
cones (expect from small topological variations) but stand out in the noisy 318 
detections. The detailed procedure for the detection of outlier is provided in Text 319 
S1. 320 

4. A final polynomial fitting (poly55) was implemented on the cone centres of the 321 
remaining raw cones. A linkage was computed to determine the proximity of the 322 
fitted cone centres onto the polynomial surface. This linkage was used to define 323 
clusters of fitted cone centres that were closer than the cut-off distance. The cut-off 324 
distance was set by the user at 13 µm for all specimens because the average distance 325 
between ommatidia is approximately 20 µm in these specimens, such that two cones 326 
separated by less than a cut-off distance are abnormally close. In each cluster of 327 
fitted cone centres, the raw cone that had the largest fitting residual was eliminated 328 
iteratively until the distance between all the fitted cone centres in the cluster was 329 
greater than the cut-off distance.  330 
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The raw cones that had not been disqualified throughout the four elimination steps were 331 
classified as valid cones. 332 

 333 
Performance of the auto-segmentation process 334 
To assess the performance of InSegtCone, five metrics were calculated. The surface modelling 335 
error and angular discrepancy between automatic and manual segmentation reflect the accuracy 336 
of the method (using manual segmentation as a reference), whereas the segmentation time, 337 
percentage of auto-segmented cones and local cone density ratio of cones reflect the efficiency 338 
of the method. 339 
(a) Surface modelling error 340 

During surface modelling (see division into subregions and surface fitting), the surface 341 
modelling error was calculated as the average of the root mean squared error (rmse) of the 342 
polynomial fittings of the surface of the cornea across each of the eye sub-regions. 343 

(b) Segmentation time of the auto-segmentation method 344 
To evaluate the performance of the auto-segmentation method, the segmentation time of 345 
the process was estimated. The volumetric segmentation of the eye is probably the most 346 
time-consuming step of the analysis (2-4 hours per specimen), but was not taken into 347 
account here because it is a prerequisite but not a part of the auto-segmentation of the cones. 348 
The segmentation time of the auto-segmentation process was thus approximately equal to 349 
the longest step – the texture-based auto-segmentation. When evaluating the texture-based 350 
segmentation duration, we considered only the cumulated time spent by the user to 351 
manually annotate and train the segmentation model on each eye sub-region. The rest of 352 
the computing time for automatic segmentation using the trained dictionary highly depends 353 
on the size of the image data and the computer power, therefore it is not discussed in detail 354 
here. 355 

(c) Percentage of auto-segmented cones 356 
This was the number of valid cones after post-processing divided by the predicted number 357 
of ommatidia that was obtained using the method described in Taylor et al. (2019a). In 358 
brief, manual measurements of facet diameters at about 30 locations across the eye were 359 
used to build an interpolant of facet area across the eye surface. The predicted number of 360 
ommatidia is thus the total area of the cornea surface estimated from an isosurface fit 361 
(function isosurface with isovalue = 0.5) divided by the average interpolated facet area. 362 

(d) Angular discrepancy between automatic and manual segmentation 363 
The same cone can be segmented both manually in Amira and with the auto-segmentation 364 
method, thus generating two cone duplicates. This was considered to be the case if the cone 365 
centre of an auto-segmented cone was less than a voxel away from a manually segmented 366 
cone. The angular discrepancy between automatic and manual segmentation was the angle 367 
α ∈ [0 , π], between the elongation axes of the two cone duplicates. 368 

(e) Local cone density ratio 369 
The local cone density ratio R ∈ [0 , 1], represents the local coverage of the auto-370 
segmentation method. A ratio equal to 1 indicates that all cones predicted locally were 371 
identified and segmented by the method. To calculate R, equidistant sampling points on the 372 
cornea surface were obtained as in Taylor et al. (2019a) . The local density ratio at each 373 
sampling point was the number of cones identified by the auto-segmentation method within 374 
a given range (100 µm) divided by the expected number of ommatidia in the same range. 375 
The latter was the local area of the cornea subset divided by the local average facet area. 376 
 377 

 378 

Results 379 
 380 
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 381 
Figure 2: Auto-segmented crystalline cones in the compound eyes of three arthropods. The eyes of Apis mellifera 382 
(ai), Bombus terrestris (aii) and Pieris napi (aiii) were divided respectively into 4, 12 and 9 subregions. Overview 383 
of the cones segmented with InSegtCone (each labelled with a different colour) from the front (bi-iii) and the side 384 
(ci-iii), as indicated by the volume renderings of the species’ heads (grey images). The border of the external surface 385 
of the cornea is represented in black. The miniature in each left corner indicates the topology of the cone density 386 
ratio. A ratio locally equal to one means that all expected cones were auto-segmented. (di-iii) Detailed view of a 387 
portion of the auto-segmented cones. 388 

 389 
When applied to compound eyes of Apis mellifera, Bombus terrestris and Pieris napi, 390 
InSegtCone enabled the automatic reconstruction of 4423, 3783 and 4334 cones, corresponding 391 
to 80%, 76% and 62% of the predicted total number of crystalline cones, respectively (figure 392 
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2 and figure 3c, movies S2-4). The cone density ratio R, i.e. the local ratio of auto-segmented 393 
over predicted cones, was close to 1 across most regions of the eyes of A. mellifera and B. 394 
terrestris, indicating that all the cones predicted in these areas were segmented (figure 2). The 395 
value of R dropped in the most dorsal region and at the edges of the eye, indicating that the 396 
cones that remained undetected were situated in these areas (representing ~20% of the total 397 
number of cones). The topography of R was more irregular in Pieris napi, revealing small areas 398 
where cones were not segmented, in the most dorsal and ventral regions and at the edges of the 399 
compound eye.  400 

 401 
Figure 3: Performance of the auto-segmentation method in Apis mellifera (green), Bombus terrestris (orange) and 402 
Pieris napi (purple). The surface modelling error (a), segmentation time (b), percentage of auto-segmented cones 403 
(c) and angular discrepancy between manual and auto-segmentation (d), are represented as a function of the 404 
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number of eye subregions used in the segmentation algorithm. When drawn, error bars represent the standard 405 
error around the mean values. 406 

 407 
Once the segmentation of the eye and cornea (that requires most manual work) were 408 

completed, the segmentation time of the automatic method was ~30 min for ~4400 cones 409 
(figure 3b), whereas the duration of the manual segmentation was ~180 min for 100 cones 410 
(table S1). This means that the manual method permitted the segmentation of one cone in about 411 
2 min when the automatic method segmented one cone in less than 0.5 s. 412 
 To test the effects of dividing the eye into sub-regions, the auto-segmentation process 413 
was applied to the compound eye of A. mellifera when it had been divided into increasing 414 
numbers of sub-regions NSR. The aim of this test was also to identify the optimal NSR that trades 415 
off accuracy and efficiency. The percentage of segmented cones initially increased with 416 
increasing NSR (NSR ∈ [1 , 4], figure 3c), until it reached a plateau and even slightly dropped 417 
(NSR ∈ [4 , 12], figure 3c). This initial gain highlights the benefits of dividing the eye into sub-418 
regions, and was due to the segmentation of additional cones in the dorsal area of the compound 419 
eye (figure S2). This was likely facilitated by the initial decrease of the surface modelling error 420 
(figure 3a). The improved efficiency of the algorithm up to NSR = 4 did not increase the run-421 
time of the auto-segmentation process (figure 3b), although it may have caused a slight increase 422 
in the average angular discrepancy between the automatic and the manual segmentation (figure 423 
3d). 424 

The angular discrepancy α between automatic and manual segmentation, that is the 425 
angle between the elongation axes of the manually and the auto-segmented duplicates of the 426 
same cone, could locally be close to 70 deg (figure S4). Note that this does not indicate that the 427 
auto-segmented cone is 70 deg off the elongation axis, as manual segmentation is also prone 428 
to errors. Moreover, α was on average below 7 deg for all eyes (figure 3d), which indicates a 429 
good agreement between the manual and the auto-segmentation methods overall. 430 
 431 
 432 

Conclusion 433 
 434 
 435 
In this paper, we demonstrate InSegtCone, a new computational method for automatically 436 
segmenting the crystalline cones of compound eyes in arthropods using high-resolution micro-437 
CT images. We assessed the performance of the method by implementing the auto-438 
segmentation process on the apposition compound eyes of three insect species. Our method 439 
labelled most of the crystalline cones across of the compound eyes and generated cone labels 440 
with a similar level of accuracy than manual segmentation but ~250 times faster. We conclude 441 
that this new method for auto-segmentation of crystalline cones is accurate and efficient. 442 
InSegtCone sets the ground for subsequent high-throughput analyses that are required for 443 
understanding the diversity of eyes and vision in arthropods. 444 
 445 
Current limitations and possibilities for improvement 446 
 447 
Because the present automatic procedure is ~250 times faster than manual labelling, it greatly 448 
facilitates the segmentation of crystalline cones and minimises most of the labour-intensive 449 
manipulations usually required for such analyses. However, the method still requires some 450 
level of manual interaction with the user, in particular, during the segmentation of the external 451 
surface of the cornea and the texture-based segmentation that requires the annotation of 452 
crystalline cones on a 2D slice (if no existing dictionary from similar samples is available). 453 
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There are thus opportunities for further automation of the segmentation process. We encourage 454 
future users to carefully consider the advantages of using the auto-segmentation instead of a 455 
manual segmentation method. The automatic method is probably most beneficial when applied 456 
to numerous eye samples and/or species with many ommatidia (and thus many cones), such as 457 
the bees and butterfly presented in this paper that possess several thousands of ommatidia. 458 
Manual segmentation may be more advantageous for studies restricted to few specimens of 459 
arthropods with a small number (<100) of ommatidia (Taylor et al., 2020). 460 

Our auto-segmentation tool uses clustering of image features and manual labelling from 461 
one slice to segment repeated patterns (here, in the form of small circles). It will perform well 462 
on images that have a similar appearance as the image used for training the dictionary. 463 
However, micro-CT reconstructions sometimes generate artefacts (e.g. ring artefacts, beam 464 
hardening, etc.) that affect the appearance of the cones and can locally disrupt the auto-465 
segmenting of cones. An example of this is indicated by the arrow in figure 1d where the 466 
algorithm failed to segment the cones around the stripes caused by ring artefacts. Fortunately, 467 
micro-CT is a non-destructive imaging method that allows repeated scanning on the same 468 
specimen with adjusted parameters to enhance image quality and limit artefacts. The image 469 
quality can also be improved during reconstruction with numerous post-processing tools, such 470 
as ring removal algorithms (Vo et al., 2018). 471 

During the texture-based segmentation step, a training dictionary is built from the 472 
manual annotation of a training slice (Dahl et al., 2020). If the cross sections of the cones have 473 
a highly variable appearance across the slice, the use of a unique training dictionary common 474 
to all the cones is likely to lead to inaccurate or poor segmentation results. The variable 475 
appearance of cones across a training slice can have several explanations. For example, (1) if 476 
the thickness of the cornea significantly changes across the eye, the training slice will contain 477 
cones that appear different because they are viewed at different positions along their main 478 
elongation axes. This issue may be avoided by using a more robust reference for surface 479 
modelling, such as the internal, instead of the external, corneal surface, although this would 480 
require additional volumetric segmentation efforts. Another solution is to divide the compound 481 
eye into a higher number of sub-regions to ensure that the thickness of the cornea is 482 
homogeneous within each sub-region. (2) The cones themselves can have distinct 483 
morphologies in different regions. For instance, the cones located in the dorsal area of the bee 484 
eyes appear to be shorter and more densely packed than in the rest of the eye (figure 2). In this 485 
case, a sub-region dedicated to these challenging regions may be needed to improve 486 
segmentation. (3) Auto-segmentation can be complicated if neighbouring crystalline cones are 487 
in contact with each other, such as in the case of crab compound eyes (Alkaladi and Zeil, 2014; 488 
Bagheri et al., 2020). In this case, the texture-based segmentation algorithm either fails, or the 489 
cones are segmented together in a bundle of connected voxels and cannot be isolated without 490 
additional post-processing, e.g. morphological erosion and dilation techniques (Gonzalez et al., 491 
2004). An alternative solution is to combine the texture-based segmentation with shape 492 
recognition algorithms, such as circle detection (Gonzalez et al., 2004). 493 
 494 
Current and future Applications 495 
 496 
Despite the limitations discussed above, InSegtCone represents a formidable opportunity for 497 
the study of the visual biology of arthropods. Because it greatly accelerates time-consuming 498 
labelling, this new tool enables comprehensive studies across a large number of arthropod eyes, 499 
which had been practically inaccessible until now. The auto-segmentation method also has a 500 
wide range of potential applications within and beyond the study of the anatomy of compound 501 
eyes. Firstly, (and possibly most obviously) the labels of the crystalline cones can serve to 502 
generate unbiased functional optical models of the eyes. This is because, without analysis of 503 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.15.422850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422850


13  

the crystalline cones, optical models must be based on the apparent angular spacing of facets 504 
on the external surface of the cornea, the corneal IO angle, which produces biased estimates of 505 
optical resolution and of the field of view (FOV) of the eye (Bergman and Rutowski, 2016; 506 
Taylor et al., 2019a). The auto-segmented labels can be used to estimate the skew β between 507 
the normals to the external cornea and the main elongation axes of the crystalline cones across 508 
the compound eye (Stavenga, 1979). The cone skew β is then necessary to compute the visual 509 
IO angle – an unbiased estimate of optical resolution– that can be mapped across the accurately 510 
delineated FOV of the eye. Ultimately, the fast auto-segmentation method makes it possible to 511 
compare theses accurate resolution maps across large numbers of specimens with different 512 
sizes, life-stages, sex, species, etc. This is likely to advance our understanding about the visual 513 
ecology and evolution of vision in arthropods (Bagheri et al., 2020; Scales and Butler, 2016; 514 
Somanathan et al., 2009; Taylor et al., 2019a). The auto-segmentation method not only extracts 515 
the elongation axis of the crystalline cones but also their full shape. This is interesting because 516 
several arthropod species modify the length (Brodrick et al., 2020; Menzi, 1987; Nilsson and 517 
Odselius, 1981) and the diameter (Brodrick et al., 2020) of their crystalline cones in response 518 
to changes in light levels. In fiddler crabs, these light-adaptation mechanisms together with 519 
modifications of the rhabdoms enhance optical sensitivity at night (Brodrick et al., 2020). The 520 
auto-segmentation method generates opportunities for large scale investigation of these light-521 
adaptation properties at numerous light levels and across large numbers of species. 522 

Applying the auto-segmentation method to other parts of the eyes could facilitate the 523 
labelling of other elements in the compound eyes. For instance, the centre of individual facets 524 
could be identified automatically by running the program superficially over the external surface 525 
of the cornea. This technique would promptly generate 3D maps of facet dimensions across the 526 
eye and thus good estimates of the total number of ommatidia. The program could be adapted 527 
to extract morphological properties of the rhabdoms when they are visible, i.e. when the 528 
resolution and contrast of micro-CT images are sufficient. This would represent a great benefit 529 
given that current studies of rhabdom morphology require tedious sample preparation and 530 
slicing for Transmission Electron Microscopy. A modified version of the auto-segmentation 531 
method could be used to measure the diameter of rhabdom, either by using the proximal tip of 532 
the segmented crystalline cone, or directly by segmenting the rhabdom shape. Besides being 533 
more accurate, the latter method would have the additional advantage of extracting other 534 
properties, such as the length of the rhabdoms. To segment rhabdoms, we expect better results 535 
using the retina-cone interface as a reference during the surface modelling step, rather than the 536 
external surface of the cornea. With these measurements of rhabdom diameters and lengths, 537 
scientists would be able to calculate the topology of optical sensitivity with unprecedent level 538 
of detail across the eye. 539 

Finally, InSegtCone could solve segmentation problems beyond the study of compound 540 
eyes. In micro-CT scans of camera-type eyes, such as ocelli (Wilby et al., 2019), this represents 541 
a promising tool for fast reconstruction of the shape of photoreceptors across the retina. In 542 
principle, our method can be extended to label photoreceptors on any tomographic 543 
reconstruction of vertebrate or invertebrate retina, regardless of the imaging technique involved 544 
to generate data (micro-CT, confocal microscopy, etc). More generally, this work can inspire 545 
projects in a wide range of fields that require tools to segment repeated elements in a 3D layer. 546 
In Biology, these repeated elements are for example: muscle fibres, olfactory sensilla on 547 
antennas, epidermal appendages such as scales, vascular tissue and roots of plants. The first 548 
part of the process involving the modelling of the external cornea may also inspire other studies 549 
to achieve better visualization or easier quantitative analysis through the unfolding of 3D 550 
images. 551 

 552 
 553 
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