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Abstract 

Background: Acute kidney injury (AKI) is one of the most common organ failures following surgery. 

We have developed a tripeptide mimetic (ANXA1sp) of the parent annexin A1 molecule that shows 

promise as an organ protectant limiting cellular stress; however, its potential as a kidney protective 

agent remains unexplored, and its mechanism of action is poorly understood. Our hypothesis was that 

ANXA1sp would limit kidney injury and improve mitochondrial function following surgical ischemic 

kidney injury.   

 

Methods: In blinded fashion, wildtype mice were assigned to receive vehicle control or experimental 

drug (ANXA1sp) 1 hour prior to and 1 hour after kidney vascular clamping. Our primary outcome was 

assessment of kidney injury and function by measurement of serum creatinine and blood urea nitrogen 

(BUN) and histologic injury scoring of kidney tissue sections. Immunofluorescence microscopy, real-

time PCR and western blot were used to assess cell death, oxidative stress, and mitochondrial 

biomarkers.  An in vitro model of oxygen-glucose deprivation in immortalized kidney tubule cells was 

used. 

 

Results: ANXA1sp given prior to and after ischemic kidney injury abrogated ischemic AKI. ANXA1sp 

further limited kidney cell death and oxidative stress following ischemia. ANXA1sp significantly 

improved markers associated with mitochondrial DNA repair and mitochondrial biogenesis. ANXA1sp 

upregulated expression of the mitochondrial protectant sirtuin-3 (SIRT3) in the mitochondria of kidney 

tubular cells.  Silencing of SIRT3 limited ANXA1sp-mediated protection against hypoxic cell death.  

 

Conclusions: ANXA1sp limits kidney injury through upregulation of SIRT3 and consequent 

preservation of mitochondrial function. ANXA1sp holds considerable promise as a perioperative kidney 

protectant prior to ischemia inducing surgery and/or kidney transplantation.  
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Introduction 
Acute kidney injury (AKI) is one of the most common forms of organ injury occurring in up to 5% 

of all hospitalized patients, 10-30% of post-surgical patients (49), and 30% of critically ill patients (42). 

AKI increases morbidity and mortality and results in longer ICU and hospital stays, leading to increased 

hospital costs (15).  Even small changes in serum creatinine are associated with increased 

perioperative and long-term mortality (17, 19, 20). Despite its significant morbidity and mortality, there 

are currently no therapeutic modalities to prevent or treat AKI once it occurs. Thus, novel therapeutic 

modalities are needed. 

Due to its high metabolic demands and oxygen consumption, the kidney is particularly 

susceptible to metabolic and oxidative stress (2). Kidney tubule cells are rich in mitochondria that are 

required for efficient ATP production via oxidative phosphorylation (2). Kidney tubular cells depend 

primarily on mitochondrial energy production making them sensitive to mitochondrial dysfunction, and 

mitochondrial impairment in the kidneys can severely affect kidney health (2, 12). Several studies have 

suggested that mitochondrial damage and dysfunction contribute significantly to AKI development and 

impede kidney repair and regeneration (43, 44). For example, mitochondrial fragmentation, swelling, 

and inner cristae loss were observed in experimental models of ischemic AKI (29, 47, 48) even prior to 

overt kidney cell apoptosis (5). Mitochondria are central to the regulation of both cellular metabolism 

and the integration of pathways that lead to cell death within the kidney. As such, targeting 

mitochondrial quality control is a promising therapeutic target. In this regard, sirtuin 3 (SIRT3) is a 

mitochondrial NAD+ dependent deacetylase that maintains mitochondrial integrity under conditions of 

cellular stress (16, 24, 30). In addition, SIRT3 has been shown to protect against toxic (26) and septic 

(54) AKI. Developing therapeutic agents that upregulate SIRT3 and protect the mitochondria, could 

have broad implications for kidney protection prior to AKI-inducing stimuli (i.e. surgery, transplantation) 

and during recovery following AKI.  

Annexin A1 is a 37kD endogenous protein that is expressed mainly by immune cells and 

epithelial cells (21). Annexin A1 is a well-established pro-resolving, anti-inflammatory mediator (10, 21). 

As a result, peptide fragments of this molecule have been generated and shown to have protective anti-
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inflammatory properties in many disease states (38), including in kidney ischemia/reperfusion injury in 

rats (8). Our group has developed a specific small tripeptide fragment of the human annexin A1 

molecule (ANXA1sp) that exerts potent biologic properties (52). Based upon the promising protective 

role of SIRT3 in toxic and inflammatory AKI (26, 54), we hypothesized that ANXA1sp would protect 

against ischemic AKI through upregulation of SIRT3, mitochondrial protection, and amelioration of 

tubular cell death. Here, we analyze how ANXA1sp treatment affects kidney injury, mitochondrial 

function, SIRT3 levels, and cell death pathways following ischemic AKI. These studies have important 

implications for kidney protection during surgery and prior to kidney transplantation. 
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Materials and Methods 

Chemicals and Reagents  

Annexin A1 tripeptide fragment (Ac-Gln-Ala-Trp) (ANXA1sp) was synthesized by GenScript 

Biotech (Piscataway, NJ) as previously described (52) and was reconstituted in DMSO and placed in 

individual doses.  Ketamine, xylazine, and buprenorphine were purchased from Henry Schein animal 

health (Dublin, OH).  

Animal Experiments  

All of the animal studies were approved by the Durham Veterans Affairs Medical Center (VAMC) 

Institutional Animal Care and Use Committee, performed at the Durham VAMC, and conducted in 

accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

Briefly, 129/SvEv 10-16-week-old male mice were obtained from Taconic Biosciences (Rensselaer, 

NY). Mice were fed standard chow diet. Administration of ANXA1sp: Mice were randomly assigned to 

receive vehicle control or blinded experimental drug in every other fashion. The investigators 

performing surgery, experiments, and analyzing the data were blinded to the treatment groups until 

measurement of primary outcome for each experiment. Both DMSO Vehicle and ANXA1sp doses were 

reconstituted in saline and at 1 hour prior to clamp placement, 1mg/kg was given intraperitoneally (IP). 

The same treatment was given at 1-hour post-clamp removal. Ischemia/reperfusion (I/R): Mice were 

anesthetized with ketamine/xylazine. Mice were placed on a warming pad (Hallowell EMC, Pittsfield, 

MA) heated to 38oC by a Gaymar TP650 water pump. After aseptic prep, a midline dorsal incision was 

created, and blunt dissection was performed toward right kidney. The flank muscle and fascia above 

the right kidney was incised and the right kidney was exteriorized after which the renal pedicle was 

ligated with suture and the right kidney removed. After closure of fascia and muscle over right kidney, 

blunt dissection was performed toward left kidney. The flank muscle and fascia above the left kidney 

was incised and the left kidney was exteriorized. Adipose and connective tissue were carefully removed 

near renal vessels and a 800g pressure clamp (Fine Science Tools) was placed on the left renal 

pedicle. At end of ischemic time, the clamp was removed and reperfusion was confirmed by color 
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change in kidney. The fascia and muscle layer and skin were closed by suture. The animal was given 

buprenorphine (0.1mcg/gm) in normal saline subcutaneously. The animal was then placed in cage with 

warming pad during recovery.  

Blood & Serum Analyses 

Blood was collected from a cardiac puncture at the indicated time points, allowed to clot for 30 

mins at room temperature, and centrifuged at 3,000 g for 10 minutes at 4°C. The primary outcome of 

our study was reduction in serum creatinine and BUN. Serum creatinine levels were measured by the 

University of North Carolina Animal Histopathology and Lab Medicine Core. Serum BUN was measured 

by kit (ThermoFisher) according to kit instructions.  

Histologic Analyses 

Kidney tissues were removed and a cross-sectional segment obtained. The kidney segment 

was fixed with 10% neutral-buffered formalin (VWR 16004-128); embedded with paraffin; sectioned in 

5mm sections by the Duke Research Immunohistology Laboratory. Injury scoring: Sections were 

stained with PAS staining and scored by an experienced animal pathologist masked to experimental 

groups. Sections were graded according to a previously established scoring system (50): the 

percentages of tubules with cell lysis, loss of brush, border, and cast formation were scored on a scale 

from 0-4 (0, no damage; 1, 25%; 2, 25-50%; 3, 50-75%; 4, >75%). Histologic scores for each kidney 

were obtained by adding individual component scores. 8-OHdG and citrate synthase 

immunofluorescence staining: Paraffin-embedded kidney sections (4 μm) were processed for 

immunostaining by deparaffinization in xylene and rehydration through a descending series of alcohols, 

washed extensively in 0.1 M PBS, blocked with 10% normal goat serum, and incubated in primary 

antibodies to 8-hydroxy-2’deoxyguanosine (8-OHdG) or citrate synthase diluted in 10% normal goat 

serum overnight at 4°C. followed by fluorescent-labeled secondary antibodies labeled with Alexa Fluor 

488 green or Alexa Fluor 556 red. Nuclei were counterstained with DAPI (blue). Images were acquired 

on a Nikon E400 fluorescence microscope. SIRT3 and mitochondrial complex IV immunofluorescence 

staining: After deparaffinization, kidney tissue sections were treated with 10 mM citrate buffer (pH 6.0) 

for antigen retrieval. After blocking with 10% normal goat serum and 0.1% BSA at RT for 1 hour, the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2020. ; https://doi.org/10.1101/2020.12.11.421859doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.421859
http://creativecommons.org/licenses/by-nc/4.0/


 
 

7

sections were incubated with rabbit anti-SIRT3 (1:300; Cell Signaling Technologies, Danvers, MA) and 

mouse anti-COXIV (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, United States) at 4°C overnight. 

The sections were then incubated with Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:500; 

Invitrogen, Carlsbad, CA, United States) and Alexa Fluor 550-conjugated goat anti-mouse IgG (1:500; 

Invitrogen, Carlsbad, CA, United States) at RT for 1 hour. After washing with PBS, slides were 

prepared and mounted using UltraCruzTM Mounting Medium with DAPI (Santa Cruz Biotechnology, 

Santa Cruz, CA, United States) to detect nuclei. Images were captured on a Leica fluorescent 

microscope (Leica DM IRB, Germany) using a 20X/0.4 PH objective at 1.5-fold magnification, and the 

images were analyzed by NIH ImageJ software (version 1.51). 

RT-PCR 

mRNA was isolated with an RNeasy Mini Kit (Qiagen, Germantown, MD) per kit instructions. A 

cross-sectional piece of kidney containing cortex and medulla was homogenized in Buffer RLT with 

0.01% β-ME and further homogenized with Qiashredder columns (Qiagen 79654). mRNA concentration 

was measured by Nanodrop (ThermoFisher). The High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems 4368814) was used to synthesize cDNA according to manufacturer’s instructions. 

Gene expression levels of SIRT3 was determined by RT-PCR on an ABI7900HT machine (Applied 

Biosystems) using TaqMan primers (SIRT3, Mm00452131_m1, #4331182--ThermoFisher).  

Western Blot  

A piece from flash frozen kidneys were homogenized in RIPA buffer containing cocktail protease 

and phosphatase inhibitors. Kidneys representative of mean serum creatinine for each group were 

used for Western blot samples. Total protein content was measured by the BCA assay. 20 μg total 

protein was loaded into SDS-PAGE gels and immunoblots were performed as previously described 

(39). Antibodies used include peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α; 

1:1,000; Cat. No. ab54481; Abcam); mitochondrial transcription factor A (Tfam; 1:1,000; developed in 

our laboratory); Pink1 (1:500; cat. no. ab23707; Abcam); PARK2 (1:500; Cat. No. sc-32282; Santa Cruz 

Biotechnology); light chain 3B protein (LC3I/II) tubulin (1:1,000; Cat. No. T-5168; Sigma-Aldrich), or 
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mitochondrial porin (1:500; Cat. No. sc-8829), Drp1 (Santa Cruz Biotechnology, Dallas, TX), sirtuin 3 

(#5490S, Cell Signaling Technologies, Danvers, MA).  

Cell culture    

HK-2 cell culture: The human immortalized proximal tubule epithelial cell line HK-2 (ATCC, 

CRL-2190) was kindly provided by Dr. Tomokazu Souma and cultured in DMEM/F12 supplemented 

with 10%FBS, 1% penicillin/streptomycin, 1% Insulin-Transferrin-Selenium solution (Gibco). Hypoxia 

exposure: Cells were exposed to ANXA1sp (10, 20 µM) for 1 hr. Cells were then subjected to 12 or 16 

hr oxygen–glucose deprivation (OGD: DMEM no glucose, 92% N2/ 3% H2/ 5% CO2) in an anaerobic 

chamber (Coy Laboratories). Cells were lifted and analyzed for apoptosis/cell death per below. 

Normoxia cells were treated with DMEM + F12 with no serum in a 37°C growth incubator with 95% 

air/5% CO2. Vehicle cells were treated with equal volumes of DMSO in the medium. Cells were 

harvested for further analysis. 

Cell Death Analysis 

TUNEL staining: Apoptosis was determined by terminal deoxynucleotidyl nick-end labeling 

(TUNEL) per assay manufacturer’s protocol (Roche Diagnostics, Indianapolis, IN, United States).  

Paraffin-embedded sections (5 μm thick) were deparaffinized using xylene and descending grades of 

ethanol and incubated in a proteinase K working solution for 15-30 minutes at room temperature. 

Sections were then incubated with terminal deoxynucleotidyl transferase (TdT) for 1h at  37◦C  and  

then  rinsed  with  PBS.  Slides were counterstained with DAPI and coverslipped using Dako 

Fluorescence Mounting Media (Agilent Technologies, Santa Clara, CA). Slides from three 

representative mice of each group were chosen based on nearness to mean of creatinine for each 

group. For each animal, five areas of the corticomedullary junction were imaged at 20X; images were 

post-processed within Image J with intensity parameters equal amongst all images; and nuclei were 

scored as positive if there was DAPI and TUNEL staining positivity in the same location. TUNEL 

positivity for each animal was reported as the number of TUNEL positive nuclei per 20X field averaged 

over the five images.  
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Cell death assay: HK-2 were treated with ANXA1sp and hypoxia per above. At end of 

experiment, the supernatant was removed to collect dead cells, cells lifted with TrypLE (Gibco), TrypLE 

inactivated with 10% FBS, and cellular fractions combined with supernatants. Cells were spun down 

(350g for 5 min), and pellet was resuspended in 100 ul media. Apoptosis was determined by Muse 

Annexin V & Dead Cell Kit (Luminex) per kit instructions.  

Statistical Analyses  

Tests were performed with GraphPad Prism Software® (GraphPad Software, La Jolla, CA). The 

figures are representative of experiments that were repeated at least twice on different days, and the 

data are expressed as mean ±standard error of the mean (SEM). An unpaired Student's t-test with 

Welch’s correction was used to compare two experimental groups. Comparisons with more than 2 

groups were analyzed by one-way or two-way ANOVA as indicated in each figure legend with Sidak’s 

multiple comparisons test for post-hoc analysis to compare groups. Control group for animal 

experiments was Vehicle-treated, Sham mice. We did not perform a priori power analysis to determine 

sample size because we did not know the expected effect size of ANXA1sp on ischemic AKI.  However, 

we attempted to perform each surgical experiment at least twice to target 12 mice/group, which is within 

range for a typical sample size for AKI in our laboratory (33, 51).    
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Results.  

ANXA1sp tripeptide prevents kidney injury following ischemia. Annexin A1 is a pro-

resolving mediator (10, 21), and peptide fragments of annexin A1 have been generated and shown to 

have protective properties in many disease states (38). Here, we use a synthetic tripeptide of the N-

terminal domain of the annexin A1 molecule (ANXA1sp) that retains the most potent anti-inflammatory 

and pro-resolving properties (52) in the setting of ischemic kidney injury to determine its effect on 

kidney protection. We hypothesized that pre-treatment of mice with ANXA1sp would dampen severity of 

AKI following ischemia. We injected mice with either vehicle or ANXA1sp 1 hour prior to ischemia, 

induced severe ischemia, and then injected mice with the same treatment 1 hour after reperfusion. In 

this ischemia model, we noted significantly less tubular injury (Figure 1A-C) and lower serum levels of 

creatinine (Figure 1D) and blood urea nitrogen (BUN) (Figure 1E) at 24 hours in ANXA1sp-treated 

mice. We concluded that ANXA1sp treatment ameliorated ischemic kidney injury. 

ANXA1sp prevents kidney tubule apoptosis/cell death. We next wanted to determine 

whether ANXA1sp prevented cell death in the kidney following ischemia. We performed TUNEL 

staining on kidney sections following severe ischemia. We found that kidneys from the ANXA1sp-

treated mice had fewer TUNEL-positive nuclei following I/R, particularly at the corticomedullary junction 

(Fig. 2A-C). These results indicate that ANXA1sp is able to ameliorate cell death in the kidney following 

ischemia injury.  

ANXA1sp treatment limits oxidative damage and improves mitochondrial integrity. 

Reactive oxygen species (ROS) are critical triggers of mitochondrial damage and can subsequently 

cause cell death. The 8-OHdG adduct is a product of mitochondrial (mt)DNA oxidation, and if not 

repaired, may lead to mutations and a dysfunctional mtDNA genome. We evaluated 8-OHdG levels in 

the kidney by immunofluorescence staining. Compared to sham animals, we found that 8-OHdG levels 

increased following ischemia (Figure 3A—compare sham to I/R panels). We found ROS staining to be 

localized to mitochondria as demonstrated by co-localization with citrate synthase (green) staining 

(Figure 3A). Following ischemia, ANXA1sp decreased the intensity of 8-OHdG staining (Figure 3A—
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bottom right) compared to vehicle treated mice (Figure 3A—top right), indicating that ANXA1sp limited 

accumulation of ROS following ischemia. In support of this notion, we found that ANXA1sp significantly 

increased protein levels of the antioxidant enzyme superoxide dismutase 2 (SOD2) under both sham 

and ischemia conditions (Figure 3B), indicating that ANXA1sp is able to upregulate protective 

antioxidant enzymes. To further evaluate integrity of the cellular machinery involved in maintaining the 

mitochondrial genome, we examined changes in protein expression of the mtDNA base-excision repair 

enzyme OGG1. ANXA1sp significantly increased levels of kidney OGG1 protein expression compared 

to vehicle treatment (Figure 3C). Moreover, as mitochondrial stress and other physiological events can 

promote organelle fragmentation and limit function (36), we examined the impact of ischemia on 

mitochondrial morphology by measuring Drp1, which is expressed in the cytosol and is recruited to 

mitochondria undergoing fragmentation or damage. Following ischemia, kidneys from vehicle-treated 

mice showed a significant increase in Drp1 protein, which was completely abrogated by ANXA1sp 

treatment (Figure 3D). Taken together, ANXA1sp limits ROS, promotes integrity of the mitochondrial 

genome, and decreases markers associated with mitochondrial fragmentation and damage.  

ANXA1sp treatment improves markers of mitophagy. The elimination of damaged 

mitochondria through a process termed mitophagy is also vital to maintaining cellular function in the 

face of cellular stress (32). Thus, we next determined the effect of ANXA1sp on mitophagy following 

ischemic AKI. ANXA1sp induced an accumulation of the lipidated form of microtubule associated 

protein 1 light chain 3 beta (LC3 II/LC3 I), a marker for autophagy (Figure 4A,B). To specifically 

evaluate mitophagy, we assessed levels of mitophagy regulators PINK1 (PTEN induced putative kinase 

1) and Parkin. ANXA1sp treatment significantly increased both PINK1 and Parkin levels following 

ischemia (Figure 4C-E). We concluded that ANXA1sp improves mitophagy as an additional mechanism 

of kidney protection. 

ANXA1sp induces PGC1α-mediated mitochondrial biogenesis in the kidneys. To gain 

further insight into the potential impact of ANXA1sp on mitochondrial function following IR, and to 

determine whether ANXA1sp-mediated mitochondrial integrity is coordinated with mitochondrial 

biogenesis, mitochondrial biogenesis was tracked in mouse kidneys by immunoblotting for key 
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mitochondrial proteins. Following ischemia, we found significant upregulation of the major regulator of 

mitochondrial biogenesis, PGC1-α (43, 44), in ANXA1sp-treated mice compared to vehicle-treated mice 

(Figure 5A,B). As additional evidence of improved mitochondrial biogenesis following ANXA1sp 

treatment, compared to vehicle, ANXA1sp treatment increased mitochondrial mass in the kidney as 

measured by citrate synthase (mtCS) (Figure 5C,D), cytochrome c oxidase subunit 1 of mitochondrial 

Complex IV (mtCI) (Figure 5C,E), and the mitochondrial NADH-ubiquinone oxidoreductase chain 1 

(mtND1) (Figure 5C,F). We further found increased levels of the PGC1α target, mitochondrial 

transcription factor A (Tfam) (Figure 5G,H), which is required for mtDNA transcription and replication. 

Thus, ANXA1sp increases PGC1α, which upregulates key proteins involved in mitochondrial 

biogenesis, further supporting its role in mitochondrial protection following ischemic AKI. 

ANXA1sp upregulates sirtuin-3 (SIRT3) following ischemia. We next wanted to determine 

cellular mediators through which ANXA1sp and PGC1α could be working to protect mitochondria and 

prevent cell death. SIRT3 is a mitochondrial protectant that protects against kidney injury (26, 54). 

SIRT3 is also a target gene of PGC1α (18). We found that ischemia caused downregulation of SIRT3 at 

the mRNA and protein level, an effect that was reversed by ANXA1sp treatment (Fig. 6A,B). By 

immunofluorescent staining, we also showed that kidneys from ANXA1sp-treated mice displayed 

increased SIRT3 expression after I/R compared to Vehicle, and that much of the SIRT3 expression 

appeared to be localized to mitochondria in kidney tubular cells as demonstrated by co-staining with 

mitochondrial complex IV (Fig. 6C). Thus, we concluded that ANXA1sp promotes expression of SIRT3 

in mitochondria of kidney tubules following I/R, which likely helps to prevent cell death and kidney 

injury. 

ANXA1sp mediates kidney protection through SIRT3.  We next wanted to develop a cellular 

model of ischemic kidney injury in order to better test molecular mechanisms of ANXA1sp-mediated 

kidney protection. To mimic our in vivo model, we treated an immortalized human kidney epithelial cell 

line, HK-2, with vehicle or ANXA1sp and subjected cells to hypoxia using oxygen-glucose deprivation 

(OGD) in an anaerobic chamber. We found that ANXA1sp given prior to hypoxia exposure was able to 
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prevent hypoxic HK-2 cell death (Fig. 7A). We then silenced SIRT3 expression with siRNA (Fig. 7B). 

We found that silencing of SIRT3 prevented ANXA1sp-mediated protection from hypoxic cell death 

(Fig. 7C). Taken together, these findings demonstrate that ANXA1sp mediates its kidney protective 

effects through SIRT3, which promotes mitochondrial protection and prevents cell death.  
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Discussion.  

Our group has developed a tripeptide fragment, ANXA1sp, of the pro-resolving mediator 

annexin A1 that holds considerable promise for alleviating postoperative organ dysfunction. We 

hypothesized that ANXA1sp would alleviate AKI in a model of ischemic surgical kidney injury. In 

support of our hypothesis, we found that ANXA1sp limited post-surgical ischemic kidney injury. We 

showed that ANXA1sp treatment was associated with reduced kidney cell death following ischemia 

both in vitro and in vivo. We further demonstrated that ANXA1sp upregulated PGC1α and the PGC1α 

target SIRT3 to limit ROS, increase antioxidant enzymes, and induce mitophagy and mitochondrial 

biogenesis, all of which attenuated cell death. In support of this mechanism of cellular protection, we 

further showed that the protective effects of ANXA1sp treatment were ameliorated when SIRT3 was 

silenced in kidney tubule cells in vitro. Taken together, ANXA1sp augments SIRT3 levels to improve 

mitochondrial function, which ameliorates ischemic AKI.  

AKI is a major cause of perioperative morbidity and mortality (15). Indeed, the kidney is one of 

the organs at particularly increased risk of injury during the perioperative period. Since the kidneys 

receive nearly 25% of cardiac output, they are continuously exposed to nephrotoxins during surgery 

(13, 49); and hemodynamic alterations, including hypotension and hypovolemia, place the kidneys at 

additional risk for injury. Surgeries performed on the aorta, such as abdominal aortic repair, require 

clamping of the abdominal aorta and/or renal vessels, which directly induces ischemic injury. Likewise, 

in kidney transplantation, the renal vessels are clamped to allow removal of the donor kidney. During all 

of these procedures, the timing of kidney insult is known. As such, the identification of kidney-protective 

therapeutics that can be given prior to known kidney insult holds considerable promise for limiting 

perioperative kidney injury. We show here that a tripeptide fragment of the parent annexin A1 molecule, 

ANXA1sp, limits renal damage in an ischemic kidney injury model showing its promise as a 

perioperative organ protectant. In addition, though it remains to be tested, since transplanted donor 

kidneys undergo a period of ischemia between harvest and transplant, ANXA1sp could also be used to 

preserve donor kidneys prior to transplantation. 
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The efficacy of ANXA1sp to limit organ injury in the brain (22, 53), and now the kidney, points to 

its mechanism of protection being modulation of a global cellular function. One possibility we 

considered could be limiting inflammation as the parent annexin A1 molecule is known reduce 

leukocyte tethering and transmigration and promote phagocytosis of dead cells (1, 7, 23, 34). However, 

as ANXA1sp has shown promise to limit cell death in the brain (22, 53), we tested the ability of 

ANXA1sp to limit cell death in the kidney following ischemia. We indeed found that ANXA1sp was able 

to mitigate cell death following ischemia in the kidney and in an immortalized human kidney cell line in 

an in vitro model of hypoxia. Taken together with its effects on limiting cell death in the brain, ANXA1sp 

appears to broadly limit cell death in multiple tissues. 

ANXA1sp appears to limit cell death through SIRT3-mediated mitochondrial protection. We 

found that ANXA1sp augments expression of SIRT3 following ischemia. SIRT3 is a mitochondrial 

protectant that is known to promote mitochondrial biogenesis, mitophagy, metabolic flux of both 

carbohydrate and fatty acid substrates, and limit oxidative stress (25). ANXA1sp was able to limit cell 

death induced by hypoxia in vitro, and its protection was abolished when SIRT3 was silenced in HK-2 

cells, implying SIRT3 is required for ANXA1sp-mediated kidney protection. Our data showing 

augmented SIRT3 expression as a kidney protectant is in line with other groups that have shown that 

SIRT3 deletion is deleterious in both nephrotoxic and septic AKI (26, 54). Furthermore, ANXA1sp also 

benefits mitochondrial function in the ischemic kidney by promoting mitochondrial biogenesis. Our data 

show that PGC-1α, a major transcriptional co-activator for mitochondrial biogenesis (45), is upregulated 

by ANXA1sp following ischemia.  PGC-1α is known to limit AKI (35, 43, 44). PGC1-α is also required 

for the induction of many ROS-detoxifying enzymes, including SOD2 and catalase (37), and is also 

known to induce SIRT3 expression (18). 

Owing to its mitochondrial protective properties, ANXA1sp appears to be particularly efficacious 

at limiting cell stress in tissues with high mitochondrial content. Due to the high metabolic demands 

required to remove waste products and regulate acid-base status, fluids, electrolytes, and blood 

pressure, the kidney is one of the most metabolically active organs in the body. In fact, of all organs, the 

kidney has the second highest mitochondrial content and oxygen consumption after the heart (27, 28). 
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Damaged mitochondria increase ROS production, propagating mitochondrial damage (11), which may 

stimulate the release of pro-cell death factors, such as cytochrome c, from mitochondria into cytosol to 

initiate cell death (41). Because ischemia-reperfusion events are frequently complicated by 

mitochondrial dysfunction and increased ROS production, we tested the ability of ANXA1sp to limit 

these deleterious events. We showed that ANXA1sp limits cell death and ROS production and 

increases antioxidant enzymes. ANXA1sp suppression of ROS in the kidney is again likely due to its 

upregulation of SIRT3 (31): We show that ANXA1sp upregulates OGG1, an important mitochondrial 

DNA repair enzyme, and SIRT3 can interact with OGG1 (6). In addition, under stress conditions, ROS 

production can exceed the antioxidant capacity of the mitochondria due to acetylation-induced 

inactivation of mitochondrial antioxidant enzymes SOD2, which is deacetylated and activated by SIRT3 

(9). Thus, in addition to the direct upregulation of SOD2 expression that we show here, ANXA1sp-

mediated upregulation of SIRT3 could also augment activation of SOD2 to limit ROS damage. Taken 

together, ANXA1sp augments the mitochondrial antioxidant system to prevent ROS-induced mtDNA 

oxidation and damage. 

ANXA1sp also improves mitophagy, a selective form of autophagy that eliminates redundant or 

damaged mitochondria (14). Recent evidence suggests that mitophagy plays an important role in AKI 

development and subsequent kidney repair: PINK1-Parkin-mediated mitophagy was reported to be 

protective against both toxic and ischemic kidney injury (40, 46). Not only did ANXA1sp treatment 

improve mitophagy in our studies, but it also reduced mitochondrial-associated Drp1, suggesting that 

ANXA1sp limits mitochondrial fragmentation. The influence of Drp1 and mitochondrial fragmentation on 

apoptosis and exacerbation of injury has been documented in several studies (3-5), and inhibiting this 

response likely protects the kidney from further injury after ischemia. The specific mechanism by which 

ANXA1sp decreases mitochondrial-associated Drp1 is not known; however, activation of the SIRT3 and 

mitochondrial biogenesis and mitophagy program may also influence mitochondrial dynamics after 

ischemia.  

The mechanisms by which ANXA1sp upregulates SIRT3 to protect the mitochondria are still 

unclear. The parent annexin A1 molecule binds the formyl peptide receptor 2 (FPR2), a promiscuous 
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G-protein coupled receptor (GPCR) that serves as a pattern recognition receptor for bacterial 

formylpeptides, eicosanoid lipid molecules and pro-resolving lipid mediators (55). As ANXA1sp is a 

small tripeptide fragment of the parent annexin A1 molecule, it is likely that ANXA1sp is able to bind to 

and activate FPR2. However, due to its small size, ANXA1sp may have multiple cellular targets. The 

identification of the cellular target of ANXA1sp is an active area of investigation in our laboratory. 

In conclusion, the annexin A1 mimetic peptide, ANXA1sp, upregulates SIRT3 and improves 

mitochondrial function in the kidney following ischemic injury. Restoration of mitochondrial function via 

ANXA1sp/SIRT3 may offer unique pharmacological targets for improved recovery from AKI. Thus, 

ANXA1sp holds considerable promise as a perioperative kidney protectant. 
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Figure Legends 
 
Figure 1 – AnnexinA1 tripeptide (ANXA1sp) attenuates kidney injury following 

ischemia/reperfusion-induced kidney injury. (A) Mice were treated with either Vehicle or ANXA1sp 

and subjected to 33 minutes of unilateral ischemia and contralateral nephrectomy and then re-injected 

with Vehicle or ANXA1sp 1 hour after reperfusion. Representative periodic-acid Schiff (PAS)-stained 

kidney sections demonstrating increased injury in Vehicle, I/R group at Day 1 after ischemia (scale bar 

= 100 um). (B) Increased magnification of boxes in (A) to demonstrate increased histologic evidence of 

injury in Vehicle, I/R mice (asterisk: protein casts; arrowhead: tubule vacuolization) compared to 

ANXA1sp-treated mice (scale bar = 50 um). (C) Histologic injury scoring from (A) by observer blinded 

to experimental grouping (n=3 for Sham groups, n=6 for I/R groups). Six representative samples were 

selected based on mean creatinine of complete sample set for each group.  ANXA1sp-treated mice 

display attenuated kidney injury. Statistical significance determined by two-way ANOVA (*p<0.05). (D, 

E) Serum creatinine (D) and blood urea nitrogen (BUN) (E) were measured. ANXA1sp-treated mice 

display ameliorated AKI compared to Vehicle-treated mice (n=3 for Sham groups, n=12 for I/R groups). 

Graphs display mean +/- SEM. Statistical significance determined by two-way ANOVA (*p=0.05 from 

ANXA1sp-, I/R group). 

 

Figure 2 – ANXA1sp treatment prevents renal cell death. Mice were treated with either Vehicle or 

ANXA1sp 1 hour prior to ischemia, subjected to 33 minutes of unilateral ischemia and contralateral 

nephrectomy and then re-injected with Vehicle or ANXA1sp 1 hour after reperfusion. (A) Kidney tissues 

were harvested at 24 hours after reperfusion. Representative terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL)-stained kidney sections demonstrating increased apoptosis in 

Vehicle, I/R group at Day 1 after ischemia. Scale bar shows 25 um. (B) Increased magnification of 

boxes in (A) to demonstrate increased evidence of apoptosis in Vehicle, I/R mice (arrowhead: TUNEL-

positive nuclei) compared to ANXA1sp-treated mice. Scale bar shows 25 um. (C) Quantification of 
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TUNEL positive nuclei from (A). Graph displays mean +/- SEM of % TUNEL positive nuclei from 5 

fields/section from each mouse (n=3 for Sham and I/R groups; **p<0.01). 

 

Figure 3 – ANXA1sp treatment limits oxidative damage and improves mitochondrial integrity. 

Mice were treated with either Vehicle or ANXA1sp 1 hour prior to ischemia, subjected to 33 minutes of 

unilateral ischemia and contralateral nephrectomy and then re-injected with Vehicle or ANXA1sp 1 hour 

after reperfusion. Kidney tissues were harvested at 24 hours after reperfusion. (A) Representative 

immunofluorescence histologic staining for 8-OHdG and citrate synthase. (B) Protein levels of 

superoxide dismutase 2 (SOD2) were determined by Western blot with densitometry shown in graph 

below. (C) Protein levels of 8-Oxoguanine DNA Glycosylase (Ogg1) were determined by Western blot 

with densitometry shown in graph below. (D) Protein levels of dynamin-related protein (Drp)1 were 

determined by Western blot with densitometry shown in graph below. Graphs in B-D displays mean +/-

SEM of densitometry of protein normalized to tubulin. Statistical significance determined by two-way 

ANOVA (n=3 samples for Sham groups, n=6 samples for I/R groups; *p<0.05, ***p<0.001). 

 

Figure 4 – ANXA1sp treatment promotes mitophagy. Mice were treated with either Vehicle or 

ANXA1sp 1 hour prior to ischemia, subjected to 33 minutes of unilateral ischemia and contralateral 

nephrectomy and then re-injected with Vehicle or ANXA1sp 1 hour after reperfusion. Kidney tissues 

were harvested at 24 hours after reperfusion. (A) Western blot for LCI/III showing protein levels of 

indicated proteins with densitometry shown below in (B). (C) Western blot for Pink1, and Parkin with 

densitometry shown in (D) and (E), respectively. Graphs display mean +/-SEM of densitometry of 

protein normalized to tubulin. Statistical significance determined by two-way ANOVA (n=3 samples for 

Sham groups, n=6 samples for I/R groups; *p<0.05, ***p<0.001). 

 

Figure 5 – ANXA1sp treatment promotes mitochondrial integrity. Mice were treated with either 

Vehicle or ANXA1sp 1 hour prior to ischemia, subjected to 33 minutes of unilateral ischemia and 

contralateral nephrectomy and then re-injected with Vehicle or ANXA1sp 1 hour after reperfusion. 
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Kidney tissues were harvested at 24 hours after reperfusion. (A)Western blot showing protein levels of 

PGC1α with densitometry shown in (B). (C) Western blot showing indicated proteins with densitometry 

results for (D) mitochondrial citrate synthase (mtCS), (E) mitochondrial complex I (mtCI), and (F) 

mitochondrial NADH-ubiquinone oxidoreductase chain 1 (mtND1). (G) Western blot showing protein 

levels of mitochondrial transcription factor A (Tfam) with densitometry in (H). Graphs display mean +/-

SEM of densitometry of mitochondrial protein normalized to porin. Statistical significance determined by 

two-way ANOVA (n=3 samples for Sham groups, n=6 samples for I/R groups; *p<0.05, **p<0.01, 

***p<0.001). 

 

Figure 6 – ANXA1sp treatment upregulates levels of sirtuin3 (SIRT3) in the mitochondria of 

kidney tubules. Mice were treated with either Vehicle or ANXA1sp 1 hour prior to ischemia, subjected 

to 33 minutes of unilateral ischemia and contralateral nephrectomy and then re-injected with Vehicle or 

ANXA1sp 1 hour after reperfusion. Kidney tissues were harvested at 24 hours after reperfusion.  (A) 

mRNA levels of SIRT3 mRNA were determined by RT-PCR. Graph displays mean +/-SEM of SIRT3 

normalized to GADPH, then normalized to Sham, Vehicle group (n=3 sample for Sham groups, n=12 

samples for I/R groups). Statistical significance determined by two-way ANOVA (**p<0.01). (B) Protein 

levels of SIRT3 were determined by Western blot. Graph displays mean +/-SEM of densitometry of 

SIRT3 normalized to total protein from stain-free gel for each sample, then normalized to Sham, 

Vehicle group (n=3 samples for Sham groups, n=7 samples for Vehicle, I/R group, n=6 for ANXA1sp, 

I/R group). Statistical significance determined by two-way ANOVA (*p<0.05). (C) Paraffin-embedded 

kidney tissue was analyzed for SIRT3 (top) and mitochondrial complex IV (middle) expression by 

immunofluorescence microscopy with merged image (bottom). SIRT3 co-localizes with mitochondrial 

marker complex IV in kidney tubule cells. Scale bar shows 50um. 

 

Figure 7 – Silencing of SIRT3 prevents ANXA1sp-mediated protection from kidney cell death. (A) 

The immortalized human kidney cell line, HK-2, was grown to confluence in monolayers. Cells were 

pretreated with Vehicle or ANXA1sp at increasing concentrations and then subjected to 16 hours of 
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oxygen-glucose deprivation (hypoxia) in an anaerobic chamber. ANXA1sp prevented hypoxic cell death 

(n=5-6/condition). Graphs display mean +/- SEM with significance determined by two-way ANOVA with 

Sidak post-hoc test (*p<0.05). (B) HK-2 cells were treated with control (-) or SIRT3 (+) siRNA. Levels of 

SIRT3 (A) mRNA were determined by RT-PCR. (C) HK-2 were treated with control or SIRT3 siRNA. 

Cells were then pre-treated with Vehicle or ANXA1sp peptide for 1hr prior to oxygen-glucose 

deprivation for 16 hours. Shown is fold change in cell death over Vehicle-treated, control siRNA cells. 

The protective effects of ANXA1sp were abrogated by SIRT3 siRNA (n=6/condition). Graph displays 

mean +/- SEM with significance determined by one-way ANOVA with Sidak post-hoc test (*p<0.05). 
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