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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the COVID-19 pandemic, has no vaccine or antiviral drugs
available to the public, at the time of writing. The virus’ non-structural proteins are promising drug targets because of their vital role in the
viral cycle. A significant body of work has been focused on finding inhibitors which covalently and competitively bind the active site of the
non-structural proteins, but little has been done to address regions other than the active site, i.e. for non-competitive inhibition. Here we
extend previous work on the SARS-CoV-2 Mpro (nsp5) to three other SARS-CoV-2 proteins: host shutoff factor (nsp1), papain-like protease
(nsp3, also known as PLpro) and RNA-dependent RNA-polymerase (nsp12, also known as RdRp) in complex with nsp7 and nsp8 cofactors.
Using open-source software (DDPT) to construct Elastic Network Models (ENM) of the chosen proteins we analyse their fluctuation dynamics
and thermodynamics, as well as using this protein family to study convergence and robustness of the ENM. Exhaustive 2-point mutational
scans of the ENM and their effect on fluctuation free energies suggest several new candidate regions, distant from the active site, for control
of the proteins’ function, which may assist the drug development based on the current small molecule binding screens. The results also
provide new insights, including non-additive effects of double-mutation or inhibition, into the active biophysical research field of protein
fluctuation allostery and its underpinning dynamical structure.
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1. Introduction1

During 2020, a rapidly spreading viral disease, COVID-19, caused by the novel coronavirus SARS-CoV-2, has generated a2

global pandemic. Although early fast-tracked vaccines are in development, no vaccine or specific anti-viral drugs are publicly3

available at the time of writing. Furthermore, in the longer term, the identification of all potential inhibitor sites at all points4

of the viral life-cycle is of interest in support of a flexible pharmaceutical response. In this work we focus on the low-frequency5

dynamical structure of three the virus’ proteins important for the viral cycle. These are host shutoff factor (nsp1), papain-like6

protease (nsp3, also known as PLpro) and RNA-dependent RNA-polymerase (nsp12, also known as RdRp) in complex with7

nsp7 and nsp8 cofactors. To this end we develop and test an elastic network model (ENM) - based methodology recently tested8

on the SARS-CoV-2 Mpro (1) that analyses the low-frequency structure of protein dynamics. Since the ENM analysis permits9

rapid scanning of potential binding and mutation sites that offer critical control of the protein dynamics, we identify critical10

residues for potential allosteric control of their function. The work is informative for inhibitor design by identifying control11

regions of the proteins that are distant from, rather than proximal to, its active sites. Computational studies such as this one12

may go hand-in-hand with rapid experimental binding scans of small-molecules (2, 3), to identify those agents most likely to13

inhibit protein function as those which bind to sites critical to the functional dynamics.14

Allosteric mechanisms for distant control of binding and activation fall into two main classes: those which invoke significant15

conformational change (the original scenario of Monod, Wyman and Changeaux (4), and mechanisms that invoke the16

modification of thermal (entropic) fluctuations about a fixed, mean conformation (5–8). Such ’fluctuation allostery’ recruits17

mostly global, low-frequency modes of internal protein motion, which are well-captured by correspondingly coarse-grained18

mechanical representations of the protein (9, 10). One effective tool at this level is the Elastic Network Model (ENM) (11). The19

ENM resolves protein structure at the level of alpha-carbon sites only, which are represented as nodes connected by harmonic20

springs within a fixed cut-off radius from each other. Local point mutation can be modelled by changing the moduli of springs21

attached to the corresponding residue, and effector-binding by the addition of nodes (and local harmonic potentials) at the22

corresponding co-ordinates. The most significant contributions to both the correlated dynamics of distant residues, and to23

the entropy arising from structural fluctuation, come from global (’low frequency’) modes, which are well-captured by the24

ENM approximation. This approach was successfully used to identify candidate control residues whose mutation may control25

allostery of effector-binding in the homodimer transcription factor CAP (12), and very recently to identify similar candidates26

for functional control of the SARS-CoV-2 Mpro (1), some of which have been identified experimentally.27

These studies have shown that, while the ENM approximation (ignoring e.g., side-chain structure) does not capture the28

quantitative values of free energies, it does rank their values qualitatively, and correctly identifies the functional form of the29

protein’s low-frequency modes, as well as residues which present as candidates for allosteric control through mutation. The30

method, and the open software (’DDPT’) used in the previous studies on allosteric homodimers, and confirmed by experimental31

calorimetry on model-designed mutations (13), is deployed here in a similar way (see Methods section) to a coarse-grained32

ENM models of three further SARS-CoV-2 proteins.33

There are a number of free parameter choices and possible extensions of the ENM that present themselves as candidates for34

optimising the reliability and robustness of its results on dynamic protein analysis. In particular, the choice of cut-off distance35
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below which the ENM model constructs a harmonic potential between any two C-alpha atoms of a protein, is a parameter36

that needs to be chosen with care. Too small a cut-off risks creating a model with sub-critical connectivity and containing37

unphysical normal modes of zero elastic modulus. Too large a cut-off creates an over-rigid model of the protein, which fails to38

capture important low-frequency global modes of motion. Ideally one might expect a universal optimum value for the cut-off,39

but the question arises of legitimate protein-dependent tuning. Secondly, the simplest ENM model imposes a universal bond40

stiffness, irrespective of whether two C-alpha carbons are neighbours along the protein backbone, or proximate because of the41

native state fold. The covalent forces in the first case would be expected to deliver stronger stiffness than the non-covalent42

bonds in the second. An extension to the ENM that contains two populations of spring constants corresponding to these43

two populations was investigated by Ming and Wall (14). In the light of these aspects of residual freedom within the set of44

ENM models, we exploit this set of studies of SARS-CoV-2 proteins to examine the effect of such enhanced ENMs, and of45

varying cut-offs in bond distance and normal mode sum on the key predictions of allosteric control, in order to improve an46

understanding of the ENM coarse-graining process.47

In the following, section 2 summarises the results on SARS-CoV-2 Mpro reported in (1), extending them to explore the reliability48

and robustness of the ENM approach in terms of (i) cut-off distance, (ii) cut-off in mode number, (iii) choice of backbone49

stiffness constant. Then section 3 presents the results of ENM analysis on the host shutoff factor (nsp1), the papain-like protease50

(nsp3) and RNA-dependent RNA-polymerase (nsp12). The final, concluding, section reviews the potential for small-molecule51

inhibition of these proteins, and the additional physics of protein dynamics that they serve to expose.52

2. The SARS-CoV-2 Main Protease Protein: Review and ENM Model Development53

In its active form Mpro is a two-protomer homodimer with one active site per homodimer chain (15). A recent study54

characterised a SARS-CoV Mpro mutation, S284-T285-I286/A, which dynamically enhanced the protease catalytic activity55

more than three-fold (16).56

A. ENM Results for Allosteric Control. Such experimental findings support the hypothesis of dynamically driven allosteric57

control of SARS-CoV-2 Mpro, and provide a structure (6lu7) on which to base an ENM construction. All three PDB files used58

in this study were derived from original crystallographic structure of SARS-CoV-2 Mpro with N3 inhibitor.59

A recent crystal structure for the SARS-CoV-2 Mpro is shown in front view in figure 1, alongside the ENM model of (1), and60

the structure of the first non-trivial normal mode. That work took Cα node masses as the whole residue mass, and uses a61

cut-off distance for harmonic connecting springs of 8Å, based on optimising the comparison of mode structures between ENM62

and full Molecular Dynamics simulations, in previous work on Catabolite Activator Protein (12, 17). Away from the dimer63

interface, the protein structure is dominated by beta-sheets, while the interface itself is composed of adjacent helices and loops.64

Although Mpro is a relatively compact protein (fewer than 310 residues per chain), it plays a vital role in the viral cycle of65

both coronaviruses: it divides polyproteins expressed from the viral mRNA into its functional non-structural units (18). This66

functional role makes SARS-CoV-2 Mpro an appealing target for drug design.67

In case of the bound N3 inhibitor, the short polypeptide AVL was coarse-grained in the same way as the main chain amino
a b chain A chain B

Fig. 1. Dynamics of the SARS-CoV-2 Mpro ENM. a, Secondary structure cartoon (orange); Cα atom nodes (marine); node-connecting springs in black; the first real fluctuation
mode eigenvector displacement (yellow) are scaled 5 times. The ENM was generated with PyANM plugin in PyMOL. b, The cross correlation of the motion of 6lu7 apo ENM.
The cross-correlation maps calculated for the first real 25 modes (bottom-right region of the plots) and spacing between residues (Cα nodes) and ligand nodes (top-left region
of the plots) for the apo form. The first colour scale shows the extent of cross correlation, with a cross correlation of 1 (red) indicating perfectly correlated motion, -1 (blue)
showing perfectly anti-correlated motion and 0 (white) no correlation. The second colour scale (black to white) depicts the Euclidean distance between two ENM’s nodes in the
Cartesian space in 0-16 Å range.

68
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acids while the other heavy atoms (C, N and O) have been treated as individual nodes with atomic masses. The analysis69

showed that SARS-CoV-2 Mpro possesses a rich dynamical structure that supports several long-distance allosteric effects70

through thermal excitation of global normal modes. In particular the motions in the vicinity of two active sites are correlated71

within the first 25 non-trivial normal modes, especially in the singly-bound dimer. This correlation appears in the two-point72

dynamic correlation map derived from the ENM for the apo protein shown in figure 1b (lower half). The figure also displays a73

corresponding two-point distance map (top quadrant), from which it can be seen that most, but crucially not all, dynamic74

correlations arise through proximity. Although, at the level of ENM calculations, this does not lead to cooperativity in the WT75

structure, it does render the protein susceptible to the introduction of cooperativity by mutation.76

Our methodology is further supported by the ENM dynamics sensitivity to residue 214 and 284-286 mutations which have been77

shown by experiment to dynamically control SARS-CoV Mpro.The ENM calculations have identified new sites whose local78

thermal dynamics dynamically correlate with those of the active sites, and which also appear on global maps for allosteric79

control by single or double mutations. Examples of the reports available from the ENM calculations that expose such structure80

are given in figure 1, showing a dynamical residue-residue correlation map. Double-mutation scans are also instructive, and81

were presented in (1).82

83

B. Using the SARS-CoV-2 Mpro for ENM Model Development. The computations in (1) chose mode and distance cutoffs by84

balancing the requirements of: (i) sufficient spatial resolution of dynamics; (ii) requirements not to include unphysically85

small-scale structure; (iii) acceptable convergence of thermodynamic calculations; (vi) compatibility with the previous studies86

(19). These led to the choice of summing the first real 25 modes in SARS-CoV-2 Mpro ENM calculations.87

Other previous work has suggested a simple development of the ENM model in which the different chemical character of88

main-chain and other bonds in globular proteins is recognised by allocating two, rather than one single, spring constant to89

ENM models (14). Specifically, main chain bonds are modelled by a stronger harmonic potential than all other bonds within90

the ENM cut-off, which continue with an otherwise uniform spring stiffness. In the light of the choice of parameters offered by91

the two cut-offs required in ENM models (bond distance and mode number), as well as the possibility of more accurate models92

using two spring stiffnesses rather than one, before embarking on the analysis of other key proteins in the SARS-CoV-2 family,93

we explored the parameter choice using the SARS-CoV-2 Mpro already explored in depth. Moreover, in this study we used a94

ENM with all elastic network node mass set to 1 atm. This simplification has been used in previous studies (12, 17, 19) and95

has shown no difference between the mass-weighted model when computing relative fluctuation free-energy change.96

B.1. ENM Cut-offs in bond distance and normal mode sum. Figure 2a reports the average correlation of ENM and experimental97

b-factors over the entire protein structure for the SARS-CoV-2 Mpro homodimer as a function of the upper cut-off in the sum98

of normal modes, and for a range of cut-off distances used in assembling the ENM. The results agree with earlier studies that99

indicate that the bond-distance cut-off needs to be at the least 8Å in order to capture the experimental residue dynamics100

with acceptable accuracy. By the point at which the first 12 modes have been included in the sum, the model/experiment101

correlation is above 0.5. Adding higher modes only marginally improves agreement up to the first 100 modes, beyond which102

there is certainly unphysical structure being included. Beyond a bond distance cut-off of 8Å the correlation remains optimised103

with this behaviour up to a cut-off of 10Å, at which point there appears a small decrease in correlation as more modes are104

incorporated up to the 20th.105

The b-factor calculations were complemented, as a function of the same varying parameters, by comparing predictions of the106

allosteric free-energy. The allosteric measure used is the ratio of dissociation constants for second and first inhibitor binding107

K2/K1. The results, shown in figure 2b, are noisier than the b-factor computations. This is expected, since the allosteric108

free-energy is a second order difference of free energies, while the b-factor is a first-order quantity. Nevertheless, this measure109

displays a greater sensitivity to the lower limit for acceptable bond distance cutoff than does the b-factor, for in this case110

acceptable convergence is found only at a 9Å cutoff and above. In regard to the mode-sum, convergence is optimised from111

10-25 modes, after which adding further modes is visible, by comparing results with different distance cutoffs, as a noisier112

process. In conclusion, the two measures taken together suggest, for the standard ENM model, that a 9Å - 10Å cutoff together113

with a mode sum to 25 non-trivial modes is an optimal choice.114

B.2. BENM (Backbone-enhanced Elastic Network Model). Figure 2c reports the distribution function for normal mode stiffness for115

SARS-CoV-2 Mpro homodimer for a range of relative values of the main-chain stiffness, employing the previously-optimised116

choice of 9 Å for the bond distance cut-off. We find, just as did Ming and Wall in (14), that increasing the backbone stiffness117

generates a bimodal distribution of mode stiffness, rather than the single-peaked distribution of the standard ENM. From118

this point of view, the value of backbone stiffness appears crucial for a physically accurate coarse-grained model of protein119

dynamics.120

One way to motivate a choice of backbone stiffness among the range of possible values, is to optimise the faithfulness of the121

ENM coarse-grained model to a finer-grained fully-atomistic model. To this end, an all-atom molecular dynamics simulation of122

the apo SARS-CoV-2 Mpro homodimer was made, using the AMBER potential scheme (20). After equilibration, data from a123

run of 20 ns simulated dynamics was used to identify the normal modes of motion of the set of Cα atoms (see methods section).124

Their distribution is also recorded in figure 2c, and like the ENM models with enhanced backbone stiffness, displays a bimodal125

distribution. However, none of the ENM models was able to capture both the frequency ratio of the two peaks and also their126

relative peak-integrals (intensities). Choosing to optimise the frequency ratio (of 4 seen in the AMBER simulations) suggests a127
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a b

c d

Fig. 2. SARS-CoV-2 Mpro ENM response to the cut-off distance and backbone spring constant variation.a, B-factor correlation with the ENM normal modes with the real mode
summation for a range of cut-off distances between 7 and 15 Å. b, Ligand dissociation ratio versus the mode summation for the cut-off in range of 8 to 15 Å. c, Density-of-states
distribution for the ENM with varied backbone spring constant between 1 to 100 for 9 Å cut-off. d Ligand dissociation ratio versus the mode summation for the backbone spring
constant between 1 to 100 for 9 Å cut-off.
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ratio of backbone to non-backbone bond stiffness of 25 in the case of SARS-CoV-2 Mpro, which we note is about a factor of 2128

smaller than the value found by Ming and Wall, suggesting that the optimisation may be structure-dependent.129

At first sight, this finding would appear problematic from the point of view of predicting dynamics correlations and allosteric130

control using ENM models. however, when the thermodynamic quantity of allosteric free energy is calculated for the same131

range of backbone stiffness (as shown in figure 2d) there is essentially no dependence beyond a slight change developed at a132

spring stiffness ratio of 10. Although the mode distribution is strongly affected by this enhanced family of models beyond the133

standard, fixed-stiffness ENM, both fluctuation correlations and the set of key thermodynamic quantities are insensitive, at134

least for the SARS-CoV-2 Mpro homodimer. For this reason, and so that the simulations of the other SARS-CoV-2 proteins of135

this study may be directly compared to the previous studies on SARS-CoV-2 Mpro, in the analyses of the following section we136

employ the standard ENM, with a single bond stiffness between Cα atoms, ENM node mass equal to 1 atm: while the suitable137

cut-off was determined by finding the best B-factor correlation with ENM normal modes. The cut-offs used in this study can138

be found in table 1.

Table 1. SARS-CoV-2 non-structural proteins’ key information used in this study: non-structural protein ID; PDB ID; ENM cut-off distance
based on B-factor correlation.

Protein nsp ID PDB ID Cut-off [Å]

SARS-CoV-2 Main Protease (Mpro) 5 6LU7 9.0
SARS-CoV-2 Host Shutoff Factor 1 7K7P 12.0
SARS-CoV-2 Papain-like Protease (PLpro) 3 6WX4 11.0
SARS-CoV-2 RNA-dependent RNA-polymerase (RdRp) 7,8,12 7BV1 12.0

139

3. Results on three new SARS-CoV-2 proteins140

The standard ENM, together with the optimisation of bond-distance and mode-sum cut-offs described in the previous section141

were applied to three further members of the SARS-CoV-2 protein family. The aims of the computational modelling are twofold:142

(i) as in previous work on SARS-CoV-2 Mpro, forensic investigation of the coarse-grained dynamic structure of the proteins143

may identify accessible residues, sensitive to the control of protein function, that offer the promise of binding targets in future144

therapeutics; (ii) although there are naturally universal features, each structure is as individual in its dynamic, as in its static,145

structure. Each case illuminates the physics of protein dynamics, and how it supports the thermodynamics of allosteric control.146

In particular we shall be interested in the connection between the unperturbed dynamic correlation structure, and the protein147

response to mutation. Specific pairs of sites whose mutation effects add non-linearly will be of especial interest, as this feature148

corresponds to the potential for allostery. In each of the three cases below, therefore, we will present data on residue-residue149

dynamic correlation (compared with a residue proximity map), a spatial structure in which correlations with a particular150

chosen residue are presented, and maps of two-mutation effects on an appropriate free energy. The latter calculation includes a151

map of non-linear effects, in which the effect of linear addition of both mutations is subtracted from the combined effect.152

A. Host shutoff factor (nsp1). In cells infected by SARS-CoV-2, the single-domain protein nsp1 (see figure 3b for a ribbon153

structure diagram) is implicated centrally in a complex of mechanisms that inhibit host gene expression. Its fold is unusual,154

consisting of a distorted beta-barrel with an associated helix. Its binding to the 40S ribosomal subunit inhibits host ribosome155

assembly and also induces endonucleolytic cleavage and degradation of host mRNAs. Of especial interest are therefore residues156

with strong dynamical correlation with the binding site, which probably implicates, among others, the charged residue K49157

(21). Figure 3a reports the strength and sign of residue-residue dynamic correlations (lower right half) and a proximity map158

(upper left half) for comparison. As in the previous case of SARS-CoV-2 Mpro, most of the strong correlations arise from spatial159

proximity, but the contact and correlation maps differ strongly from that previous study, as the nsp1 does not possess the160

subunit structure of SARS-CoV-2 Mpro, and both the helix and barrel structure give rise to multiple correlations perpendicular161

to the main diagonal of the plots. There are three notable regions of correlation that do not correspond to spatial proximity:162

between residues in the vicinities of 20 and 75, of 30 and 110, and of 45 and 90. The last of these is shown together with the163

real-space dynamic correlation to residue Q46 in figure 3b. This visualises how the motion of this site, implicated in functional164

binding, propagates outward to the beta-sheets and helices on the surface of the protein.165

The two-point mutation analyses, by which all springs connected to each of the two residues to relax, or to stiffen, their166

environment, are displayed in figure 3c and 3d respectively. Because nsp1 is monomeric, with a single but as yet uncertain167

binding site, results for changes to the total (entropic) free energy (rather than binding, or allosteric free energies as in other168

cases) are given as a function of the double mutation. Strong control regions for the free energy appear in the vicinities of169

residues 45-50, 65-70 and 80-85. Non-additive effects of the mutations are displayed by subtracting the free energy changes from170

the sum of the effects of the two corresponding single mutations (upper left half of plots in 3c and 3d. There is an intriguing171

difference between the cases of relaxation and stiffening. in the former, non-linear effects are mainly anti-cooperative (in the172

sense of binding) (increased effect on double mutation), and correlate with pairs in which both mutations have strong effects173

on the free energy. On stiffening, non-linear effects of both signs are in evidence, with anti-cooperative cases arising as with174

relaxation. However, co-operative nonlinearities are also now in evidence (coloured green in figure 3d) and correlate with the175

proximity measure (figure 3a upper half). This is the expected non-linearity from a simple, single mode (’allosteron’) model of176
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a b

c d

Fig. 3. Dynamics of the SARS-CoV-2 Host Shutoff Factor ENM (PDB: 7K7P). a, The cross-correlation maps calculated for the first real 25 modes (bottom-right region of the
plot) and spacing between residues (top-left region of the plot) for apo form. b, A real-space representation of the correlations in 7K7P ENM with respect to residue Q46
(green sphere). The cross correlation matrix was calculated using only the Cα atoms for the protein. c, 2-point mutational map for 7K7P ENM with all possible pairwise
combinations of residue mutations with equal spring constant change kR/k = 0.25 over the first real 25 fluctuation modes. A map for the fluctuation free energy change
(bottom-right region of the plot) plots the relative change in free energy to the wild type ((Gmut −Gwt)/|Gwt|) due to the dimensionless change in the spring constant
(kR/k) for the mutated residue with the residue number shown. White corresponds to values of free energy predicted by the wild-type ENM. Red corresponds to an increase in
(Gmut −Gwt)/|Gwt| (decreased value of Gmut comparing to Gwt), whereas blue corresponds to a decrease in ((Gmut −Gwt)/|Gwt|) (increased value of Gmut
comparing to Gwt). A map for the relative fluctuation free energy change 2-point additivity (top-left region of the plot) plots the difference in the relative change in free energy for
2-point mutation and two single 1-point mutations (Gij −Gi −Gj ). White corresponds to Gij −Gi −Gj = 0.0, i.e. non-synergistic 2-point mutation. Purple corresponds
to an increase in Gij − Gi − Gj (2-point mutation effect on free-energy is greater than combination of two separate 1-point mutations), whereas blue corresponds to a
decrease in Gij −Gi −Gj (2-point mutation effect on free-energy is smaller than combination of two separate 1-point mutations). d, 2-point mutational map for 7K7P ENM
with all possible pairwise combinations of residue mutations with equal spring constant change kR/k = 4.00 over the first real 25 fluctuation modes.

entropic free energy change on equal bond stiffening - the two different signs displayed by nsp1 illustrate the two mechanisms177

of single mode, and mode-mixing allostery proposed in (22).178

B. Papain-like protease (nsp3). The papain-like protease PLpro enzyme is required for processing viral polyproteins to generate179

a functional replicase complex. It binds to its target on two sites, on each beta-sheet extremity of its two domains (23). As180

well as the binding domains for its cleavage activity, PLpro possesses an inhibitor binding site proximal to residue 273. Figure181

4 displays the two-point dynamic correlation of the ENM structure for nsp3 based on the PDB file 6WX4 (24) in apo form182

(panel a) and with an inhibitor bound (ligand VIR251) (panel c). The corresponding real-space correlations mapped to residue183

273, adjacent to the inhibitor binding site, are displayed in panels b and d. Note that, as in the other proteins surveyed, most184

strong correlations are due to spatial proximity, but that the real-space representations help to identify moderately strong185

(anti-) correlated motion between the inhibitor site and the helical and beta-sheet cleavage protein-binding domains. There are186

non-proximal positive correlations between 0-50 and 200-220 in both apo and holo1 forms (vertical rectangle on figure 4 a and187

c), and residues 273 and 293 adjacent to the active site correlate with the protein’s C-terminus.188

There are a few specific points to note in the dynamic structure. First, there are, as with SARS-CoV-2 Mpro, but even more189

prominently, ’H-shaped’ regions of strong positive correlation. This pattern has previously been identified as arising from local190

hinge-like motions (1). Second, there are notable changes in the cross-correlation between apo and holo1 forms of the protein.191

There is a strong increase in negative correlation between dynamics at the inhibitor site, and with the inter-domain helix192

(including residue 250; this is marked by the small rectangle on figure 4c and the vertical rectangle on 4 b and d). Conversely,193

on inhibitor binding there is a decrease of the negative dynamic correlation on the terminal beta-sheet (horizontal rectangle to194

left of 4 b and d). Additionally, the negative correlation with the other beta sheet moves towards the end of the protein (three195
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beta-strands on the right of 4 b and d). Finally, the middle helix (right short helix marked by a rectangle in 4 b and d) suffers196

a decrease in its positive cross-correlation on lingand binding; in the holo1 form the correlation is more focused around the197

ligand.198

The double-mutation scans (of figure 4 e and f) in this case are calculated to measure the effect on free energy of binding at the199

inhibitor site, so now map a free-energy change rather than a total free energy. However, they possess the same properties in200

relaxation and stiffening as did nsp1, with the same correlation between co-operative (negative sign) free energy of combination201

with spatial proximity. Under local bond weakening by a factor of 0.25, the strongest control sites for the inhibitor binding202

energy are 1-2, 49, 61-2, 196-8 and 315-317. More potential control sites appear when local bonds are stiffened by a factor 4.0,203

at 1, 37, 120-30, 209, 220-2, 233, 235 and 314-316. Interestingly, the biologically active residues do not appear strongly on the204

control map, which may indicate an evolved stability to evolutionary point mutation of this family of viral proteins.205

C. RNA-dependent RNA-polymerase (nsp7, 8 and 12). The final structure of this investigation is the SARS-CoV-2 RNA-206

dependent RNA polymerase (RdRp), a large 4-chain proteins of over 1000 residues, which regulates viral replication. RdRp207

(PDB: 7BV1 (25))consists of three non-structural proteins: 12 (chain A), 8 (chains B and D) and 7 (chain C). This enzyme, a208

much larger structure than the other three proteins of the study, has notwithstanding been proposed as a potential therapeutic209

target to inhibit viral infection (26). It is, for example, the target of the drug Remdesivir. Because of the size of the protein,210

we did not perform 2-point mutation scans for this study, but focused on the dynamic correlation map (see figure 1). Residue211

numbers on the cross-correlation map correspond to index of amino acids and heteroatoms as they appear in the PDB file,212

because all four chains have missing amino acid regions. In addition to features noted in the other proteins of our sample, the213

considerably larger size of the RNA-dependent RNA-polymerase permits dynamic structure to emerge at a larger lengthscale.214

At a more fine-grained view, a set of richly-structured positive cross-correlation profiles are located around the corresponding215

distance map regions. Negatively correlated regions also populate the map, especially along chain B and almost exclusively216

along chain D. This effect might be attributed to the incompleteness of chain D (from the point of view of the PDB file) and217

its distance from the main protein body nsp12.218

The amino acid at 557-th (re-indexed residue 478) position in RdRp has been previously shown to promote fidelity in RNA219

synthesis (27) and is located in the active site (Fig. 5b, dashed square). This is the residue that we have chosen to represent220

spatial dynamic correlations, colour-coded in figure 1 b, which indicate a positively correlated core region proximal to the221

reference residue, complemented by a negatively-correlated periphery, some of which appears in helices at a considerable222

distance. This large structure provides plenty of opportunities for targeting regions away form the active site on the surface of223

the protein, like nsp8 chain D.224

4. Discussion225

The ENM analysis reinforces previous findings in application to other proteins, including SARS-CoV-2 Mpro, that local harmonic226

potentials within the equilibrium protein structure, but without mean structural change can identify candidate biologically227

active sites for control of protein function in other examples of the SARS-CoV-2 family. Furthermore, it it is not always228

necessary to possess holo forms of the proteins to locate those active sites, whose correlated, and functional, dynamics are229

already clear in the apo form. Calculations of those sites where total free energies are sensitive to mutations converge well with230

the limit of the sum over normal modes. The convergence of calculations of control of the binding or allosteric free energies231

are more subject to noise, being higher-order difference-quantities, but sufficiently to identify strong candidates for control232

regions. Computational studies such as this, therefore, accompany and support concurrent experimental programs of scanning233

for small-molecule binding candidates to the protein.234

Because ENM calculations identify entropic contributions to free-energy arising from fluctuations around a mean conformation,235

they typically deliver a sizeable fraction of the thermal energy kBT per mode affected. This sets the typical scale at a few kJ236

per mole for the free-energy changes predicted by the model, represented in the results presented here. Previous work has237

found that experimental free energies are typically ordered in the same sequence as the ENM values, though larger by factors238

that may arise through coupling of the global modes to unresolved local modes (7, 12, 28).239

The ENM models employed in this study was specific for given inhibitors, where these apply. Other ligands might, of course,240

show different behaviour in the corresponding holo structures and display other "hot-spots", however, the appearance of active241

regions, and their coupling, in the apo structure suggests that there are general properties that emerge from the global elastic242

structure of the protein. The advantage of these coarse-grained studies is that they complement searches for ligands that243

bind to target proteins by focusing on sites whose local structural dynamics correlate with those at active sites at a lower244

computational cost than the full molecular MD.245

The family of SARS-COV-2 proteins in this study exhibited both universal and specific features in their coarse-grained246

fluctuation dynamics. In general, positive dynamic residue-residue correlations were dominated by proximity effects, with247

a few notable allosteric exceptions in each case. On the other hand, strong negative correlations appeared ubiquitously248

without proximity. New features of coarse-granined dynamics appeared in the largest of the family, the RNA-dependent249

RNA-polymerase.250

As well as providing specific information on its particular proteins, the findings of this study also contribute to the large251

programme of research on the structure of protein dynamics in general, and on fluctuation-induced allostery without confor-252

mational change in particular. As noted above, positive dynamic correlations between distant (allosteric) sites appear to be253

relatively rare (most strong dynamic correlation arises through spatial proximity between residues). In each case for spatially254
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a b

c d

e f

Fig. 4. Dynamics of the PLpro ENM dynamics (PDB: 6WX4). a, The cross-correlation maps calculated for the first real 25 modes (bottom-right region of the plot) and spacing
between residues (top-left region of the plot) for apo form. b, A real-space representation of the correlations in 6WX4 ENM with respect to residue 273 (green sphere).
The cross correlation matrix was calculated using only the Cα atoms for the protein. c, The cross-correlation maps calculated for the first real 25 modes (bottom-right
region of the plot) and spacing between residues (top-left region of the plot) for holo1 form with VIR251 inhibitor. d, A real-space representation of the correlations in 6WX4
ENM with respect to residue 273 (green sphere). The cross correlation matrix was calculated using only the Cα atoms for the protein and all heavy atoms for the ligand
(VIR251 inhibitor) shown as sticks. e, 2-point mutational map for 6WX4 ENM with all possible pairwise combinations of residue mutations with equal spring constant change
kR/k = 0.25 over the first real 25 fluctuation modes. A map for the fluctuation free energy change (bottom-right region of the plot) plots the relative change in free energy
to the wild type ((∆Gmut −∆Gwt)/|∆Gwt|) due to the dimensionless change in the spring constant (kR/k) for the mutated residue with the residue number shown.
White corresponds to values of free energy predicted by the wild-type ENM. Red corresponds to an increase in (∆Gmut −∆Gwt)/|∆Gwt| (decreased value of Gmut
comparing to ∆Gwt), whereas blue corresponds to a decrease in ((∆Gmut −∆Gwt)/|∆Gwt|) (increased value of ∆Gmut comparing to ∆Gwt). A map for the relative
fluctuation free energy change 2-point additivity (top-left region of the plot) plots the difference in the relative change in free energy for 2-point mutation and two single 1-point
mutations (∆Gij − ∆Gi − ∆Gj ). White corresponds to ∆Gij − ∆Gi − ∆Gj = 0.0, i.e. non-synergistic 2-point mutation. Purple corresponds to an increase in
∆Gij −∆Gi −∆Gj (2-point mutation effect on free-energy is greater than combination of two separate 1-point mutations), whereas blue corresponds to a decrease in
∆Gij −∆Gi −∆Gj (2-point mutation effect on free-energy is smaller than combination of two separate 1-point mutations). f, 2-point mutational map for 6WX4 ENM with all
possible pairwise combinations of residue mutations with equal spring constant change kR/k = 4.00 over the first real 25 fluctuation modes.
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a

chain A B C D

b

Fig. 5. Dynamics of the SARS-CoV-2 Rd-Rp ENM (PDB: 7BV1). a, The cross-correlation maps calculated for the first real 25 modes (bottom-right region of the plot) and
spacing between residues (top-left region of the plot) for apo form. Labels on x-axis indicate protein chain IDs. b, A real-space representation of the correlations in 6WX4
ENM with respect to residue L557 (green sphere), residue 478 on the plot. The cross correlation matrix was calculated using only the Cα atoms for the protein and heavy
heteroatoms, e.g. Zn.

distant correlations to occur, more than one normal mode anti-nodes of global protein dynamics must coincide.255

The study has also identified general ways in which which double mutations contribute in a weakly non-linear addition. Across256

all proteins of this study, patterns of bond-weakening (through mutation or binding) and bond-strengthening are similar, with257

the latter exhibiting greater correlation of (negative) non-linearities with spatial proximity. The practically-relevant proteins258

of this set are therefore able to illustrate examples evolved in nature, of the subtle design principles involved in generating259

allosteric combinations of either sign, recently theoretically related to the shift of the normal mode structure on the first260

binding (or bond-stiffening) event (22).261

In conclusion, the SARS-COV-2 family of proteins offer a rich set of examples of functional, coarse-grained, protein dynamics.262

It may be possible to exploit the detailed understanding of these features in future therapeutics; already they have deepened263

our understanding of how static and dynamic structures of proteins work together in establishing function.264

Materials and Methods265

Normal Mode Analysis (NMA) of ENM describes protein motions around equilibrium and can be used to calculate the partition function266

for large scale harmonic thermal fluctuations in protein structure, including those responsible for allostery (29) . Two main approximations267

of NMA are:268

• The structure fluctuates about at local energy minimum. Consequently no other structures beyond the given equilibrium can be269

explored.270

• The force field everywhere arises from sums over ENM harmonic271

The whole NMA method can be reduced to three steps:272

1. Construct mass-weighted Hessian for a system. For a protein ENM the system consists of the co-ordinates of the C-alpha atoms (N)273

for each residue from the corresponding PDB structure.274

2. Diagonalise the mass-weighted Hessian to find eigenvectors and eigenvalues of the normal modes.275

3. Calculate the partition function (and so free energy) from the product over the normal mode harmonic oscillations.276

The diagonalisation of the 3N × 3N mass-weighted Hessian matrix is written as
A−1H̃ A = Λ

where H̃ij =
∂2Vij

∂ri
√

mi∂rj
√

mj
: the potential energy function V ; distance between nodes r; node masses m. The eigenvectors of the

mass-weighted Hessian matrix, columns of A, are the normal mode eigenvectors a.

A =

(
| | |

a1 a2 · · · a3N
| | |

)
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Λ is a 3N × 3N diagonal matrix with diagonal values equal to the associated normal modes’ squared angular frequencies ω2. The potential
function used in this study is:

Vij =

{
kij

2

(
rij − r

(0)
ij

)2
r2
ij ≤ r2

c

0 r2
ij > r2

c

where rc is a cut-off radius, which for this work is set at 8Å; while r(0) is the equilibrium distance between nodes derived form PDB277

crystallographic structure. For the wild-type protein, all spring constants are equal kij = k=1 kcalÅ−2 mol−1.278

Cross-correlation of Motion. The cross-correlation, C, is estimated between an ENM node pair as a normalised dot product sum between279

their normal mode eigenvectors over v modes.280

Cij =
∑
v

(
ai (v) · aj (v)√
|ai (v)|2 |aj (v)|2

)
[1]281

C value of 1 implies perfectly correlated motion, -1 perfectly anti-correlated motion and 0 implies totally non-correlated motion.282

Normal Mode Fluctuation Free Energy. Using statistical mechanics it is possible to calculate an estimate to the fluctuation free energy of a
system using the frequency of vibrations such as the normal modes. For this method, the partition function for the quantum harmonic
oscillator (30), Z, for normal mode k is given as

Zk =
exp
(
− 1

2
~ωk
kBT

)
1− exp

(
− ~ωk
kBT

)
where kB is the Boltzmann’s constant, ~ is the reduced Planck’s constant, T is temperature in Kelvin and ω is, already mentioned, angular283

frequency. Gibbs free energy (for a given mode) expressed in terms of partition function, with an approximation of little change in volume,284

can be written as285

Gk = −kBT ln

(
1

1− exp
(
− ~ωk
kBT

))+
1
2
~ωk [2]286

Ligand Dissociation Constant. When free energy change ∆G (SI, Sec. C) is known for a dissociation reaction, corresponding dissociation287

constant K can be estimated via288

K = exp
(
−

∆G

kBT

)
[3]289

Molecular Dynamics Simulation. Comparison between Backbone Enhanced ENM, ENM and Molecular Dynamics simulation was carried290

out by calculating the distributions of eigenfrequencies from the Normal Mode Analysis (NMA) of these three models. The eigenfrequencies291

for the two ENM models were calculated using the DDPT software while the molecular dynamics eigenfrequencies were calculated by292

generating a trajectory from the molecular dynamics simulation software Amber (20) and then using DDPT to find the eigenfrequencies293

from the trajectory. Amber relies on force fields (the Amber force field ff14SB was used (31) in this calculation) to calculate forces between294

atoms and uses integration algorithms to calculate atom’s trajectories over time. Before a simulation is run, the input protein structure295

was energy minimised and equilibrated. The pmemd.cuda program was used to implement both pre simulation energy minimisation296

equilibrations and the production simulation from which the eigenfrequencies are found. CUDA is used to parallelise calculation of the297

trajectories to run calculations on gpus rather than cpus. The simulations were carried out in an implicit solvent. The amber analysis298

program cpptraj is used to convert the binary output of pmemed.cuda to a readable trajectory format. The final trajectory from the299

production simulation is then used to calculate a covariance matrix using the COVAR program in DDPT. COVAR calculates a mass300

weighted Hessian matrix which is diagonalised. The eigenfrequencies are found through the FREQEN DDPT program.301
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