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SUMMARY 

There is a critical need to develop small molecule inhibitors of mucin-type O-linked glycosylation. The best 

known reagent currently is peracetylated benzyl-GalNAc, but it is only effective at millimolar concentrations. 

This manuscript demonstrates that Ac5GalNTGc, a peracetylated C-2 sulfhydryl substituted GalNAc, fulfills 

this unmet need. When added to cultured leukocytes, breast and prostate cells, Ac5GalNTGc increased cell 

surface VVA-binding by ~10-fold, indicating truncation of O-glycan biosynthesis. Cytometry, mass 

spectrometry and Western blot analysis of HL-60 promyelocytes demonstrate that 50-80µM Ac5GalNTGc 

prevented elaboration of 30-60% of the O-glycans beyond the Tn-antigen (GalNAcα1-Ser/Thr) stage. The 

effect of the compound on N-glycans and glycosphingolipids was small. Glycan inhibition induced by 

Ac5GalNTGc resulted in 50-80% reduction in leukocyte sialyl-Lewis-X expression, and L-/P-selectin 

mediated rolling under flow. Ac5GalNTGc was pharmacologically active in mouse. It reduced neutrophil 

infiltration to sites of inflammation by ~60%. Overall, Ac5GalNTGc may find diverse applications as a potent 

inhibitor of O-glycosylation.  

 

Keywords: glycosylation, O-glycan, mucin, inhibitor, neutrophil, cell adhesion, in vivo, inflammation, sialyl 

lewis-X, selectin 
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INTRODUCTION 
 

All mammalian cells display mucin-type O-linked GalNAc-type glycans as part of their glycocalyx. They 

play a number of key biological roles during development, tumorigenesis, cancer metastasis, leukocyte 

adhesion and inflammatory response (Chugh et al., 2018; Oliveira-Ferrer et al., 2017; Schnaar, 2016; Tran 

and Ten Hagen, 2013). The biosynthesis of mucin-type O-glycans is initiated by the transfer of GalNAc (N-

Acetylgalactosamine) from its nucleotide-sugar donor (UDP-GalNAc) to Ser/Thr residues on the peptide 

backbone by a family of polypeptide GalNAc-transferases (ppGalNAcT, (Bennett et al., 2012)). There are 

20 ppGalNAcTs in humans, and these are largely conserved in the animal kingdom. Many of these enzymes 

act on proline-rich peptides to result in -GalNAc-Ser/Thr (Tn-antigen) bearing glycopeptides. Other ‘follow-

up enzymes’ (ppGalNAcT-T4, -T7, -T10, -T12, -T17) prefer to act on previously GalNAcylated glycopeptides 

to promote the formation of O-glycan clusters on mucinous proteins (Bennett et al., 2012). While the 

overlapping tissue expression patterns and substrate specificity of the ppGalNAcTs result in some 

functional redundancy, the second step of the O-glycan biosynthesis pathway is highly specific. Here, 

Galβ1→3 addition is mediated by a single, ubiquitously expressed enzyme called Core 1 

β1,3Galactosyltransferase (C1GalT1) along with its chaperone protein Cosmc (Core 1 β1,3GalT-specific 

molecular chaperone) (Ju and Cummings, 2002). The Galβ1,3GalNAcα-Ser/Thr core is then elaborated by 

additional glycosyltransferases (Brockhausen and Stanley, 2015). 

The development of specific, small molecule inhibitors of mucin-type O-glycans would be beneficial for 

mechanistic studies and also translational applications. This would fill a need in the field since many of the 

current glycosylation pathway inhibitors only target either glycosidase function (e.g. castanospermine, 

thiamet-G, oseltamivir), N-glycan biosynthesis (swainsonine, deoxymannojirimycin, tunicamycin), or 

glycosphingolipid (GSL) biosynthesis (N-butyldeoxynojirimycin; D-threo-1-phenyl-2-palmitoylamino-3-

morpholino-l-propanol PPMP) (Gloster and Vocadlo, 2012; Hudak and Bertozzi, 2014). Attempts have been 

made to develop such O-glycosylation inhibitors with focus on GalNAc as these are uniquely part of O-

linked glycans, although they also appear in dermatan sulfates, chondroitin sulfates and a subset of GSLs. 

Such compounds are often peracetylated to enhance cell permeability. In this regard, studies using various 

GalNAc analogs suggest that C-6 modification of GalNAc may render the compound inactive as it is not 
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activated by GalNAc-1-kinase in the salvage pathway (Pouilly et al., 2012). However, C-2 N-acyl modified 

GalNAc are tolerated by cells and incorporated into cell surface glycoconjugates to varying degrees 

depending on their chemical composition (Dube et al., 2006; Hang et al., 2003; Pouilly et al., 2012). Such 

compounds are however reported to function bio-orthogonally, without inhibition effects. Peracetylated 4F-

GalNAc is another C-4 analog that acts as a glycosylation inhibitor at 50-100μM concentrations (Marathe 

et al., 2010). Like peracetylated 4F-GlcNAc, however, this compound is not directly incorporated into 

glycoconjugates (Barthel et al., 2011), and both compounds reduce depress UDP-HexNAc levels (Del Solar 

et al., 2020). Finally, the most common O-glycan inhibitor used currently is the decoy substrate GalNAc-O-

Bn (‘benzyl-α-GalNAc’) that acts as an effective surrogate substrate when applied at high concentrations 

(2-4mM) (Alfalah et al., 1999; Huet et al., 1998; Kuan et al., 1989; Tsuiji et al., 2003). At lower dose (25-

100μM), peracetylated GalNAc-O-Bn only acts as a primer that reports on the cellular carbohydrate 

biosynthesis pathways with minimal inhibitory function (Kudelka et al., 2016; Stolfa et al., 2016).  

Previously, we reported a peracetylated N-thioglycolyl modified GalNAc analog (‘Ac5GalNTGc’), which 

trimmed O-glycans globally, including on CD43 of Jurkat (Agarwal et al., 2013) and U937 cell lines (Dwivedi 

et al., 2018). In the current manuscript, we extended the characterization of this compound, with focus on 

its effect on leukocyte cell adhesion function, mechanisms of action and in vivo investigations of leukocyte 

recruitment. These studies contrast the function of Ac5GalNTGc with a panel of other peracetylated C-2 

substituted GalNAc analogs, and also its peracetylated C-4 epimer, ‘Ac5GlcNTGc’ (Figure 1). These 

compounds are per-acetylated to enhance cell permeability. Once they enter cells from the culture medium, 

they are de-esterified in the cytosol and transported into the Golgi. Here, they either participate in 

biosynthetic processes or act as metabolic inhibitors. In such investigations, our data show that: i. 

Ac5GalNTGc effectively abolishes sialyl Lewis-X (sLeX) epitope expression on human leukocytes when 

applied at 50 μM, and inhibits leukocyte rolling on L- and P-selectin ex vivo. Such binding is largely 

dependent on leukocytic O-glycans (Kieffer et al., 2001; Lo et al., 2013; Vestweber and Blanks, 1999). 

Whereas the concentration in the extra-cellular milieu is in the ~50μM range, intra-cellular concentration is 

higher it ~1-1.5 mM (estimated in (Marathe et al., 2010)). ii. Addition of this compound to different cell types 

resulted in a dramatic upregulation of VVA-lectin binding, supporting the potential that Ac5GalNTGc acts by 
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inhibiting core-1 glycan elaboration. iii. Although only a minor portion of the Ac5GalNTGc was incorporated 

into cellular glycoconjugates, upregulation of VVA-lectin binding correlated tightly with the extent of 

Ac5GalNTGc incorporation. Ac5GalNTGc did not alter cellular nucleotide-sugar levels or N-glycan 

biosynthesis. It had a quantitative effect on the relative abundance of GSLs. iv. Ac5GalNTGc was 

pharmacologically active in mice and it inhibited the extent of neutrophil recruitment to sites of inflammation 

in an acute peritonitis model. Overall, Ac5GalNTGc is a mucin-type O-glycosylation inhibitor. It is more 

potent compared to other molecules commonly used in literature, and thus could be broadly useful in 

diverse basic science and translational applications.  
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RESULTS

Ac5GalNTGc decreased cell surface sialyl Lewis-X expression: The effect of the panel of peracetylated 

HexNAc analogs on cell surface carbohydrate expression was evaluated by culturing HL-60 promyelocytes 

with 50 μM of each of the analogs for 40h (Fig. 2). Among them, only Ac5GalNTGc significantly altered cell 

surface glycan structures. It doubled CD15/LeX expression (Fig. 2A), reduced the expression of sLeX as 

determined using mAbs HECA-452 (Fig. 2B) and CSLEX-1 by 50-80% (Fig. 2C), and increased the VIM-

2/CD65s epitope (Fig. 2D). Other compounds containing different C-2 substituents, and also the C-4 epimer 

Ac5GlcNTGc had no effect on glycan expression. A reduction in HECA-452 (CLA/sLeX) expression, upon 

culture with Ac5GalNTGc, was also observed in western blots (Supplemental Fig. S1A). The increase in 

LeX expression is similar to prior work where CRISPR-Cas9 based inhibition of O-glycan biosynthesis in 

HL-60s uncovered sterically hidden CD15 epitopes on leukocyte N-glycans and glycolipids (Stolfa et al., 

2016). In dosage studies, Ac5GalNTGc modified glycan structures at concentrations as low as 10 μM, with 

maximum efficacy at > 50 μM (Fig. 2E-2H). None of the concentrations tested altered cell viability or growth 

rate over the first 40h, though treatment with 200 μM Ac5GalNTGc resulted in a longer lag-phase before 

resumption of growth following Ac5GalNTGc removal (Supplemental Fig. S1B-D). Overall, GalNAc with a 

thioglycolylamino-moiety at the C-2 position is a potent modifier of glycosylation. Based on these data, 

80μM peracetylated Ac5GalNTGc was applied in all subsequent studies described below, unless stated 

otherwise.  

 

Ac5GalNTGc truncates O-glycan biosynthesis: A panel of lectins was applied to characterize changes 

in carbohydrate structures upon culture with Ac5GalNTGc (Fig. 3, Supplemental Fig. S2). Studies were 

performed both in the presence or absence of sialidase, as some lectins preferentially bind de-sialylated 

epitopes. Here, Ac5GalNTGc augmented VVA binding by 30-fold compared to vehicle treatment (Fig. 3A). 

Similar observations were also made with another GalNAcα binding lectin, Soyabean Agglutinin SBA (Fig. 

S2). In agreement with this, pronounced VVA binding to cells was observed in the fluorescent micrographs 

upon culture with Ac5GalNTGc (Fig. 3F). Compared to the sialidase treated [O]¯ cells (COSMC-knock out) 

which augmented VVA binding by 43-fold, Ac5GalNTGc was 13-fold effective (Fig. 3A). Thus, Ac5GalNTGc 
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truncates 1/3rd of the O-glycans at the Tn-antigen stage. Similar observations were also made in lectin blots, 

where Ac5GalNTGc dramatically elevated VVA binding to a variety of glycoproteins (Supplemental Fig. 

S3A). Besides leukocytic cells, a similar increase in VVA-binding was also noted on other breast (T47D, 

ZR-75-1) and prostate (PC-3) cell lines, but not HEK293T kidney cells (Supplemental Fig. S3B). Consistent 

with the notion that O-glycans are specifically altered, a 30% reduction in the sialylated T-antigen was 

observed in HL-60s, upon using PNA (Fig. 3B, Fig. S2). In addition, Ac5GalNTGc decreased the N-acetyl-

lactosamine structures reported by ECL by ~40% (Fig. 3C). α2,3-sialic acid measured using MAL-II (Fig.3D), 

complex N-glycans reported by PHA-L (Fig. 3E) and a panel of additional 15+ lectins that report on Man, 

Fuc, GlcNAc and Gal related epitopes (Fig. S2) remained largely unchanged. Overall, the data suggest a 

potent effect of Ac5GalNTGc on cell-surface O-glycans, with less effect on other types of glycoconjugates.  

 

Ac5GalNTGc reduced leukocyte adhesion to L- and P-selectin: Microfluidics based flow chamber 

studies determined if the reduced sLeX expression upon Ac5GalNTGc treatment attenuated leukocyte 

rolling on selectin-bearing substrates (Fig. 4). Here, Ac5GalNTGc treated HL-60s displayed 80% and 50% 

reduction in cell rolling on recombinant L-selectin (Fig. 4A) and on P-selectin bearing CHO-P cells (Fig. 4B), 

respectively. This reduction was not observed upon treatment with vehicle or GalNAc. In contrast to L- and 

P-selectin, Ac5GalNTGc did not alter E-selectin dependent leukocyte rolling on IL-1β stimulated HUVEC 

monolayers (Fig. 4C). P-selectin dependent leukocyte-platelet adhesion was also reduced by 40-50% upon 

cell culture with Ac5GalNTGc (Fig. 4D). Consistent with these functional data, Ac5GalNTGc reduced the 

apparent molecular mass of the major human L-/P-selectin ligand PSGL-1 by 15% (from 125 to 105KDa, 

Fig. 4E). It also reduced the mass of another common mucinous leukocyte glycoprotein, CD43. Together, 

the data demonstrate that O-glycan biosynthesis truncation by Ac5GalNTGc can reduce L- and P-selectin 

dependent leukocyte cell adhesion under shear, both in the context of leukocyte-endothelium and 

leukocyte-platelet binding.  

 

Ac5GalNTGc is pharmacologically active and it reduces granulocyte migration to sites of 

inflammation: To determine if Ac5GalNTGc is active in vivo, either mouse bone marrow cells (mBMCs) or 
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neutrophils (mPMNs) were cultured with IL-3 (interleukin-3) and GCSF (granulocyte colony stimulating 

factor) ex vivo in the presence Ac5GalNTGc or control treatments for 40h (Fig. 5A). Similar to HL-60s, both 

Ac5GalNTGc treated mBMCs and mPMNs displayed a 6-fold increase in VVA binding at 40h (Fig. 5B). 

Ac5GalNTGc also reduced P-selectin-IgG binding to neutrophils by 50-65% (Fig. 5D) and L-selectin binding 

by 60-80% (Fig. 5E). PSGL-1 expression remained unchanged (Fig. 5C). In another set of studies, mBMCs 

cultured with Ac5GalNTGc or vehicle were labeled with distinct fluorescent dyes (either red or green), mixed 

in equal proportion, and injected i.v. into recipient mice in a thioglycollate-induced model of acute peritonitis. 

Twenty hours later, the peritoneal lavage was recovered, and the labeled neutrophils were enumerated 

using flow cytometry (Fig. 5F). Here, regardless of the labeling dye combination, Ac5GalNTGc reduced 

neutrophil migration into the peritoneum by ~50%, compared to vehicle control. 

Next, to confirm the pharmacological activity of Ac5GalNTGc, 100mg/kg Ac5GalNTGc was infused 

into recipient mice once daily for 4-days before induction of peritonitis (Fig. 5G). Here, also, Ac5GalNTGc 

reduced neutrophil extravasation into the peritoneal lavage by 65% (Fig. 5H). Peripheral blood counts and 

leukocyte differentials remained unchanged at day-4 (Table S1), and animals did not exhibit any signs of 

distress or abnormality. Significantly, the VVA binding to neutrophils in the peritoneal lavage was two-fold 

higher upon Ac5GalNTGc treatment (Fig, 5I). Together, the data confirm the in vivo metabolic activity of 

Ac5GalNTGc. 

  

Ac5GalNTGc blunts T-antigen biosynthesis, with less effect on N-glycans and glycolipids: We 

verified the effect of Ac5GalNTGc on overall O-glycosylation by feeding peracetylated GalNAc-OBn to cells 

cultured with Ac5GalNTGc or GalNAc (control), and, measuring extended glycans formed on this substrate 

(Fig. 6A). All products formed were verified based on MS/MS and also LC retention time. [NOG]¯ HL-60s 

fed with GalNAc-OBn served as negative controls, since they lack the O-glycan biosynthesis machinery. 

Here, whereas 35% of the GalNAc-O-Bn was converted into extended O-glycans (disaccharides, 

trisaccharides etc.) in the GalNAc fed cells, this was reduced to 14% upon culture with Ac5GalNTGc and 

such biosynthesis was absent on [NOG]¯ cells. These data suggest ~60% (=21/35×100) inhibition of O-

glycan elaboration upon Ac5GalNTGc treatment. The increased prevalence of exposed unmodified GalNAc 
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upon culture with Ac5GalNTGc is consistent with the increased VVA binding noted previously (Fig. 3). Due 

to reduced GalNAc-O-Bn substrate extension, longer glycan chains including those containing the T-

antigen (Galβ1-3GalNAc/core-1) and core-2 glycan (Galβ1-3[GlcNAc β1-6]GalNAc) related structures were 

reduced in the Ac5GalNTGc treated cells. Such reduction in O-glycan extension could account for the 

reduced molecular mass of PSGL-1 and CD43. Notably, consistent with cytometry measurements, sLeX 

epitope biosynthesis on core-2 O-glycans was reduced by ~70% in the Ac5GalNTGc treated cells. The 

direct incorporation of GalNTGc/HexNTGc (in non-acetylated or partially acetylated form) into carbohydrate 

products formed on the GalNAc-OBn substrate was not observed. In enzymology studies, a ~40% reduction 

in β1,3GalT activity was noted in the HL60s upon culture with Ac5GalNTGc, and this may partially explain 

the increased expression of the Tn-antigen epitope (Fig. 6B). 

MALDI-TOF MS based glycomics profiling was undertaken to study the impact of Ac5GalNTGc on 

cellular N-glycans and GSL biosynthesis. Here, Ac5GalNTGc did not have any significant impact on N-

glycan structures, with high molecular weight complex structures still being observed (Fig. 6C). In the case 

of GSLs, however, Ac5GalNTGc appeared to quantitatively affect the abundance of certain GSLs mainly 

containing fucose residues (m/z 1566, 1841, 2016, 2639, 3088 and 3262, Supplemental Fig. S4). Direct 

incorporation of HexNTGc into glycoconjugates was not detected. Overall, the data suggest that 

Ac5GalNTGc reduces the formation of the T-antigen on leukocyte O-glycans and it also has some impact 

on GSLs. The effect of the compound on N-glycan biosynthesis was negligible. 

 

Minimal changes in sugar-nucleotide biosynthesis and low levels of Ac5GalNTGc derivative 

incorporation into cellular O-glycans, N-glycans and glycolipids: Recent studies suggest that 

monosaccharide analogs, where selected hydroxyl groups are modified with different substituents, often 

act as metabolic inhibitors by altering cellular sugar-nucleotide compositions (Del Solar et al., 2020; Gloster 

and Vocadlo, 2012; van Wijk et al., 2015). However, this is not the mechanism of action of Ac5GalNTGc 

since it did not alter cellular sugar-nucleotide levels based on LC-MS/MS (Fig. 7A). Here, glucose based 

sugar-nucleotide standards were distinguished from corresponding galactose counterparts based on 

retention time since compounds containing Glc eluted first, i.e. UDP-Glc eluted prior to UDP-Gal, and UDP-
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GlcNAc before UDP-GalNAc (Del Solar et al., 2020). Based on these observations, the MS/MS 

fragmentation pattern of UDP-HexNTGc (Supplemental Fig. S5A) and the observed elution chromatogram 

(Fig. S5B), our data suggest the possible conversion of Ac5GalNTGc into both UDP-GalNTGc and UDP-

GlcNTGc in equal parts (Fig. 7B). While exact quantitation is not possible due to the absence of UDP-

HexNTGc standards, MS ion counts of UDP-GalNTGc and UDP-GlcNTGc in cell lysates was 10-15 fold 

lower than that of UDP-GalNAc and UDP-GlcNAc suggesting only small amounts of UDP-HexNTGc 

formation. 

The direct incorporation of Ac5GalNTGc and its derivatives into glycoconjugates was not observed 

in MS studies (Fig. 6), potentially due to their low abundance, below the instrument detection limit. Low 

levels of GalNTGc incorporation was also observed in O- and N-glycans in LC-MS/MS glycoproteomics 

investigations (data not shown). However, this could be readily detected using fluorescence methods. Here, 

consistent with a previous report (Agarwal et al., 2013), we observed a 10-15 fold increase in FITC-

maleimide (5-FM) incorporation upon culture with Ac5GalNTGc, but not in controls containing Ac5GlcNTGc 

or Ac5GalNAc (Fig. 7C). 5-FM incorporation was 15-fold higher when the labeling reaction was performed 

in the presence of the reducing agent TCEP, suggesting that a majority of the cell-surface thiol groups 

introduced by Ac5GalNTGc were crosslinked via disulfide bridges under native conditions, i.e. they exist as 

GalNTGc-GalNTGc or GalNTGc-Cys moieties. Similar results were obtained for cell surface thiol 

measurement by flow cytometry wherein the two-step maleimide-PEG2-biotin Michael addition was followed 

by FITC-conjugated avidin staining (Supplemental Fig. S6A). Cell surface incorporation of GalNTGc 

derivatives was also observed using fluorescence microscopy (Fig. 7D), but not in controls runs that used 

Ac5GlcNTGc or Ac5GalNAc (Fig. S6B). Ac5GalNTGc and its derivatives were maximally incorporated 24-

48h post-treatment, with 5-FM signal being reduced to basal levels at 72-96h (Fig. 7E). Besides HL-60s, 5-

FM was also incorporated into other human cell lines including breast (T47D, ZR-75-1), prostate (PC-3) 

and to a lesser degree into kidney (HEK293T) cells (Fig. S6C).  

Studies were performed with a panel of CRISPR-Cas9 HL-60 knockouts that contain truncated O-

glycans, N-glycans and/or GSLs, in order to determine the glycoconjugates that incorporate GalNTGc-

derivatives (Fig. 7F). This analysis suggests the increased prevalence of sulfhydryl groups in all families of 
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cell-surface glycans, with incorporation being somewhat higher in GSLs (~40-50%) compared to N-glycans 

(~25-35%), followed by O-glycans (~20-25%). These estimates are based on the quantitative incorporation 

of 5-FM signal in the single and double knockout cell lines compared to wild-type HL60s. 5-FM signal was 

low/absent in the triple knockouts and thus this signal comes from thiol incorporation into glycans and not 

into other macromolecules. It could also be reduced upon protease digesting cell surface glycoproteins. 

Consistent with the above, maleimide incorporation was observed in western blots of PSGL-1 with greater 

maleimide incorporation being noted for lower molecular mass glycoproteins that contain more truncated 

O-glycans (Fig. S7A). Additionally, Ac5GalNTGc may not be transformed into sialic acid using the pathway 

illustrated in Fig. S7B, since the removal of sialic acids by α2-3,6,8,9-neuraminidase did not reduce the 

measured 5-FM signal. Overall, the data are consistent with the notion that a portion of Ac5GalNTGc is 

converted into UDP-derivatives that are incorporated into cellular glycoproteins and possibly also GSLs.  
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DISCUSSION 

 Our results demonstrate that Ac5GalNTGc is a potent metabolic inhibitor of O-glycan biosynthesis 

in diverse cell types including mouse peripheral blood neutrophils, human promyelocytes, breast and 

prostate cancer cell lines. In all these cells, Ac5GalNTGc upregulated VVA binding suggesting that it may 

reduce core1 β1,3GalT1 (C1GalT1) activity. Upon quantitatively comparing VVA binding on Ac5GalNTGc 

treated cells with COSMC-knockouts that completely lack C1GalT1 activity, it is estimated that at least 

~1/3rd of the HL-60 O-glycans are truncated by Ac5GalNTGc as GalNAc bearing polypeptides with no 

extension. This conclusion is consistent with the ~20-30% decrease in molecular mass of mucinous 

proteins including PSGL-1 and CD43 on the leukocytes. Additionally, feeding peracetylated GalNTGc to 

these cells reduced Gal incorporation into benzyl-GalNAc by ~60% with respect to GalNAc control, with few 

extended O-glycan structures. N-glycan profiling using MALDI TOF MS confirmed minimal effect of 

Ac5GalNTGc on N-glycan biosynthesis. The compound, however, appeared to affect the abundance of 

some fucosylated GSLs via yet unidentified mechanisms. Finally, although, the current study did not 

examine glycosaminoglycan and O-GlcNAc type modifications, the results thus far suggest that the major 

impact of Ac5GalNTGc is on O-glycan biosynthesis with the compound reducing the elaboration of such 

entities by ~30-60%. Additionally, Ac5GalNTGc has greater potency compared to peracetylated GalNAc-O-

Bn, a previously described O-glycan inhibitor which is added at 2-4mM into cell culture medium to reduce 

O-glycan biosynthesis (Alfalah et al., 1999; Huet et al., 1998; Kuan et al., 1989; Tsuiji et al., 2003). In 

contrast, the functional effect of Ac5GalNTGc was observed at concentrations as low as 10µM with 

maximum efficacy at 50-80µM. The lower usage dose and favorable pharmacological properties allow 

systemic usage of Ac5GalNTGc in murine models. 

 The functional effects of Ac5GalNTGc on O-glycan biosynthesis inhibition was assessed in a model 

of inflammation where leukocytes were recruited onto selectin-bearing substrates under shear flow. Here, 

Ac5GalNTGc dramatically reduced cell surface sLeX expression as measured using mAbs HECA-452 and 

CSLEX-1, and also using O-glycan mass spectrometry analysis. Such inhibition was prominent on 

mucinous proteins like the P- and L-selectin ligand PSGL-1, as the apparent mass of this glycoprotein was 

reduced by ~25% upon culture with Ac5GalNTGc. Ac5GalNTGc treatment also reduced leukocyte adhesion 
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on L- and P-selectin, but not E-selectin, under hydrodynamic shear. This is consistent with a previous report 

that C1GalT1 in necessary for leukocytes recruitment via L- and P-selectin (Stolfa et al., 2016). Abolishing 

O-glycosylation, however, has only a minor effect on human leukocyte recruitment/tethering and rolling on 

E-selectin. Besides the effect on cell rolling, Ac5GalNTGc also reduced the extent of P-selectin-PSGL-1 

dependent leukocyte-platelet adhesion under shear. Mouse neutrophils (and mBMCs) cultured ex vivo with 

Ac5GalNTGc for 40h also exhibited higher than normal levels of VVA binding, and reduced interaction with 

L- and P-selectin IgG fusion proteins. In the complex in vivo milieu during peritonitis, consistent with the 

inhibition effect of Ac5GalNTGc on L-/P-selectin dependent binding, neutrophil recruitment to sites of 

inflammation was reduced upon culture of cells with Ac5GalNTGc. Ac5GalNTGc also had excellent 

pharmacological properties, and it caused 60% reduction in leukocyte recruitment at sites of inflammation. 

These data support the use of Ac5GalNTGc in vivo for anti-inflammatory therapy. 

Studies were undertaken to determine the mechanism of Ac5GalNTGc action, with focus on 

β1,3GalT activity, since addition of this compound into cell culture medium both increased VVA binding and 

drastically reduced Gal incorporation into GalNAc-O-Bn substrate. β1,3GalT enzymatic activity was also 

partially reduced upon culture with Ac5GalNTGc, consistent with the notion that this compound may reduce 

core-1 glycan biosynthesis. In such investigations, we did not observe marked changes in the cellular 

nucleotide-sugar profile of HL60s culture with Ac5GalNTGc, that would indicate non-specific activity of the 

compound. This is unlike previous studies that used modified monosaccharides, which globally alter the 

cellular nucleotide-sugar profile (Del Solar et al., 2020; Rillahan et al., 2012; van Wijk et al., 2015). Here, 

culture of cells with per-acetylated 6F-GalNAc reduced the cellular UDP-GalNAc and UDP-GlcNAc pool by 

~80-90% (van Wijk et al., 2015), 2F-Fuc also depressed cellular GDP-Fuc, and 3F-Neu5Ac similarly 

abolished CMP-Neu5Ac (Rillahan et al., 2012). In these studies, substantial amounts of UDP-(6F)GalNAc, 

GDP-(2F)Fuc and CMP-(3F)NeuAc were formed and this resulted in collateral reduction in corresponding 

unmodified nucleotide-sugars. Unlike this, the culturing of cells with Ac5GalNTGc resulted in relatively low 

levels of UDP-HexNTGc synthesis. Based on ion count data, both UDP-GalNTGc and UDP-GlcNTGc were 

formed via the salvage pathway, although the levels were 1/10-1/15th that of UDP-GalNAc and UDP-GlcNAc. 

Due to this, only low levels of GalNTGc and GlcNTGc were integrated into cellular glycolipids, N-glycans 
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and O-glycans. This could be detected using sensitive fluorescence based methods (flow cytometry and 

microscopy), but not mass spectrometry. In this regard, the degree of GalNTGc integration into 

glycoproteins may be important for functional efficacy since cell systems with greater maleimide-FITC 

incorporation (e.g. HL-60, T47D, PC3) also displayed greater enhancement of VVA binding. HEK cells, on 

the other hand, exhibiting low maleimide incorporation and minimal change in VVA engagement. 

Transcriptional analysis of these cells does not reveal any obvious differences in O-glycosylation related 

enzyme expression profiles to explain these observations (Supplemental Table S2), though nucleotide-

sugar analysis needs to be performed to quantify the efficiency of UDP-HexNTGc synthesis across these 

different cell types. Additionally, if Ac5GalNTGc reduces T-synthase activity, one possibility is that 

glycoproteins containing directly incorporated GalNTGc may bond directly with either C1GalT1 or its unique 

molecular chaperone COSMC, within the Golgi (Ju et al., 2002; Ju and Cummings, 2002). Such molecular 

interactions may occur between the thiol residues of GalNTGc-derivatives and free Cys available on 

C1GalT1/COSMC. These may reduce T-synthase activity. In this regard, previous studies show that both 

C1GalT1 and COSMC are highly conserved proteins with 363 and 318 amino acid residues, respectively 

(Ju et al., 2002; Ju and Cummings, 2002). They both contain 6 highly conserved Cys residues in their 

luminal/catalytic domain including a pair of vicinal Cys that may be targeted by GalNTGc containing 

glycoproteins. Alternatively, the steric repulsion of the bulky thiol groups may preclude binding of the 

GalNTGc-decorated polypeptide acceptors to C1GalT and resulting enzyme activity. Other factors that may 

contribute to Ac5GalNTGc inhibitory function include: i. potential roles for partially deacetylated GalNTGc 

or its derivative in regulating glycosylation; ii. inhibition of other enzyme activities besides C1GalT1/COSMC, 

particularly those related to ppGalNAcT function. Additional studies are needed to examine these 

hypothesis. 

Overall, Ac5GalNTGc is a potent inhibitor of O-linked glycosylation. It fills an important gap in the 

field that lacks O-glycosylation inhibitors. The compound is pharmacologically active, it reduces the 

expression of sialofucosylated glycan epitopes on the leukocyte cell surface, inhibits L- and P-selectin-

dependent molecular recognition under static and flow conditions, and displays the potential to have anti-

inflammatory properties. Besides basic science applications, the compound may find utility in translational 
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studies where there is a need to trim mucinous glycoproteins for example during pulmonary disorders with 

excess mucin production, and in the context of investigations related to cancer metastasis and 

immunotherapy. 

 

SIGNIFICANCE 

Four common types of glycans are expressed on the surface of mammalian cells. These include O- 

and N-linked glycans on glycoproteins, glycosphingolipids (GSLs) and glycosaminoglycans (GAGs). 

Currently, there are a number of ways to study N-glycan function using enzymes like PNGaseF/Peptide:N-

glycosidase F that cleave these structures, and glycosidase inhibitors (e.g. kifunensine) that can 

truncate N-glycan biosynthesis. Small molecule inhibitors also exist for the study of GSLs (e.g. D-threo-

1-phenyl-2-palmitoylamino-3-morpholino-l-propanol/PPMP), and lyases are commonly used to trim 

GAGs. Unlike these, few reagents are available to study mucin type O-glycosylation. The most common 

chemical method to block O-glycan biosynthesis involves the use of a small molecule called peracetylated 

benzyl-GalNAc. This compound is however only effective when used at millimolar concentrations and this 

limits in vivo usage. To address the above limitations regarding the need for new tools to study O-linked 

glycosylation, this manuscript presents the characterization of a peracetylated N-thioglycolyl modified 

GalNAc analog (‘Ac5GalNTGc). Our data show that Ac5GalNTGc is an efficient inhibitor of O-glycan 

biosynthesis at concentrations as low as 50 μM. At these doses, Ac5GalNTGc abolished sialyl Lewis-X 

(sLeX) epitope expression on human leukocyte O-glycans, and inhibited leukocyte rolling on L- and P-

selectin substrates under flow. Addition of this compound to diverse cell types resulted in a dramatic 

upregulation of VVA-lectin binding, suggesting that Ac5GalNTGc acts by inhibiting core-1 O-glycan 

elaboration. Ac5GalNTGc did not alter cellular nucleotide-sugar levels or N-glycan biosynthesis. Thus, it 

primarily inhibits O-linked glycosylation. The compound was also pharmacologically active in mouse, and 

it inhibited neutrophil recruitment to sites of inflammation in a model of acute peritonitis. Ac5GalNTGc may 

find diverse in vitro and in vivo applications as a potent inhibitor of O-linked glycosylation. 
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Figure legends 

Figure 1 Peracetylated HexNAc analogs. A. Structures of per-acetylated GalNAc (Ac4GalNAc) and its 

analogs. B. Per-acetylated GlcNTGc (Ac5GlcNTGc), an isomer of peracetylated GalNTGc. C. Schematic 

showing the possible mechanism of Ac5GalNTGc action. Ac5GalNTGc or its derivatives inhibit GalNAc-type 

O-glycan biosynthesis. 

 

Figure 2 Effect of HexNAc analogs on cell-surface glycans. A-D. 0.5×10
6
 HL60 cells/mL were cultured 

with 50μM peracetylated GalNAc or GlcNAc analogs for 40h (VC=vehicle control). Cell-surface 

carbohydrate structures were measured using flow cytometry. Antigens measured include: A. CD15/Lewis-

X (mAb HI98), B. Sialyl Lewis-X (sLe
X
) like antigen called CLA or Cutaneous Lymphocyte Antigen (mAb 

HECA-452), C. CD15s/sLe
X
 (mAb CSLEX-1) and D. the sialofucosylated epitope CD65s measured using 

mAb VIM-2. Flow cytometry histograms present data for isotype control (dashed-empty), VC (solid-empty) 

and Ac5GalNTGc (black-filled) treated samples. Bar plots present results for all analogs. *P<0.05 with 

respect to other treatments, except as indicated in panel D. E-F. Same studies as panel A-D, only 

Ac5GalNTGc concentration was titrated from 0-200μM. ‡ P<0.05 with respect to 0μM Ac5GalNTGc. 

Ac5GalNTGc decreased mAb HECA-452 and CSLEX-1 binding, and upregulated Le
X 

expression.  
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Figure 3 Lectin binding to GalNTGc treated HL60s. A-F. HL60s cultured with 80μM Ac5GalNTGc, 

Ac5GlcNTGc or VC for 40h were stained with labeled lectins, either before (left panels) or after (right panels) 

treatment with α2-3,6,8,9 Arthrobacter Ureafaciens neuraminidase: A. VVA (binds GalNAcα-Ser/Thr); B. 

PNA (Galβ1,3GalNAc); C. ECL (Galβ1,4GlcNAc); D. MAL-II (α(2,3)sialic acid); and E. PHA-L (complex N-

glycans). Epitope bound by lectins is depicted in each panel using the Symbol Nomenclature For Glycans. 

Mean fluorescence intensity/MFI±SD are shown in individual panels for VC (top number, black), 

Ac5GalNTGc (second, green), and Ac5GlcNTGc (third, red). The fourth number (blue) depicts the MFI of 

CRISPR-Cas9 COSMC-KO cells that have truncated O-glycans (panel A) and MGAT1-KOs that have 

trucated N-glycans (panel E). * P<0.05 with respect to VC and Ac5GalNTGc. F. Fluorescence images of 

Ac5GalNTGc and Ac4GalNAc treated HL-60s, stained with VVA-FITC. Ac5GalNTGc increased VVA-lectin 

binding indicating the presence of truncated mucin-type O-glycans. Ac5GalNTGc reduced LacNAc and T-

antigen formation without altering overall cellular sialylation. 

 

Figure 4. Effect of Ac
5
GalNTGc on cell adhesion. HL60 cells cultured with 80µM Ac

5
GalNTGc 

for 40h were perfused over substrates composed of: A. recombinant L-selectin, B. CHO-P cell 

monolayer bearing P-selectin, or C. IL-1β stimulated HUVEC monolayers bearing E-selectin. Wall 

shear stress was 1 dyne/cm
2
 in all cases. The density of rolling and adherent cells was quantified. 

Blocking antibodies used were against: PSGL-1 (αPSGL-1 mAb KPL-1), L-selectin (αL-sel DREG-

56), P-selectin (αP-sel G1) and E-selectin (αE-sel HAE1f). D. HL60s were shear-mixed with 

TRAP-6 activated human platelets using a cone-plate viscometer at 650/s. Flow cytometry 

quantified % of HL-60s bound to at least one platelet. E. Western blots of HL60 cell lysates 

cultured with Ac
5
GalNTGc, Ac

5
GlcNTGc and Ac

4
GalNAc were probed with anti-human PSGL-1 

antibody (mAb TB5) and anti-CD43 mAb L60. Ac
5
GalNTGc reduced cell adhesion to P- and L-

selectin. It also reduced the molecular mass of PSGL-1 by truncating mucin-type O-glycans. * 

P<0.05 with respect to all other treatments, at indicated time. † P<0.05 with respect to other 

treatments excepts †’s are not different from each other. 

 

Figure 5 Murine acute inflammation. A. Mouse bone marrow cells (mBMC) and neutrophils 

(mPMN) were isolated from 10-12 week C57BL/6 mice, and cultured with 50μM HexNAc analogs 

or controls for 40h. Cells were analyzed using flow cytometry and used in a murine acute 

inflammation model. B.-E. Flow cytometry measured the binding of the following reagents to 

mouse neutrophils (CD11b+, Gr-1/Ly-6G/1A8+, F4/80-): B. VVA-FITC, C. Anti-mouse PSGL-1 

mAb 2PH1, D. P-selectin-IgG and E. L-selectin-IgG. Ac
5
GalNTGc increased VVA-lectin binding 
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by 4-5 fold, and reduced L-/P-selectin IgG binding by 50-70% without affecting PSGL-1 

expression. F. mBMCs cultured with 80μM Ac
5
GalNTGc for 40h were mixed with VC at 1:1 ratio. 

In mix 1, Ac
5
GalNTGc cells were labeled with CMTMR (Red) while VC was CMFDA (Green) 

labeled. Labels were swapped in Mix 2 (dot plot not shown). Mix 1 or 2 cells were tail-vein injected 

into recipient mice following thioglycollate injection i.p. Red:green ratio of Gr-1+ cells in the 

peritoneal lavage and bone marrow was measured at 20h. Ac
5
GalNTGc reduced neutrophil 

counts in peritoneum by 50% in both Mixes. G-I. Ac
5
GalNTGc (100mg/kg/day)  or VC was injected 

daily into mice for 4 days prior to induction of peritonitis. Murine neutrophil (CD11b+, Gr-1/Ly-

6G/1A8+, F4/80-) counts in the peritoneum were quantified at 16h. Neutrophil counts in peritoneal 

lavage was reduced by 65% in Ac
5
GalNTGc treated mice (panel H). VVA binding was augmented 

in peritoneal neutrophils (panel I). *P<0.05 with respect to all other treatments in each panel, 

except as indicated.  

 

Figure 6 Effect of Ac
5
GalNTGc on O- and N-glycan biosynthesis: A. HL-60s were cultured 

with 80μM Ac
5
GalNTGc or Ac

4
GalNAc for 16h prior to addition of peracetylated GalNAc-O-Bn for 

an additional 48h. [NOG]¯ TKO HL-60s cultured with peracetylated GalNAc-O-Bn served as 

negative control as they lack C1GalT1-chaperone COSMC activity. GalNAc-O-Bn and related 

products from cell culture supernatant were purified at the study end point, permethylated and 

analyzed using LC-MS/MS. Product ion-current area-under-the-curve quantified products formed. 

GalNAc-O-Bn consumption was reduced upon Ac
5
GalNTGc treatment and abolished in TKO 

HL60s. B. Cell lysates were prepared from HL60s cultured with 80μM Ac
5
GalNAc, Ac

5
GalNTGc 

or Ac
4
GalNAc for 40h. 3.3mg/mL lysate was mixed with 0.5mM GalNAc-O-Bn (substrate) and 

1mM UDP-Gal donor overnight. β1,3GalT was quantified in LC-MS/MS runs by measuring ion 

current AUC (area under the curve) for product (Gal(β1-3)GalNAc-O-Bn) vs. unreacted substrate 

(GalNAc-O-Bn). Results are presented after normalization with respect to vehicle control (100%). 

Product was not formed in the absence of lysate (negative control). C. MALDI-TOF MS profile of 

permethylated N-glycans for cells treated with 80μM Ac
5
GalNTGc or vehicle for 40h. Putative 

structures are based on composition, tandem MS, and knowledge of biosynthetic pathways. All 

molecular ions are [M+Na]
+
. MALDI data are representative of duplicate runs. Ac

5
GalNTGc 

reduced T-antigen formation and O-glycan extension, without a major effect on N-glycan 
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biosynthesis.  * P<0.05 with respect to GalNAc treatment for each structure. † Glycan products 

were not detected. 

 

Figure 7 Direct incorporation of thiol into Ac
5
GalNTGc treated HL60 wild-type and knockout cells. 

HL60s were cultured with peracetylated HexNAc analogs or VC (80μM, 40-48h). A. Sugar nucleotide levels 

in cells determined using LC-MS/MS. Abundance are quantified based on area under MS
1
 curve for 

individual species, normalized with respect to vehicle control  which is set to 100 (*P<0.05) B. UDP-HexNAc 

and UDP-HexNTGc abundance in GalNTGc (80µM, 48h) treated cells. Abundance are presented relative 

to CMP-Neu5Gc internal standard ionization in all runs. UDP-HexNTGc may exist in both UDP-GalNTGc 

and UDP-GlcNTGc forms. UDP-HexNTGc was not detected in vehicle, GalNAc and GlcNTGc samples. C. 

Cells were reacted with fluorescein-5-maleimide/5-FM, in the presence (left axis) or absence (right axis) of 

10mM TCEP. A similar increase in 5-FM binding was noted in the GalNTGc treated cells under both 

conditions, although the signal was brighter following TCEP mediated reduction. D. Fluorescence 

microscopy showing the reaction of maleimide with free sulfhydryl groups predominantly on the cell surface. 

E. HexNAc-analogs incorporation time course. GalNTGc incorporation peaked 24-48h after compound 

addition. *P<0.05 with respect to other treatments. F. HexNAc analogs were cultured with wild-type HL-60s 

and a panel of isogenic CRISPR/Cas9 HL60-KO cell lines containing truncated O-glycans ([O]¯), N-glycans 

([N]¯), GSLs ([G]¯), dual knockouts ([ON]¯, [OG]¯, [NG]¯) and triple knockouts ([NOG]¯). 1 mg/ml pronase 

was added to some of these cells for 2 h to cleave cell-surface glycoproteins prior to reanalysis using the 

flow cytometer. 5-FM was incorporated into N-glycans, O-glycans and GSLs. All treatments in the GalNTGc 

samples were statistically different with respect to each other, except those indicated by ‘n.s.’ (not 

significant). 
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STAR METHODS 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 

the Lead Contact, Sriram Neelamegham (neel@buffalo.edu).  

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

8-12 week-old C57BL/6 wild-type mice of either sex were used. Animals were randomized prior 

to experimentation. All animal studies were approved by the Roswell Park Cancer Institute Animal 

Care and Use Committee (RPCI-IACUC). HL-60 cells (female promyeloblasts, 

RRID:CVCL_0002), T47D (female ductal carcinoma, RRID: CVCL_0553) and ZR-75-1 (female 

epithelial ductal carcinoma, RRID: CVCL_0588), metastatic prostate PC-3 cells (male 

adenocarcinoma, RRID: CVCL_0035) and embryonic kidney HEK293T (fetal epithelial, 

RRID:CVCL_0063) were obtained from ATCC. Human Umbilical Vein Endothelial Cells (HUVECs, 

cat #CC-2519A) were from Lonza. 

 

METHODS DETAILS 

Reagents: The synthesis of peracetylated 1,3,4,6-tetra-O-acetyl-2-acetamido-2-deoxy-α-D-

galactopyranose (abbreviated ‘Ac4GalNAc’), 1,3,4,6-tetra-O-acetyl-2-(2-acetylthio)acetamido-2-deoxy-β-

D-galactopyranose (Ac5GalNTGc), 1,3,4,6-tetra-O-acetyl-2-acetoxyacetamido-2-deoxy-β-D-

galactopyranose (Ac5GalNGc), 1,3,4,6-tetra-O-acetyl-2-deoxy-2-propanamido-β-D-galactopyranose 

(Ac4GalNPr) and 1,3,4,6-tetra-O-acetyl-2-azidoacetamido-2-deoxy-β-D-galactopyranose (Ac4GalNAz) 

were previously described (Agarwal et al., 2013) (Fig. 1). All other chemicals were from ThermoFisher or 

Sigma.  

All antibodies were mouse IgGs from BD Biosciences (San Jose, CA) unless otherwise mentioned. 

These include anti-CD15/Lewis-X mAb HI98 (IgM), rat anti-Cutaneous Lymphocyte Antigen mAb HECA-
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452 (IgM), anti-CD15s/sLeX mAb CSLEX1, anti-CD162/PSGL-1 mAbs KPL-1 and TB5 (GeneTex, Irvine, 

CA), anti-CD43 clone L60, and isotype controls. The anti-CD65s mAb VIM-2 (IgM) was from AbD Serotec 

(Oxford, UK). Among these, both mAbs HECA-452 and CSLEX-1 bind overlapping sLeX and related 

sialylofucosylated glycans. Mouse cells were stained with either FITC rat anti-mouse Ly-6G and Ly-6C 

clone RB6-8C5, PE/APC rat anti-mouse Ly-6G mAb 1A8 (BioLegend, San Diego, CA), or PE rat anti-mouse 

CD162 mAb 2PH1. Function blocking mAbs that block selectin-mediated binding include anti-CD62P/P-

selectin mAb G1, anti-CD62E/E-selectin mAb HAE-1f (Ancell, Bayport, MN) or P2H3 (eBioscience, San 

Diego, CA), and anti-CD62L/L-selectin mAb DREG-56. All lectins were purchased from Vector Laboratories 

(Burlingame, CA) as unlabeled or fluorescein-conjugated products. Supplemental Material provides lectin 

specificity data. In some instances, these reagents were labeled in house using Alexa-488 dye as described 

elsewhere (Yang et al., 2020).  

 

Cell culture and inhibitor treatment: Human promyelocytic leukemia cells (HL60s) were cultured in 

Iscove’s Modified Dulbecco’s Medium (IMDM) with 10% FBS. All other tumor cell lines were from ATCC 

(Manassas, VA) and cultured according to supplier’s instructions. CHO-S (Chinese Hamster Ovary) cells 

stably expressing P-selectin (CHO-P) were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) 

containing 10% FBS.  Human umbilical vein endothelial cells (HUVECs) were cultured in EBM-2 basal 

medium (Lonza, Walkersville, MD). A panel of seven CRISPR-Cas9 knockout isogenic HL-60 clones 

displaying truncated glycoconjugates were available from a previous study (Stolfa et al., 2016). These 

include: i. [O]¯ cells, which have truncated O-linked glycans due to genomic deletion of the core-1 

β1,3galactosyltransferase chaperone Cosmc; ii. [N]¯ cells that do not contain hybrid and complex N-glycans 

due to genomic deletion of Mgat1 (α-1,3-mannosyl-glycoprotein β1,2-N-acetylglucosaminyltransferase) 

activity; iii. [G]¯ cells without GlcCer glycolipids due to absence of UGCG (UDP-glucose ceramide 

glucosyltransferase); iv-vi. dual-KOs lacking COSMC and Mgat1 ([ON]¯ HL-60s), COSMC/UGCG-KOs 

([OG]¯ HL-60s) and Mgat1/UGCG-KOs ([NG]¯ HL-60s); and vii. a triple knockout lacking all three 

glycoconjugates (Mgat1/COSMC/UGCG triple TKOs or [NOG]¯ HL-60s). Absence of specific enzyme 
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activity in these KOs was confirmed using Sanger sequencing, enzymology assays and lectin-binding 

based flow cytometry (Stolfa et al., 2016).  

 Peracetylated HexNAc compounds were dissolved in anhydrous dimethyl sulfoxide (DMSO) at 

40mM stock. During experimentation, 0-200μM of these analogs were diluted into culture media containing 

0.5-1×106 cells/ml. Functional studies were performed at specified time points. 

 

Flow cytometry: Flow cytometry analysis was performed using either a BD FACSCalibur or Fortessa X-

20 cytometer. Here, 2×106 cells/ml suspended in HEPES buffer (30 mM HEPES, 110 mM NaCl, 10 mM 

KCl, 2 mM MgCl2, 10 mM glucose, 1.5mM CaCl2 containing 0.1% human serum albumin/HSA, pH 7.3) were 

labeled using 1-10μg/ml antibodies/lectins for 20 min at 4°C. In some runs, terminal sialic acid was removed 

by adding 0.1 U/ml α2-3,6,8,9-neuraminidase from Arthrobacter ureafaciens (New England 

Biolabs,  Ipswich, MA) for 1h at 37°C. In other runs, cells were incubated with or without 10mM TCEP 

(Tris(2-carboxyethyl)phosphine) at pH 7.3 for 5-10 min, before 2μM Fluorescein-5-Maleimide (5-FM, 

Thermo-Pierce) addition at 4°C for 1h. Additionally, 1mg/ml of pronase (Roche, Indianapolis, IN) was 

sometimes added to cells for 2h at 37°C to remove surface proteins. Following labeling, the cells were 

washed, and resuspended in fresh HEPES buffer for cytometry analysis.  

 

Fluorescence microscopy: HL60 cells, with or without GalNAc analog treatment, were labeled with 

fluorescent VVA lectin as in the above cytometry studies. In some cases, the cells were α2-3,6,8,9-

neuraminidase treated prior to VVA-labeling. Following fixation using 0.5% paraformaldehyde, the cells 

were mounted using Prolong Gold Antifade Reagent (Invitrogen) following manufacturer’s instructions. 

Phase contrast and fluorescence images were acquired using a Zeiss AxioObserver Z1 microscope (Plan-

Apochromat 63x/1.40 Oil DIC M27 objective). 

 

SDS-PAGE and Western Blot: Cells were lysed using RIPA buffer containing HaltTM protease inhibitor 

(Thermo-Pierce) for 30-45 min on ice. Following centrifugation at 14,000g, the supernatant was collected 

and boiled in Laemmli sample buffer containing β-mercaptoethanol. Lysates from ~0.3-1×106 cells were 
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loaded in each well of either a standard 7.5% or 4-20% gradient gel (Thermo-Fisher). Following SDS-PAGE 

and transfer onto nitrocellulose, the membranes were probed using either mAb TB5, HECA-452 or L60 

(1:1000 dilution), followed by 1:2500 HRP conjugated secondary Ab (Jackson Immuno, West Grove, PA) 

and enhanced chemiluminescence detection.  

In some runs, the cells were treated with 10mM TCEP for 5-10 min. at room temperature, and then 

free-sulfhydryl groups were labeled using EZ-Link® Maleimide-PEG2-Biotin (1mM, 2h, 4°C, Thermo-Fisher) 

(Sampathkumar et al., 2006). The cells were then washed, lysed as above and PSGL-1 was 

immunoprecipitated using protein A/G agarose beads. Western blotting was performed using either anti-

PSGL-1 mAb TB5 or HRP-linked anti-biotin (Cell Signaling, Danvers, MA). 

For lectin blots, 20 µg of total cell lysate prepared as above were resolved using 7.5% SDS-gel and 

transferred onto nitrocellulose. Membranes were then blocked using 3.0 % gelatin in PBS-tween-20 (0.1%) 

for 1h at RT, incubated with 1:2000 biotinylated VVA lectin in PBS-tween-20 (0.1%) for 1h at RT, followed 

by 1:25,000 HRP conjugated avidin in 1% BSA in PBS-tween-20 (0.1%) for 1h at RT. Blots were developed 

using ECL substrate. Silver staining was performed in parallel using gels loaded with 2.0 µg cell lysate/lane. 

 

 

Microfluidic flow chamber based cell adhesion assay: A custom flow chamber with dimensions of 

0.4mm(W)  0.1mm(H)  1cm(L) was fabricated using polydimethylsiloxane (Buffone et al., 2013). This was 

vacuum-sealed on a tissue culture plastic Petri dish and mounted on the stage of an inverted Zeiss 

AxioObserver Z1 microscope. The flow chamber substrate was composed of CHO-P cell monolayer 

expressing P-selectin, IL-1β stimulated HUVEC monolayers expressing E-selectin, or L-selectin-Fc fusion 

protein that was incubated overnight at 25 μg/mL and subsequently blocked with 1% bovine serum albumin 

(BSA). 2×106 HL-60s/mL suspended in HEPES buffer were perfused over these substrates at 1 dyn/cm2. 

Movies of the cell interactions were recorded using a pco.edge sCMOS camera (Kelheim, Germany) and 

data were analyzed as described previously (Mondal et al., 2015).  
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HL-60-platelet adhesion: Blood was collected from healthy human adult volunteers into 1:9 sodium citrate 

by venipuncture, following protocols approved by the University at Buffalo Institutional Review Board. 

Platelet rich plasma (PRP) was isolated and labeled using BCECF (2’,7’-Bis-(2-Carboxyethyl)-5-(-and-6)- 

Carboxyfluorescein, acetoxymethyl ester) (Zhang et al., 2018). 1:10 diluted PRP, 10μM TRAP-6 (Thrombin 

receptor activating hexapeptide) and 1×106 HL-60s/mL were then shear mixed at 650/s in a cone-plate 

viscometer (VT-550, Thermo-Haake). Samples collected at various times were analyzed using a 

FACSCalibur cytometer to quantify % platelet-HL-60 binding (Xiao et al., 2006). This parameter quantifies 

the % of HL-60 cells with at least one bound platelet.  

 

Animal studies: All animal studies were approved by the Roswell Park Cancer Institute Animal Care and 

Use Committee (RPCI-IACUC). Mouse bone marrow cells (BMCs) were isolated from the tibia and femur 

of C57BL/6 mice. A histopaque gradient was used to obtain mouse polymorphonuclear leukocytes (PMNs) 

from these BMCs (Wang et al., 2018). Both the isolated BMCs and PMNs were independently cultured with 

either 50-80μM of Ac5GalNTGc/Ac5GlcNTGc/Ac4GalNAc or vehicle control (0.125-0.2% DMSO) in 

endotoxin-free IMDM with G-CSF, IL-3 and 10%FBS. At ~40h, the granulocytes were gated in the cytometer 

using nuclear stain LDS-751 and anti-mouse Ly-6G clone 1A8. Cell surface PSGL-1 expression (clone 

2PH1), selectin-IgG binding (P-, E- and L-selectin) and VVA binding were quantified.  

In some cases, Ac5GalNTGc and vehicle control treated BMCs were differentially tagged with cell 

tracker dyes CMFDA (5-chloromethylfluorescein diacetate, green) or CMTMR (5-(and-6)-(((4-

chloromethyl)benzoyl)amino)tetramethylrhodamine, red) following manufacturer’s instructions (Setareh 

Biotech, Eugene, OR). Labeled cells were mixed at 1:1 ratio, and injected i.v. into recipient mice 1h after 

induction of peritonitis using 4% thioglycollate (Wang et al., 2018). 20h thereafter, peritoneum lavage and 

bone marrow cells were collected and analyzed using a BD LSR-II flow cytometer. APC conjugated anti-

mouse Ly-6G 1A8 was used to identify granulocyte, and the ratio of red/green cells in the samples was 

quantified. 

To test pharmacological efficacy, mice were injected with 100mg Ac5GalNTGc/kg/day or vehicle 

control for 4 days. Thioglycollate induced peritonitis was then induced as above for 16h. Granulocyte counts 
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in the peritoneal lavage and bone marrow were quantified using anti-mouse CD11b, macrophage marker 

F4/80 and anti-Ly-6G (1A8) in cytometry runs. VVA binding to cells was also measured. Complete blood 

count (CBC) analysis was also performed using blood samples at the end point.  

 

Cellular O-glycome analysis: 0.5×106 HL60 cells were cultured in serum-free, phenol red-free Advance 

Dulbecco's Modified Eagle Medium (ADMEM) along with 80μM Ac5GalNTGc or vehicle control for 16h. 

100μM peracetylated GalNAc-O-Bn available from a previous study was then added to the cells (Wang et 

al., 2018). After 48h, GalNAc-O-Bn related products were purified from cell culture medium using Sep-Pak 

C18 cartridges (Waters, Milford, MA), permethylated and analyzed using ESI (electrospray ionization) LC-

MS/MS (Orbitrap-XL mass spectrometer, Thermo). Instrument MS1 tolerance was 15ppm and MS/MS data 

were obtained following collision induced dissociation (30eV) at 1Da resolution using the ion-trap detector. 

All spectra are annotated using DrawGlycan-SNFG (Cheng et al., 2017). 

 

MALDI-TOF MS glycomics profiling: N-linked and GSL derived glycans were extracted from Ac5GalNTGc 

or vehicle control HL60s as described previously (Mondal et al., 2015). All glycans were permethylated prior 

to MALDI-TOF MS and MALDI-TOF-TOF MS/MS analysis. Released glycans from GSLs were 

deuteroreduced prior to permethylation. Data were annotated using the glycobioinformatics tool, 

GlycoWorkBench (Ceroni et al., 2008). The proposed assignments for the selected peaks were based on 

12C isotopic composition together with knowledge of the biosynthetic pathways. The proposed structures 

were confirmed using MS/MS. 

 

β1,3GalT/C1GalT1 activity: 5µL of HL-60 cell lysate (10mg/mL) were added to 15µL of a reaction mixture 

(500µM GalNAc-OBn, 1 mM UDP-Gal, 7 mM ATP and 20 mM Mn(OAc)2 in HEPES) and then incubated at 

37°C overnight. After incubation, 1mL of 70% ACN was added to precipitate proteins, mixture vortexed and 

centrifuge-pellet removed (14,000g x 5 min). Supernatant collected was solvent evaporated and 

resuspended in 50µL of 50% MeOH (containing 10µM of 2OMe-Galβ1-3GlcNAc-OBn as internal standard; 

m/z [M+H]+ = 488.21264). For LC-MS/MS, 10μL sample was injected into Q Exactive™ Hybrid Quadrupole-
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Orbitrap Mass Spectrometer (Thermo) equipped with a C18 column (Waters Xselect CSH C18, 3.5μm, 

2.1x150 mm). The mobile phases were A: water and B: acetonitrile (CH3CN), containing 0.1 % formic acid 

in both phases. Data were acquired over 95 min at a flow rate of 0.1 mL/min using the following gradient: 

(i) from 0% to 13% B (0-5 min); (ii) 13% to 30% B (5-85 min); (iii) 30% to 100% B (85-90 min); and (iv) 

100% to 0% B (90-95 min). MS1 data were acquired using the Orbitrap detector (60,000 resolution) and 

MS/MS in HCD mode (30% collision energy). Data analysis was carried out by calculating the area under 

the curve of the XIC curve in triplicates, using XCalibur software (Thermo). 

 

Sugar nucleotide analysis: Nucleotide-sugar analysis was performed as described recently (Del Solar et 

al., 2020). Briefly, 1.2×106 HL60 cells treated with 80μM Ac5GalNTGc, Ac5GlcNTGc, Ac4GalNAc or vehicle 

(0.2% DMSO) were resuspended in 75% ACN (containing 10 µM of CMP-Neu5Gc as internal standard; 

m/z [M-H]-- = 629.13491) and spun down at 16,000g at 4°C for 10 min. Supernatant was collected and 

injected into LC-MS system. For LC-MS/MS analysis, 5 µL of sample were injected into the Q Exactive 

instrument described above, equipped with a HILIC column (Waters XBridge Amide 3.5μm, 2.1x150 mm). 

The mobile phases were, A: water containing 5mM NH4OH and 5mM NH4OAc and B: 90% acetonitrile 

(CH3CN), containing 5mM NH4OAc. Data were acquired over 60 min at a flow rate of 0.1 mL/min and 40 

°C using the following gradient: (i) from 90% to 85% B (0-5 min); (ii) 85% to 80% B (5-45 min); (iii) 80% to 

60% B (45-55 min); and (iv) 60% to 90% B (55-60 min). MS1 data were acquired using the Orbitrap detector 

(60,000 resolution) and MS/MS in HCD mode (28% collision energy). Analysis was carried out in triplicates. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

All error bars represent standard deviations for >3 repeats. Discrete data points in individual panels of main 

manuscript specify sample size. Student’s two-tailed t-test was performed for dual comparisons. Analysis 

of variance (ANOVA) followed by the Student-Newman-Keuls post-test was used for multiple comparisons. 

P<0.05 was considered to be statistically significant.  
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DATA AND CODE AVAILABILITY 

The data and reagents that support the findings of this study are available from the corresponding authors. 

Glycan sketches in this manuscript were generated using DrawGlycan-SNFG (https://github.com/neel-

lab/DrawGlycan-SNFGv2; https:\\VirtualGlycome.org/drawglycan). MALDI-TOF data analysis was 

performed using GlycoWorkBench (https://github.com/alternativeTime/glycoworkbench). Both are open-

source programs. 
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