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Abstract— Intra-cortical Brain Machine Interfaces (iBMIs)
with wireless capability could scale the number of recording
channels by integrating an intention decoder to reduce data rates.
However, the need for frequent retraining due to neural signal
non-stationarity is a big impediment. This paper presents an
alternate paradigm of online reinforcement learning (RL) with
a binary evaluative feedback in iBMIs to tackle this issue. This
paradigm eliminates time-consuming calibration procedures. In-
stead, it relies on updating the model on a sequential sample-
by-sample basis based on an instantaneous evaluative binary
feedback signal. However, batch updates of weight in popular
deep networks is very resource consuming and incompatible with
constraints of an implant. In this work, using offline open-loop
analysis on pre-recorded data, we show application of a simple
RL algorithm - Banditron -in discrete-state iBMIs and compare
it against previously reported state of the art RL algorithms –
Hebbian RL, Attention gated RL, deep Q-learning. Owing to its
simplistic single-layer architecture, Banditron is found to yield at
least two orders of magnitude of reduction in power dissipation
compared to state of the art RL algorithms. At the same time,
post-hoc analysis performed on four pre-recorded experimental
datasets procured from the motor cortex of two non-human
primates performing joystick-based movement-related tasks in-
dicate Banditron performing significantly better than state of
the art RL algorithms by at least 5%, 10%, 7% and 7% in
experiments 1, 2, 3 and 4 respectively. Furthermore, we propose
a non-linear variant of Banditron, Banditron-RP, which gives
an average improvement of 6%, 2% in decoding accuracy in
experiments 2,4 respectively with only a moderate increase in
power consumption.

Keywords: Brain Machine Interface, Low-power implant, Non-
stationarity, Reinforcement learning, Concept drift

I. INTRODUCTION

It is estimated that around 1 in 50 people worldwide
are afflicted with paralysis [1]. Intra-cortical Brain-machine
interfaces (iBMIs) are essential to restore quality of life for
patients suffering from debilitating paralytic conditions such
as tetraplegia, quadriplegia, stroke induced paralysis among
others. Neural spikes recorded from the surface of brain
areas associated with movement (e.g. primary motor cortex
- M1) serve as an input to iBMI systems. The effector
outputs vary depending on the application. For e.g., in order
to enable communication, real-time demonstrations such as
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[2]–[4] employing a cursor to type out messages have been
exhibited. Likewise for locomotion, real-time demonstrations
in the form of wheelchair [5], full-body exoskeleton [6] have
been reported.

Notwithstanding the impressive advances made in the field
of iBMIs, practical challenges persist in clinical translation.
Firstly, most iBMI systems use wired connection to bulky
computers reducing patient mobility and increasing risk of
infection [8]. Wireless iBMIs suffer from scalability issues due
to exploding data rates [9]. A potential solution is including
an intention decoder in the implant [10]; however, the need
for frequent retraining makes it impractical.

Secondly, the current state of the art iBMI systems involve
time-consuming daily calibration procedures amounting to
several minutes, at the beginning of a given day/session
[11]. This greatly affects the ability of iBMI users, suffering
from debilitating impairments, to remain alert during these
prolonged calibration routines [11]. Imagine having to cali-
brate your mobile touch screen every time before using your
handset.

Lastly, these systems employ supervised learning algorithms
to learn the mapping from input neural signal to output effector
movement [12]. The supervised learning paradigm requires a
ground truth target label to be available at every instance of
time to train an appropriate model. In case of patients who
cannot move their limbs to control effector kinematics, getting
this ground truth target label requires some workaround. It
involves carefully designed calibration trials that are designed
with the assumption that the ground truth target label is
always pointing towards the direction of the eventual goal
in the designed trial [13], [14]. These requirements often
necessitate the supervision of a neural engineer to ensure
smooth operation of the iBMI system.

To tackle the above problems, we propose applying online
reinforcement learning based methods that, (a) learn the neural
input to effector movement mapping on incoming samples on a
sample-by-sample basis, thereby getting rid of explicit calibra-
tion procedures and, (b) do not require explicit measurement of
effector kinematics and learn with a simple scalar reward that
is obtained while interacting with the external environment.

Briefly put, a reinforcement learning (RL) system involves
an RL-agent outputting an action with inputs as - states
and rewards at a given time-step - t = i (see Fig. 1(c)).
States in case of iBMIs correspond to the input neural feature
vector sensed from micro-electrode arrays at t = i, whereas

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.416131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.416131
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1: Shows (a) Batch and (b) Online Reinforcement Learning based learning schemes. Batch-trained models learn a model
on an explicit set of training data. Typically, supervised learning schemes employed in iBMIs employ batch-based learning
schemes. Online reinforcement learning-based models [7] do not employ training data for learning. Instead, they learn during
the test phase by virtue of a scalar feedback (~fi) at every time-step, t = i. (c) shows block level representation of Reinforcement
Learning in context of iBMIs. The iBMI controller emits a discrete output action (~Yi) based on inputs - Neural states ( ~Xi) and
rewards (~fi) at every time-step, t = i. (d) shows the train-test data split. The first session’s data of every recorded day was
used for training retrained supervised models across all pre-recorded datasets. First session’s data of the first day of recording
was used to build fixed supervised models as well as tune hyper-parameters associated with Reinforcement Learning (RL)
models. Sessions 2 and 3 of each day are used as test data across all techniques.

rewards are scalar values obtained as a result of action taken
at the previous time-step - t = i− 1. Maximizing the score of
total reward is the objective of learning process in RL-based
systems.

Promising RL based iBMI implementations have been re-
ported in the past. This work aims to build up and extend
on the reported techniques. Popular RL algorithm of the
AlphaGo fame [15], Q-learning was reported in [16] wherein
rats controlled a prosthetic arm to choose between two targets.
The limitation of this approach is that the large neural state-
action pair gives rise to the curse of dimensionality problem
leading to generalization difficulty. To overcome this problem,
[17] proposed applying Attention-gated reinforcement learning
(AGREL) and its variants [18], [19]. [17] reports improvement
over Q-learning involving one NHP performing a center-out
cursor task. An important point to bear in mind is that the
reported approaches trained the RL-models in batches imply-
ing that these methods would still require an explicit block
of training similar to the state of the art supervised methods.
Alternatively, [7] has presented an iBMI based on Hebbian
Reinforcement learning (HRL) algorithm that is trained in an
online fashion at each time-step. This allows us to get rid of an
explicit calibration block and results have been reported in two
NHPs performing a two-target discrete task [7]. Furthermore,
[7] has introduced a simplified version of a binary scalar
reward to train the RL-model and preliminary results have
reported biological sources to contain this reward information
[20], [21]. However, all the reported approaches use multi-

layer neural networks that are prone to the local optimum
problem [19].

Besides generalization issues, multi-layer neural networks
based approaches are found to be too resource intensive to be
deployed in an implantable fashion [8], [22]. To overcome
the issues of generalization and implantability, we present
application of Banditron [23] - a lightweight single-layer
online prediction algorithm in an iBMI setting. Furthermore,
we propose and present a non-linear variant of Banditron,
Banditron-RP (Random Projection, see Section III-A2) along-
side its low power custom implementation.

Thus, in summary, we are presenting an alternate online
BMI paradigm along the lines of [7], wherein we do not ex-
plicitly collect training, validation data (see Fig. 1(a)). Rather,
we propose to train our model sequentially with incoming
data on a sample by sample basis as seen in Fig. 1(b).
This helps in getting rid of several minutes worth of fatigue-
inducing calibration routines. In the experiments reported in
this paper, the time required to conduct calibration routines
ranges from approximately 5 to 14 minutes. The quantum of
calibration time amounts to approximately one-third of the
total experiment time in our reported experiments.

In keeping with this line of thinking, each incoming feature
sample ~Xi at time-step t = i is used to update the associated
weights only once, based on a scalar feedback ~fi. This method-
ology is consistent across all the reported RL algorithms.

The main contributions of this paper include -
• Comparing the computational complexity of Banditron
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and Banditron-RP against state of the art RL algorithms
- AGREL, HRL and Q-learning

• Comparing offline discrete-state decoding performance of
Banditron and Banditron-RP against state of the art RL
algorithms across four datasets spanning multiple days of
recording

• Investigating the impact of erroneous and sparse nature
of reward signal on the above reported RL algorithms

• Reporting RL algorithms decoding performance against
popular supervised classification methods - Linear Dis-
criminant Analysis (LDA) and Support Vector Machines
(SVM). Do note that this is not a one-to-one comparison
as RL and supervised methods employ altogether differ-
ent paradigms of learning (see Fig. 1(a),(b)).

II. MATERIALS AND METHODS

(a) (b)

Fig. 2: (a) This cartoon represents the general nature of the
behavioural task performed in experiments 1, 2 and 3. In
experiments 1 and 2, the nonhuman primate (NHP) is trained
to maneuver a joystick-controlled wheelchair whose position
updates every 100 ms. The wheelchair starts from a central
position in every trial to reach the target over several time-
steps, appearing in one of the three square-shaped locations
[5]. However, in experiment 3, closed loop brain control was
employed and decoded commands from a discrete classifier
were used for controlling wheelchair motion. Wheelchair
in both scenarios of brain and joystick control was driven
at a frequency of 10 Hz. (b) represents a center-out task
corresponding to experiment 4, wherein the NHP was trained
to move a joystick-controlled cursor starting from a central
position on a computer screen to one of the eight different
square-shaped target locations. Cursor position was updated
every 100 ms and the NHP reached the target over several
time-steps.

A. Signal Acquisition and Processing

We have used two adult male macaques (Macaca fasci-
cularis) to conduct our experiments. We will refer to them
as non-human primate (NHP) A and NHP B respectively. A
titanium head post (Crist Instruments, MD, USA) was affixed
prior to implantation of microelectrode arrays in both NHPs.
In NHP A, 4 microelectrode arrays containing 16 electrodes
each [5], and in NHP B 1 microelectrode array containing

100 electrodes were implanted in the hand/arm region of the
left primary motor cortex respectively [8], [24]. Threshold
crossings from the sensed neural signals were used as inputs
[5], [25].

B. Behavioural Tasks

We have collected a total of 4 datasets, two from NHP A
(experiments 1 and 3) and two from NHP B (experiments 2
and 4) respectively. Pictorial representation of the tasks can
be seen in Fig. 2. Brief description is provided below -

1) Experiment 1: This experiment involved a robotic
wheelchair bound NHP A controlling its motion through a
three-directional spring-loaded joystick [5]. The experiment
comprised of four tasks - a) turning 90◦ right, b) moving
forward by 2 m, c) turning 90◦ left and d) staying still for
5 seconds (stop task). A trainer holding a piece of reward
served as a visual target and a trial was considered successful
if NHP A managed to reach the trainer within an elapsed time
of 15 seconds while the wheelchair was driven at a frequency
of 10 Hz.

2) Experiment 2: In this experiment, NHP B was seated in
a primate chair facing a computer screen and was trained to
manipulate a three-directional joystick similar to experiment
1. This experiment consisted of three tasks, with a target
being presented in a pseudo-random manner in one of the
following locations – Top, right and left relative to the centre
of the screen. The target was in the form of a red square of
side 2 cm on a black background. Each trial began with a
wheelchair avatar being displayed at the centre of the screen
along with the target. A trial was considered successful if NHP
B managed to reach and stay in the target area for under a total
elapsed time of 13 seconds. A juice reward was dispensed for
every successful trial and the wheelchair avatar was driven at
a frequency of 10 Hz.

3) Experiment 3: This experiment is similar to experiment
1 with the difference that the joystick was removed and closed-
loop brain control was employed to drive the wheelchair driven
at a frequency of 10 Hz. A Linear Discriminant Analysis
classifier based decoder was calibrated to achieve closed loop
brain control, details of which can be found in [5].

4) Experiment 4: In this experiment (see Fig. 2 (b)), NHP
B was trained to perform the classical centre-out task [13],
[26], [27] through joystick control with targets appearing in
one of the 8 different locations. A cursor appeared at the centre
of the screen at the beginning of every trial and a trial was
considered successful if the NHP managed to manipulate the
cursor to reach and stay in the target area for 2 seconds under
a total elapsed time of 10 seconds. The cursor position was
updated every 100 ms via joystick control.

C. Pre-recorded dataset inputs and outputs

The number of spikes occurring in a backward looking win-
dow of time, Tw = 500 ms, at each of the input D electrodes
constitutes the input feature vector, ~Xi, corresponding to the
time, t = i,

~Xi =
[
r1(i) r2(i) · · · rD−1(i) rD(i)

]
(1)
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where ~Xi ∈ RD. ~Xi
′
s are determined in a sliding window

fashion with a step-size of Ts = 100 ms, for the entire
duration of a trial across all the reported experiments. In case
of supervised learning algorithms, a one-hot target vector ~Yi
(~Yi ∈ RC) exists for corresponding ~Xi, in order to enable
learning. C stands for the number of discrete classes. In exper-
iments 1, 2 and 3, C = 4 corresponding to joystick outputs
- left, right, forward and stop. C = 8 corresponding to
the eight different possible target locations (see Fig. 2(b)) in
experiment 4. RL algorithms do not employ full output label
information containing, ~Yi. Instead a binary scalar feedback
exists at every time-step, t = i to enable learning. Feedback
signal at t = i is given as,

fi =

{
+1 c = c′

−1 c 6= c′
(2)

where c and c′ are predicted and true labels respectively at the
previous time-step, t = i− 1.

D. Datasets and train-test split

We have analyzed four datasets acquired from two NHPs
in an offline manner. In experiments 1 and 2, we have used
a total of 8 days of recorded data with 3 sessions on each
day. In experiments 3 and 4, we have used data recorded on
4 separate days with 3 sessions on each day.

Fig. 1(d) shows the manner of train-test data split. Test
data is consistent across all algorithms and corresponds to
the sessions 2 and 3 on recorded days, across all experi-
ments. Training data corresponds to session 1 of each day
for supervised daily retrained models, and session 1 of day
1 for supervised fixed models. RL algorithms do not employ
explicit training data. They are randomly initialized at the
beginning of a recorded day and are updated in a purely online
manner on test data.

III. REINFORCEMENT LEARNING ALGORITHMS

A. Proposed

1) Banditron: Initially at time t = 1, Banditron weight
matrix is initialized as W 1 = 0 ∈ RC×D, where C represents
the number of output classes and D represents the number of
input channels. At subsequent time-steps, t = i, as the iBMI
system receives inputs, ~Xi ∈ RD, Banditron utilizes current
weight matrix W i to arrive at an intermediate output, ŷi,

ŷi = argmaxr∈[C]

(
W i ~Xi

)
r
,∀r ∈ [C] (3)

where [C] = 1, . . . , c.
Thereafter, for ∀r ∈ [C], Banditron defines a probability,

P (r) over classes as,

P (r) = (1− ε)1 [r = ŷi] +
ε

C
(4)

where 1[π] is 1 if predicate π holds and 0 otherwise. The
final predicted value, ỹi, is randomly sampled according to
probability P (r). This enables the algorithm to exploit current
weight matrix (W i) to choose ŷi with probability 1− ε+ ε

C ,

and explore with probability ε
C to randomly choose among

all the C output labels. Thus, ε determines the exploration-
exploitation tradeoff in Banditron. Suggested range for choos-
ing ε is given as ε ∈ (0, 0.5).

Based on the feedback (1 if actual output, yi equals final
predicted value, ỹi and 0 otherwise), the weight matrix is
updated as,

W i+1 = W i + Ũ
i

(5)

where Ũ
i
∈ RC×D is the update matrix given as,

Ũ
i

r,j =
−−→
Xi,j

(
1 [yi = ỹi]1 [ỹi = r]

P (r)
− 1 [ŷi = r]

)
(6)

Do note that the true label (yi) is never revealed to the
algorithm, but we indirectly obtain full information when,
[ỹi = yi].

2) Banditron-RP: Banditron is inspired by the simple lin-
ear perceptron and hence it follows that it is limited in
its capability to learn only linearly separable patterns [23].
However, superior performance has been reported by non-
linear methods over linear ones in iBMIs [8], [28]. Thus, we
have introduced non-linearity in the form of obtaining feature
vector - ~fi ∈ RM as a non-linear random projection (RP) of
~Xi given as,

~fi = g(Wrand
~Xi) (7)

where Wrand ∈ RD×M is the fixed random projection
weights chosen from a standard uniform distribution in the
interval (0,1), g(.) corresponds to the activation function which
in our case is sigmoid. Learning proceeds in the same manner
as Banditron with ~fi serving as input instead of ~Xi. We
henceforth refer to this variant of Banditron with input ~fi as
Banditron−RP .

Addition of a fully connected feature extraction layer to
Banditron is bound to drastically increase the overall power
dissipation. Thus, we propose implementing the first layer
of fixed random weights, Wrand, in the form of single
transistor based current multipliers reported in [10]. The cus-
tom designed chip - Spike-input Extreme Learning Machine
(SELMA) [10] has the potential of directly being used to
implement Banditron-RP.

B. State of the art

1) AGREL: Authors in [29] have introduced attention-
gated reinforcement learning (AGREL) as a three-layer neural
network which takes neural state as an input and maps it to
corresponding action space. jth hidden layer node’s output is
given as,

Yj =
1

1 + exp
(
−
∑N
i=0 vijri

) (8)

where N stands for input electrodes, ri is the spike firing rate
appearing at the ith electrode, vij represents the input layer
weights and r0 = 1 to factor in input weight bias.
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AGREL uses stochastic softmax rule to choose a winning
neuron among C output neurons. Here C stands for the
number of possible different actions. kth neuron’s output -
Zk and the probability of choosing one among C actions is
given as,

Zk =
M∑
j=0

wjkYj

Pr (Zk = 1) =
exp

(∑M
j=0 wjkYj

)
∑C
k′=1 exp

(∑M
j=0 wjk′Yj

) (9)

where wjk represents the output layer weights, M is the
number of hidden nodes.

Instantaneous reward is defined as,

δ =

{
1− Zc c = c′

−1 c 6= c′
(10)

where c and c′ are predicted and true actions respectively.
In order to expedite learning, AGREL defines an expansive

function based on instantaneous reward as follows,

f(δ) =

{
δ

1−δ , δ ≥ 0

δ, δ < 0
(11)

Weights are initialized randomly drawn from a standard
uniform distribution in the interval (-1,1) [29]. At every
iteration of prediction following the forward pass, weights are
updated in the backward pass as follows,

∆wjk = βYjZcf(δ) (12)

∆vij = αxiYjf(δ) (1− Yj)
C∑
k=1

Zkw
′
kj (13)

where α and β are learning rates.
2) HRL: It uses a three-layer neural network akin to

AGREL albeit with a difference in the way it goes about
learning. Output of each hidden node (OutHi) is given as,

OutHi = tanh
([

~X bi
]
∗WHi

)
~X ∈ RN ; bi ∈ R1; WHi ∈ RN+1 (14)

where ~X is the input feature vector, bi is a bias term and WHi

stands for input weights.
Action value at the output nodes is given as,

AVj = tanh
(

[S(
−−−→
OutH) bh] ∗WOj

)
−−−→
OutH ∈ RM ; bh ∈ R1; WOj ∈ RM+1 (15)

where S() stands for the sign function, bh is a bias term and
WOj is the output weights. The output node with the highest
action value among a total of C nodes is chosen to be the
final output in this scheme. Feedback f is defined as,

f =

{
+1 c = c′

−1 c 6= c′
(16)

where c and c′ are predicted and true actions respectively.
Initial weights are initialized randomly from a standard

normal distribution [7] and are updated at every iteration with
learning rates µO, µH in the following manner with action
value output vector,

−→
AV ∈ RC ,

∆WH = µH ∗ f
([

~X
bi

]
(S(
−−−→
OutH)−

−−−→
OutH)

)
+µH(1− f)

([
~X
bi

]
(1− S(

−−−→
OutH)−

−−−→
OutH)

) (17)

∆WO = µO ∗ f ∗
([ −−−→

OutH
bo

]
(S(
−→
AV )−

−→
AV )

)
+µO(1− f)

([ −−−→
OutH
bo

]
(1− S(

−→
AV )−

−→
AV )

) (18)

3) Deep Q-learning: It involves a multi-layer neural net-
work that takes the current state, s as an input variable and
outputs Q values, Q(s, c) value for each possible action in the
action space set [C] = 1, . . . , c [30], [31]. We have used a two
hidden layer neural network implementation in the this study.
Final output, y, is selected following the ε-greedy policy as,

y =

{
arg maxc∈C Q (s, c) , p(1− ε)
random action from C, p(ε)

(19)

where ε determines the exploration-exploitation tradeoff.
Q-learning involves the following update rule,

Q(s, c)← Q(s, c) + α
[
r + γmax

c′
Q (s′, c′)−Q(s, c)

]
(20)

where α is the learning rate, r stands for the reward obtained
when taking action c in state, s, γ is the discount factor and
maxc′ Q (s′, c′) is the maximum possible Q-value in the next
state, s′.

Furthermore, the mean squared loss function to be mini-
mized during the update phase is defined as,

MSE =
(

r + γmax
c′

Q (s′, c′)−Q(s, c)
)2

(21)

where r + γmaxc′ Q(s′, c′) represents the target and Q(s, c)
is the prediction.

IV. RESULTS

A. Summary of models and Hyperparameter Tuning

Table I gives a summary of algorithms and their respective
training paradigms analysed in this paper, whereas Table II
captures the range of values and choices considered for arriv-
ing at optimal hyper-parameters for different algorithms. For
SVM, we have used bayesian hyper-parameter optimization
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Test Results - Ideal feedback

Fig. 3: Decoding accuracy across four experiments has been reported for fixed and daily retrained supervised models - LDA,
SVM alongside RL algorithms - AGREL, HRL, Q-learning, Banditron and Banditron-RP. Shaded regions represent standard
deviation of results across 20 iterations of random instantiations of probabilistic algorithms. Banditron and Banditron-RP
significantly outperform the state of the art RL algorithms and fixed supervised models.

Test Results - 10% Error in feedback

Test Results - 20% Error in feedback

Fig. 4: Decoding accuracy across four experiments has been reported for RL algorithms - AGREL, HRL, Banditron, Banditron-
RP and Q-learning for 10% error in feedback in (a), (b), (c), (d) and 20% error in feedback in (e), (f), (g), (h) respectively.
Banditron and Banditron-RP are susceptible to erroneous feedback and cease to outperform state of the art RL algorithms in all
but experiment 2. Shaded regions represent standard deviation of results across 20 iterations of random instantiation of weights
of probabilistic algorithms. Q-learning performs the best in experiment 1 while AGREL performs the best in experiments 3
and 4.

method bayesopt provided in Matlab R19a (The MathWorks,
Inc., Natick, Massachusetts, United States) to tune hyper-
parameters over 30 iterations in a five-fold cross-validation
manner based on training set. LDA does not have any asso-
ciated hyper-parameters. Hyper-parameters corresponding to
the different RL algorithms are tuned on first recorded day’s
session 1 across all datasets.

B. Decoding Results - Ideal feedback

We have reported classification accuracy as a measure of
performance to compare decoding prowess of different tech-
niques. Experiments 1, 2 and 3 represent a 4 class classification
problem - right, forward, stop and left. Experiment 4 on

the other hand has 8 distinguishable classes corresponding to
the 8 different directions shown in Fig. 2(b).

Results in Fig. 3 show Banditron’s average improvements
over AGREL, HRL and Q-learning of 6.01 ± 2.54%, 14.5 ±
1.83%, 4.83 ± 1.83% in experiment 1, 20.98 ± 14.95%,
14.97 ± 1.95%, 10.07 ± 11% in experiment 2, 6.7 ± 6.66%,
16.62±8.23%, 9.12±9.76% in experiment 3 and 7.44±2.72%,
25.04 ± 4.35%, 16.85 ± 2.53% in experiment 4 respectively.
Statistical comparison of Banditron against AGREL, HRL
and Q-learning yield p-values of 0.0078, 0.0078, 0.0078 in
experiment 1 and 0.0391, 0.0078, 0.0391 in experiment 2
respectively for a Wilcoxon signed-rank test. This shows
that the improvements afforded by Banditron are statistically
significant (p < 0.05) over AGREL, HRL and Q-learning.
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TABLE I: Summary of training paradigms and algorithms

Supervised Reinforcement
Learning Learning

Batch training, LDAfixed,
weight frozen LDAretrain, —

SVMfixed,
SVMretrain

Only online, Banditron, AGREL,
update — HRL ,Q-learning,

Banditron-RP
Batch training, AGRELBTOU epochs xx

online update — AGRELBTOU transfer epochs xx

(BTOU*)

*We explicitly refer to the RL methods with batch training followed by
online updates with the subscript BTOU , whereas the RL algorithms
with only online update have no subscript. xx in the subscript stands for
number of training data replications (also known as epochs).

TABLE II: Hyperparameter tuning - parameter choices

Hyperparameter Associated Swept Range
Algorithm of Values

Kernel SVM Linear, Gaussian,
Polynomial

Number of AGREL, HRL, 75,100,125,...,200
hidden units Q-learning, Banditron-RP

Explore-exploit Banditron, Banditron-RP 0.0001,0.001,..,0.1
trade-off (ε) Q-learning, AGREL

Discount factor (γ) Q-learning 0.1,0.2,..,0.9

Learning rates AGREL, Q-learning, 0.001,0.01,0.1
(α, β, µO, µH) HRL

We have not reported p-values for experiments 3 and 4 as
the number of data points are too less [32]. Furthermore,
non-linear version of Banditron, Banditron-RP yields average
improvement of ≈ 6% and 2% over Banditron in experiments
2 and 4 while performing as good as Banditron in experiments
1 and 3 respectively.

Meanwhile, Banditron yields substantial average improve-
ments over fixed models LDAfixed, SVMfixed of 39.4 ±
18.39%, 41.06 ± 14.09% in experiment 1, 14.89 ± 11.66%,
18.19 ± 10.9%, in experiment 2, 61.02 ± 10.62%, 55.91 ±
20.31%, in experiment 3 and 51.51± 7.35%, 50.05± 13.86%
experiment 4 respectively. Changes in recording conditions
resulting from electrode impedance changes, micro-motion
of electrodes etc. lead to non-stationary distribution of input
neural data across days [4], [24]. This in turn leads to a drop
in performance of fixed models - LDAfixed, SVMfixed due
to the underlying shifts in data distribution [24], [28].

In case of comparison to the daily retrained supervised
models, Banditron yields superior performance with average
improvements over LDAretrain, SVMretrain of 5.21± 5.69,
8.19 ± 3.6 in experiment 1, 24.36 ± 7.17, 21.48 ± 4.89 in
experiment 3 and 30 ± 19.65, 27.87 ± 18.16 in experiment
4 respectively. In experiment 2, Banditron performs almost
as good as daily retrained classifiers with ≈ 94% level of
performance.

C. Decoding Results - Erroneous and sparse feedback

In Fig. 3, we have assumed the feedback at every time-
step to be ideal corresponding to +1 for correct action and
−1 otherwise along the lines of paradigm presented in [7],
[33]–[35]. In order to study the impact of quality of feedback
signals, we have added additional controls of, a) introducing
error in feedback signals and b) making feedback sparse.

Errors are introduced in the feedback signal across 10% and
20% of the total time-steps on each day across all datasets.
The erroneous time-steps on each day are chosen via a Matlab
R19a (The MathWorks, Inc., Natick, Massachusetts, United
States) function randi which chooses the fraction of erroneous
time-steps from total time-steps following a uniform discrete
distribution. Introducing error involves changing the feedback
signal at a given time-step with value +1 to −1 and vice-versa.
Furthermore, to study the impact of frequency of availability
of feedback signal, we have reduced its occurrence to every
second time-step (50% sparsity) and every fourth time-step
(75% sparsity). Sparse feedback entails that the RL-decoder
model is updated only when feedback is available. Figures
4 and S1 (in supplementary material) capture the results
associated with erroneous and sparse feedback respectively.

When deliberately introducing error in feedback signal,
Banditron ceases to yield the best performance among RL
algorithms in all but one experiment, experiment 2. In ex-
periment 1, Q-learning performs the best with 6.96± 3.93%,
12.97± 3.48% average improvement over Banditron in 10%,
20% error cases. In experiments 3 and 4, AGREL performs
the best with average improvements of 6.88± 10.67%, 9.4±
13.03% over Banditron in 10%, 20% error cases respectively
in experiment 3 and average improvements of 13.52± 7.48%,
19.55 ± 8.55% in 10%, 20% error cases respectively in
experiment 4. However, in experiment 2, Banditron still yields
the best response over AGREL, HRL and Q-learning by
12.57± 15.69%, 12.12± 1.52%, 6.07± 12.13% in 10% error
case and 8.87± 14.5%, 11.72± 1.1%, 6.84± 11.62% in 20%
error case respectively. This goes to show that correct feedback
is essential to Banditron yielding the best performance.

In case of introducing sparsity, Banditron still yields the
overall best performance over other RL algorithms as seen
in Fig. S1 in supplementary material. In case of 50%(75%)
sparse feedback scenarios, Banditron achieves percentage im-
provements of at least ≈ 9%(11%), 11%(14%), 11%(13%),
6%(3%) in experiments 1, 2, 3 and 4 respectively over
AGREL, HRL and Q-learning.

V. COMPUTATIONAL COMPLEXITY

We consider an iBMI system with N inputs for a C op-
tion discrete control. The number of multiply-and-accumulate
operations (MACs) required during prediction for single layer
classifiers such as LDA, Banditron can be given as,

MACPredict linear = N × C (22)

For single hidden layer neural network based approaches such
as HRL, AGREL with M hidden nodes and a bias term in
both input-hidden (WHi) and hidden-output weight (WO)
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matrices, the number of MACs required during prediction is
given as,

MACPredict NN = M(N + 1) + C(M + 1) (23)

For Banditron-RP, we do not consider any bias term and
accordingly, the number of MACs during prediction is given
as,

MACPredict Banditron−RP = M ×N +N × C (24)

In Q-learning we have used two-hidden layers with M1

and M2 nodes respectively and corresponding bias terms.
Accordingly, the number of MACs required during prediction
step is given as,

MACPredict Q = M1(N + 1) +M2(M1 + 1) (25)
+C(M2 + 1)

We have ignored the number of MACs required to implement
the activation function for the sake of simplicity.

RL algorithms are recursively updated and MACs expended
by single-layer Banditron and multi-layer neural network
systems - AGREL, HRL, Q-learning and Banditron-RP can
be formulated as below,

MACUpdate AGREL = 4 +M(N + 6) (26)

MACUpdate HRL = 5 + 2(M + C) (27)
+2(M + 1)(N + C + 2)

MACUpdate Q = 2M1(1 +N +M2) + 1 (28)
+M2(2 +N)

MACUpdate Banditron−RP = 2×M (29)

For a single layer Banditron based network, number of
MACs required per update is given as,

MACUpdate Banditron = 2×N (30)

Do note that state of the art supervised schemes such as LDA,
SVM are trained at the beginning of the day/session and are
held fixed without being updated iteratively.

Consider a case of N = 64 input electrode iBMI system
driving a 4-option (C = 4) discrete control at an operating
frequency of 10 Hz, similar to the reported experiments in
this paper. For neural networks based approaches HRL and
AGREL, let us assume number of hidden nodes to be M = 80.
To compute power dissipation we assume, Energy/(Analog
MAC) = 0.45 pJ [10] and Energy/(Digital MAC) = 10
pJ [36]. With these assumptions, we can arrive at the Table.
III comparing number of MACs memory requirement and
estimate power dissipation across algorithms. Note that we

TABLE III: Computational Complexity Comparison

Algorithms MACs MACs Memory Power
update prediction (kB) dissipation

(nW)

LDA, SVM - 256 0.5 25.6

AGREL 5604 5524 10.8 1112.8

HRL 11513 5524 10.8 1703.7

Q-learning 28481 12004 23.3 4048.5

Banditron 64 256 0.5 32

Banditron-RP 160 5440 10.6 560(71*)

MAC = multiply and accumulate, Number of input channels, N = 64,
Number of hidden layer nodes, M,M1,M2 = 80, Number of outputs,
C = 4, Weight resolution(Wres) = 16 bits. Memory = (MACs
prediction) × Wres. Energy/(Analog MAC) = 0.45 pJ [10] and
Energy/(Digital MAC) = 10 pJ at operating frequency, fop = 10
Hz. ∗ reports estimated power dissipation for Banditron-RP imple-
mented on custom chip - SELMA.

have considered a linear version of SVM in Table. III. Fur-
thermore, we consider weight resolution to be 16-bits across
all algorithms.

The values populated in Table. III show that Banditron is
at least an order of magnitude less computationally complex
in terms of number of MACs and memory required than
neural network based RL algorithms - AGREL, HRL and
Q-learning. This low complexity feature fits well with the
prospect of implementing low power iBMI decoders [8], [37]–
[39]. Furthermore, the number of MACs required by Banditron
are in the same order of magnitude as LDA, SVM.

VI. DISCUSSION

A. Comparison to state of the art RL algorithms

1) Effect of Variability in Neural Data: As observed in
Fig. 3, the backpropagation (BP) based algorithms - AGREL,
HRL, Q-learning perform poorly and erratically compared to
Banditron, Banditron-RP. As an example of erratic perfor-
mance, AGREL can be seen performing significantly better
on days 35 and 53 in Fig. 3(b) compared to the other days.
We hypothesize that intra-day nonstationarity/variability is
responsible for this phenomenon, wherein variability makes
generalization difficult for BP-based algorithms operating in
the purely online mode.

In order to validate our hypothesis, we first compute the
mean value of minimum principal angles (MPAs) across trials
in a sequential manner on all days of experiment 2. MPA
is a parsimonious scalar metric used to evaluate the level of
similarity between neural datasets [28]. Lower values of MPA
correspond to higher levels of similarity and vice-versa. Thus,
the mean value of MPA across the sequence of trials serves
as a metric of variability exhibited by the neural activity. In
particular, we compute the MPA between the tuples - (trial1,
trial2), followed by (trial2, trial3) until we reach the last trial
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tuple - (triallast−1,triallast)). Thus, our variability metric,
V ar., for total trials, Ntrials, can be given as,

V ar. =
1

Ntrials − 1

Ntrials −1∑
i=1

MPA(triali, triali+1) (31)

Fig. 5: Shows intra-day variability of firing rates of trials
across days in experiment 2. Variability is captured in terms
of the mean value of minimum principal angles (MPAs)
computed between trials on each day. Days 35 and 53 have
relatively low variability compared to the other days.

Days 35 and 53 as seen in Fig. 5 exhibit relatively lesser
intra-day variability, thereby leading to improved performance
for AGREL.

In order to further validate the hypothesis about variability
making generalization difficult for BP-based RL algorithms,
we simulated two synthetic neural datasets, Syn Dir 4 and
Syn Dir 8 along the lines of [40] using the Izhikevich model
[41] for neural excitability. Syn Dir 4 and Syn Dir 8 cor-
respond to the synthetic neural spike data generated for four-
options (experiment 2) and eight-options (experiment 4) cursor
control respectively. The detailed simulation methodology is
reported in Section I of supplementary material. We compared
the decoding performance of RL algorithms against varying
percentage of noisy neurons in Fig. 6 for these datasets. All
the algorithms were operated in the only online update mode.
The inset figure in Fig. 6 represents percentage of noise added
along x-axis and variability referred to as Var. (mean value of
minimum principal angles across trials sequence – Equation
31) along the y-axis.

The general trend observed in Fig. 6 is that the decod-
ing performance of RL algorithms decreases with increase
in variability. However, one must note that BP based RL
algorithms such as HRL, AGREL and Q-learning suffer a
relatively larger decline compared to Banditron, Banditron-RP.
These results are qualitatively similar to the earlier presented
results in Figures 3(b) and 5 wherein BP-based RL algorithms
generalized relatively worse on days with more variability and
vice-versa. Thus, the results in Fig. 6 validate our previously
stated hypothesis in a controlled simulation setting. We ob-
serve that non-stationarity in neural data makes it harder for
BP-based RL algorithms to generalize in an online update
mode. However, simple linear Banditron and its nonlinear
projection variant Banditron-RP perform better due to its fewer
trainable parameters.

(a)

(b)

Fig. 6: Shows decoder results for synthetic datasets (a)
Syn Dir 4 and (b) Syn Dir 8 respectively across RL al-
gorithms operated in the only online update mode. The figure
in inset represents the Var. (Equation 31) on y-axis plotted
against percentage added noise on x-axis. Variability increases
as we add noise. Decoder accuracy is seen to be decreasing
with increase in added noise, and at faster rate for BP-based
RL algorithms.

2) Batch Training Mode: NNs are known to for their ability
to approximate arbitrary functions following the universal
approximation theorem. However, one must note that NN-
based approaches trained by BP typically generalize well
when trained over multiple replications of training data (also
known as training epochs) [17], [42]. Keeping this in mind, we
consider an alternative more conventional batch-based setting
involving a dedicated set of training data for a BP based
algorithm. To carry out this analysis, we consider AGREL as
the BP based algorithm and use experiment 2 dataset. We name
the NN model as AGRELBTOU epochs xx, where BTOU
stands for batch training, online update, and xx stands for the
number of training epochs. We train AGRELBTOU epochs xx

on experiment 2’s - session 1 of each day (similar to daily
retrained supervised models) over 5, 10 and 20 training epochs
(replications of training data).

Thereafter, we deploy it as a decoder on sessions 2 and
3 on each day. We let it update sequentially in an online
fashion as the binary feedback is received. In this case, we
observe AGRELBTOU epochs xx comfortably outperforming
the online version of AGREL. Thus, having a dedicated
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Fig. 7: A more conventional batch-based train-test setup
showing performance of an BP based RL algorithm, AGREL,
when trained on a dedicated training set over 5, 10 and 20
training data replications (epochs) on experiment 2 dataset.
The version employing a dedicated training set is referred to
as AGRELBTOU epochs xx, where xx stands for the number
of epochs. AGRELBTOU epochs xx comfortably outperforms
online AGREL while closely matching LDAretrain’s results
as we increase the number of epochs to 10 or higher.

training session comes with the prospect of improved decoding
performance. However, this comes with the cost of significant
amount of calibration time [11]. As mentioned earlier, the
quantum of calibration time amounts to approximately one-
third of the total experiment time in our reported experiments.

In Fig. 7, we can see a saturation in performance of
AGRELBTOU epochs xx after 10 epochs. Similar conver-
gence can also be seen in supplementary Fig. S2, where we
show a plot of training (session 1) and validation accuracy
(sessions 2 and 3) across number of epochs for day 1 of
experiment 2. This shows that no further improvement is
expected by increasing the number of epochs and we have
trained the network optimally.

As observed in Fig. 7, having a dedicated training ses-
sion, leads to AGRELBTOU epochs xx’s performance to reach
approximately the level of supervised learning algorithm –
LDAretrain, as we increase the number of epochs. This is
in consonance with the universal approximation view, and
we expect to achieve qualitatively similar results for other
NN based approaches in other experiments as well. However,
do note that the 2 layer version of Banditron with random-
ized neurons in the first layer (referred to as Banditron-RP)
also achieves similar performance as AGRELBTOU epochs 10

while retaining the fully online version of training. Hence, this
seems like a good choice to balance network learning capacity
with online learning for iBMI applications.

A point to note here is that AGRELBTOU epochs 10 also
outperforms online version of Banditron. This shows that
in the event of a dedicated calibration procedure NN-based
models such as AGREL outperform simple online linear model
- Banditron. However, this superior performance comes at
the cost of calibration times and computational complexity. If
one were to implement training on chip, Banditron provides
savings of at least 6 orders of magnitude in MACs and
memory requirement compared to NN models. In addition
to the assumptions listed in Table. III, we have assumed
calibration over 10 epochs over recording time of 5 minutes

with a time-step Ts = 100ms and input firing rate resolution
FRres = 8− bits.

3) Transfer Learning: A common solution to paucity of
data is to train a NN on a related dataset and thereafter update
only the last few layers following the paradigm of transfer
learning popularly employed in both computer vision [43]
and in biomedical applications [44]. The hope is that the
model learns complex feature representations that can be easily
deployed on similar tasks.

Fig. 8: Applying transfer learning, while using an AGREL-
trained NN as a feature extractor on experiment 2 dataset.
We train the model AGRELBTOU transfer epochs 10 on
10 epochs using session 1 as training data. Subse-
quently, we fix the first layer weights and update the
last layer weights using Banditron weight update rule.
AGRELBTOU transfer epochs 10 does not yield improve-
ments over simple Banditron.

Following this approach, we performed a preliminary ex-
periment on experiment 2 dataset with a single hidden layer
AGRELBTOU transfer epochs 10 model trained on session 1
of each day over 10 epochs. The number of training data
epochs was set based on the results observed in Fig. S2 in
supplementary material, wherein saturation in performance
was observed at 10 epochs. Thereafter, we fixed the first
layer weights and updated only the last layer weights for
incoming samples from test sessions 2 and 3. We used the
Banditron single layer rule to update the output layer weights.
We observed however (Fig. 8) that the learned features do not
yield any improvement in decoding performance over random
features used in Banditron-RP again pointing to variability in
input data statistics.

In order to investigate the lack of improvement in perfor-
mance, we visualize a plot of low dimensional projection of
input firing rates and extracted features for training (session 1)
and test data (sessions 2 and 3) across two days for experiment
2 in Fig. S3 (supplementary material). The extracted feature
embedding corresponds to the hidden layer of the aforemen-
tioned model - AGRELBTOU transfer epochs 10. Please note
that for the purpose of ease of visualization, we showed
only three clusters instead of the original four employed in
the experiment. Visual inspection shows that the separability
looks better for the extracted features on training set as
seen in Fig. S3 (a),(b) in supplementary material. However,
separability looks somewhat similar on test data as seen in
Fig. S3 (c),(d) in supplementary material. This, explains why
the performance of AGRELBTOU transfer epochs 10 acting
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on extracted features is roughly equivalent to Banditron acting
on input features.

B. Comparison to state of the art supervised learning
paradigm

Compared to supervised retrained models, Banditron reports
similar (experiment 2) or better (experiments 1, 3 and 4) levels
of performance as LDAretrain, SVMretrain (see Fig. 3). Su-
pervised learning corresponds to the state of the art decoding
methods employed in iBMIs. Thus, we have employed popular
techniques - Linear Discriminant Analysis and Support Vector
Machines to establish a baseline for the RL based results.
One must note two stark differences between supervised
learning and RL algorithms (see Fig. 1(a)) - a) Supervised
algorithms employ an explicit training phase, whereas RL
algorithms do not have one and b) Supervised algorithm based
models employed in iBMIs typically remain fixed once trained,
whereas RL algorithms are constantly updated as they interact
with the environment. Thus, this comparison should be seen
as a way to establish context in relation to state of the art
techniques and not as a one-to-one comparison.

C. Towards Autonomous iBMIs

The online continuous adaptive nature of the reported
paradigm of iBMI operation coupled with possible biological
sources of reward signal lead us to envision an autonomous
iBMI system wherein no explicit calibration trials are required
and the system simply learns from the feedback signal. Thus,
this paradigm has the potential to drastically reduce the
involvement of the neuro-engineer in enabling day to day
usage of iBMI by patients.

However, this requires the presence of a valid biological re-
ward/error signal. In this study, we are using binary evaluative
feedback signal at every time-step along the lines of works [7],
[33]. The reason we have opted for this approach is that recent
works have shown this kind of signal to be present in regions
of the brain such as nucleus accumbens [20], primary motor
cortex [21], [34], [35], [45]–[48]. Apart from these regions,
other candidate sources of obtaining this signal include EEG
[49], ECoG [50] among others. We certainly feel that more
work is needed in this area to fetch a reliable and stable
feedback signal.

An alternative to sourcing the reward signal from a bio-
logical source is to derive it from the effector’s trajectory
as the agent attempts to move it towards a target [19]. In
this approach [19], action chosen by the agent is rewarded
if it moves towards the target and punished otherwise. This
approach, while not useful for day to day autonomous usage by
a patient, will still be useful in conducting iBMI experiments
where the ground truth target is known from experimental
design. We have reported open-loop results and it will be
interesting to compare supervised approaches such as ReFIT
[13] against RL-based approaches [19] in a closed-loop brain
control setting.

VII. CONCLUSION, LIMITATIONS AND FUTURE WORK

We have presented decoding results across different RL
algorithms in a binary evaluative feedback scenario. Bandit
algorithms – Banditron and Banditron-RP, for training a single
layer of weights, are seen to be the best performing candidates
among compared algorithms in an ideal feedback setting.
Furthermore, they are seen to be relatively more robust to
sparse feedback (see Fig. S1 in supplementary material), i.e.
when a feedback signal is not available at all time steps as is
likely going to be the case in real BMI scenarios. However,
one must point out that Banditron based learning system’s
superior performance is subject to accuracy of feedback. As
seen in Fig. 4, it is observed that Banditron’s performance
is not the best compared to other algorithms when feedback
signals are erroneous. This implies a better strategy would be
to estimate confidence in feedback signal first before updating
weights using Banditron–this is an aspect for future in-depth
study.

As far as the power dissipation is concerned, Banditron
has the potential to offer at least two orders of magnitude
in savings compared to state of the art RL algorithms. This
has the potential to achieve a fully implantable solution and
prolong the battery life of the iBMI.

Results presented in Section IV show that the nature of
adaptive learning of this paradigm is naturally robust against
non-stationarities. The current open-loop offline results hope
to serve as a stepping stone towards closed-loop studies
employing RL algorithms. Through the reported results we
urge the community to advance along RL lines of research
instead of simply focussing on supervised learning paradigm.
Following prior works, we have employed a feedback signal
at every time-step. However an interesting question we wish
to ask in future studies is that, ”Can the iBMI system still
perform well if the system gets delayed reward only at the
end of a trial (attempted movement)?”.

ACKNOWLEDGMENT

The authors would like to thank Abdur Rauf and Clement
Lim for helping in training the NHPs and data collection.
This work was supported through grant RG 87/16 by MOE,
Singapore.

REFERENCES

[1] B. S. Armour, E. A. Courtney-Long, et al., “Prevalence and causes of
paralysis-united states, 2013.” American journal of public health, vol.
106 10, pp. 1855–7, 2016.

[2] C. Pandarinath, P. Nuyujukian, et al., “High performance communication
by people with paralysis using an intracortical brain-computer interface,”
eLife, p. e18554, 2017.

[3] P. Nuyujukian, J. A. Sanabria, et al., “Cortical control of a tablet
computer by people with paralysis,” in PloS one, 2018.

[4] J. D. Simeral, S.-P. Kim, et al., “Neural control of cursor trajectory
and click by a human with tetraplegia 1000 days after implant of
an intracortical microelectrode array,” Journal of Neural Engineering,
vol. 8, no. 2, p. 025027.

[5] C. Libedinsky, R. So, et al., “Independent Mobility Achieved through
a Wireless Brain-Machine Interface,” PLoS ONE, vol. 11, no. 11, pp.
1–13, 2016.

[6] A. L. Benabid, T. Costecalde, et al., “An exoskeleton controlled by
an epidural wireless brain–machine interface in a tetraplegic patient: a
proof-of-concept demonstration,” The Lancet Neurology, 2019.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.416131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.416131
http://creativecommons.org/licenses/by-nc-nd/4.0/


[7] E. A. Pohlmeyer, B. Mahmoudi, et al., “Using Reinforcement Learning
to Provide Stable Brain-Machine Interface Control Despite Neural Input
Reorganization,” PLoS ONE, vol. 9, no. 1, 2014.

[8] S. Shaikh, R. So, et al., “Towards intelligent intracortical bmi (i2bmi):
Low-power neuromorphic decoders that outperform kalman filters,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6,
pp. 1615–1624, 2019.

[9] A. Basu, C. Yi, et al., “Big data management in neural implants: The
neuromorphic approach,” in Emerging Technology and Architecture for
Big-Data Analytics. Springer, 2017, pp. 293–311.

[10] Y. Chen, E. Yao, et al., “A 128-Channel Extreme Learning Machine-
Based Neural Decoder for Brain Machine Interfaces,” IEEE Transactions
on Biomedical Circuits and Systems, vol. 10, no. 3, pp. 679–692, 2016.

[11] D. M. Brandman, T. Hosman, et al., “Rapid calibration of an intracortical
brain–computer interface for people with tetraplegia,” Journal of Neural
Engineering, vol. 15, no. 2, p. 026007, jan 2018.

[12] J. Glaser, R. H. Chowdhury, et al., “Machine learning for neural
decoding,” arXiv preprint arXiv:1708.00909, 2017.

[13] V. Gilja, P. Nuyujukian, et al., “A high-performance neural prosthesis
enabled by control algorithm design,” Nature Neuroscience, vol. 15,
no. 12, pp. 1752–1757, 2012.

[14] M. A. Schwemmer, N. D. Skomrock, et al., “Meeting brain–computer
interface user performance expectations using a deep neural network
decoding framework,” Nature medicine, vol. 24, no. 11, p. 1669, 2018.

[15] D. Silver, A. Huang, et al., “Mastering the game of go with deep neural
networks and tree search,” 2016.

[16] J. DiGiovanna, B. Mahmoudi, et al., “Coadaptive Brain–Machine In-
terface via Reinforcement Learning,” IEEE Transactions on Biomedical
Engineering, vol. 56, no. 1, pp. 54–64, Jan. 2009.

[17] Y. Wang, F. Wang, et al., “Neural Control of a Tracking Task via
Attention-Gated Reinforcement Learning for Brain-Machine Interfaces,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 23, no. 3, pp. 458–467, May 2015.

[18] F. Wang, Y. Wang, et al., “Quantized Attention-Gated Kernel Rein-
forcement Learning for Brain – Machine Interface Decoding,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 28, no. 4,
pp. 873–886, 2017.

[19] X. Zhang, S. Member, et al., “Clustering Neural Patterns in Kernel
Reinforcement Learning Assists Fast Brain Control in Brain-Machine
Interfaces,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 4320, no. c, pp. 1–10, 2019.

[20] N. W. Prins, J. C. Sanchez, et al., “Feedback for reinforcement learning
based brain-machine interfaces using confidence metrics,” Journal of
Neural Engineering, vol. 14, no. 3, 2017.

[21] M. Benyamini, S. R. Nason, et al., “Neural Correlates of error processing
during grasping with invasive brain-machine interfaces,” in 2019 9th
International IEEE/EMBS Conference on Neural Engineering (NER).
IEEE, Mar., pp. 215–218.

[22] B. Zhu, M. Farivar, et al., “Resot: Resource-efficient oblique trees for
neural signal classification,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 14, no. 4, pp. 692–704, 2020.

[23] S. M. Kakade, S. Shalev-Shwartz, et al., “Efficient bandit algorithms
for online multiclass prediction,” Proceedings of the 25th International
Conference on Machine Learning, pp. 440–447, 2008.

[24] S. Shaikh, R. So, et al., “Sparse Ensemble Machine Learning to Improve
Robustness of Long-Term Decoding in iBMIs,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 28, no. 2, pp. 380–
389, Feb 2020.

[25] R. Q. Quiroga, Z. Nadasdy, et al., “Unsupervised Spike Detection
and Sorting with Wavelets and Superparamagnetic Clustering,” Neural
Computation, no. 8, pp. 1661–1687, 2004.

[26] S. Shah, B. Haghi, et al., “Decoding kinematics from human parietal
cortex using neural networks,” in 2019 9th International IEEE/EMBS
Conference on Neural Engineering (NER), March 2019, pp. 1138–1141.

[27] B. Allahgholizadeh Haghi, S. Kellis, et al., “Deep multi-state dynamic
recurrent neural networks operating on wavelet based neural features
for robust brain machine interfaces,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, et al., Eds. Curran
Associates, Inc., 2019, pp. 14 487–14 498.

[30] R. S. Sutton and A. G. Barto, Reinforcement learning - second edition,
2018.

[28] D. Sussillo, S. D. Stavisky, et al., “Making brain-machine interfaces
robust to future neural variability,” Nature Communications, vol. 7, pp.
1–12, 2016.

[29] P. R. Roelfsema and A. v. Ooyen, “Attention-gated reinforcement learn-
ing of internal representations for classification,” Neural Computation,
vol. 17, no. 10, pp. 2176–2214, 2005.

[31] V. Mnih, K. Kavukcuoglu, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[32] R. V. Hogg, E. A. Tanis, et al., Probability and statistical inference.
Macmillan New York, 1977, vol. 993.

[33] B. Mahmoudi, E. A. Pohlmeyer, et al., “Towards autonomous neuropros-
thetic control using Hebbian reinforcement learning,” Journal of Neural
Engineering, vol. 10, no. 6, p. 066005, Dec. 2013.

[34] A. Tarigoppula, N. Rotella, et al., “Properties of a temporal difference
reinforcement learning brain machine interface driven by a simulated
motor cortex,” in 2012 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Aug 2012, pp. 3284–
3287.

[35] B. T. Marsh, V. S. A. Tarigoppula, et al., “Toward an Autonomous
Brain Machine Interface: Integrating Sensorimotor Reward Modulation
and Reinforcement Learning,” Journal of Neuroscience, vol. 35, no. 19,
pp. 7374–7387, 2015.

[36] M. de la Guia Solaz and R. Conway, “Razor based programmable
truncated multiply and accumulate, energy-reduction for efficient digital
signal processing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 1, pp. 189–193, 2015.

[37] R. Sarpeshkar, Ultra Low Power Bioelectronics, 2010.
[38] F. Boi, T. Moraitis, et al., “A Bidirectional Brain-Machine Interface Fea-

turing a Neuromorphic Hardware Decoder,” Frontiers in Neuroscience,
no. December, pp. 1–15, 2016.

[39] A. Basu, J. Acharya, et al., “Low-Power, Adaptive Neuromorphic
Systems: Recent Progress and Future Directions,” IEEE Journal on
Emerging Topics in Circuits and Systems, vol. 8, no. 1, pp. 6–27, 2018.

[40] N. W. Prins, J. C. Sanchez, et al., “A confidence metric for using
neurobiological feedback in actor-critic reinforcement learning based
brain-machine interfaces,” Frontiers in Neuroscience, vol. 8, 2014.

[41] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[42] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural networks: Tricks of the trade. Springer,
2012, pp. 437–478.

[43] F. Zhuang, Z. Qi, et al., “A comprehensive survey on transfer learning,”
Proceedings of the IEEE, pp. 1–34, 2020.

[44] J. Acharya and A. Basu, “Deep Neural Network for Respiratory Sound
Classification in Wearable Devices Enabled by Patient Specific Model
Tuning,” IEEE Trans. on Biomedical Circuits and Systems, vol. 14 3,
pp. 535–544, 2020.

[45] M. R. Roesch and C. R. Olson, “Neuronal activity related to anticipated
reward in frontal cortex: does it represent value or reflect motivation?”
Annals of the New York Academy of Sciences, vol. 1121, no. 1, pp.
431–446, 2007.

[46] A. Ramakrishnan, Y. W. Byun, et al., “Cortical neurons multiplex
reward-related signals along with sensory and motor information,”
Proceedings of the National Academy of Sciences, vol. 114, no. 24,
pp. E4841–E4850, 2017.

[47] P. Ramkumar, B. Dekleva, et al., “Premotor and motor cortices encode
reward,” PloS one, vol. 11, no. 8, p. e0160851, 2016.

[48] D. B. McNiel, J. S. Choi, et al., “Reward value is encoded in primary
somatosensory cortex and can be decoded from neural activity during
performance of a psychophysical task,” in 2016 38th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). IEEE, 2016, pp. 3064–3067.

[49] A. Kreilinger, C. Neuper, et al., “Error potential detection during
continuous movement of an artificial arm controlled by brain–computer
interface,” Medical & biological engineering & computing, vol. 50,
no. 3, pp. 223–230, 2012.

[50] T. Milekovic, T. Ball, et al., “Error-related electrocorticographic activity
in humans during continuous movements,” Journal of neural engineer-
ing, vol. 9, no. 2, p. 026007, 2012.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.08.416131doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.416131
http://creativecommons.org/licenses/by-nc-nd/4.0/

