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Abstract  11 

Transformation of postsynaptic potentials (PSPs) into action potentials (APs) is the rate-limiting step of 12 

communication in neural networks. The efficiency of this intracellular information transfer also powerfully 13 

shapes stimulus representations in sensory cortices. Using whole-cell recordings and information-theoretic 14 

measures, we show herein that somatic PSPs accurately represent stimulus location on a trial-by-trial basis 15 

in single neurons even 4 synapses away from the sensory periphery in the whisker system. This information 16 

is largely lost during AP generation but can be rapidly (<20 ms) recovered using complementary 17 

information in local populations in a cell-type-specific manner. These results show that as sensory 18 

information is transferred from one neural locus to another, the circuits reconstruct the stimulus with high 19 

fidelity so that sensory representations of single neurons faithfully represent the stimulus in the periphery, 20 

but only in their PSPs, resulting in lossless information processing for the sense of touch in the primary 21 

somatosensory cortex.  22 

23 
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Introduction 24 

 Neural information processing requires signal transformation every time the information is 25 

transferred from one neuron to another.  This transformation is performed in postsynaptic neurons by 26 

integrating spatiotemporally distributed synaptic inputs and generating action potentials, which then 27 

propagate information across synaptically coupled neurons. For each processing step, how much 28 

information is retained, how much of it is transferred to a postsynaptic neuron, how much is lost, and 29 

whether local networks can fully recover the lost information during this intracellular sub-to-suprathreshold 30 

information transfer are questions that have yet to be answered. In an accompanying paper (Zeldenrust et 31 

al., 2020) we show on a single neuron level that how much information is lost during action potential 32 

generation depends on the cell-class. On a network level, the effectiveness of this input-to-spike operation 33 

depends on the connectivity, the code used between the sender (i.e. presynaptic neurons), and the receiver 34 

(i.e. postsynaptic neurons) as well as the noise characteristics of the channel. Since many of these are 35 

currently impossible to assess experimentally, the rules of information transfer in biological circuits, with 36 

the exception of cell-type-specific intracellular information transfer in single neurons as outlined in the 37 

accompanying article (Zeldenrust et al., 2020), are still largely unknown.  38 

Sensory systems in particular offer unique opportunities to study information processing in neural 39 

circuits. If the primary function of a sensory circuit is to faithfully and reliably represent the environment 40 

(Azarfar et al., 2018; DeCharms and Zador, 2000; Diamond et al., 1999; Knudsen et al., 1987), a substantial 41 

part of the sensory information in the periphery should be represented throughout the sensory circuits in the 42 

form of neural signals. Sensory systems are commonly organized in the form of topographical maps, where 43 

sensory receptors in the periphery are represented by topographically organized groups of neurons along 44 

the sensory axis (Harding-Forrester and Feldman, 2018; Kole et al., 2018; Petersen, 2019). However, the 45 

functional role of these topographical maps for sensory processing is still not clear (Chklovskii and 46 

Koulakov, 2004; Diamond et al., 1999; Kaas, 1997; Weinberg, 1997). Understanding the mechanisms of 47 
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information processing, transfer and recovery is particularly important in sensory circuits, as the efficacy 48 

of signal transformation should determine the extent, speed, and accuracy of sensory representations.  49 

Stimulating single neurons in the sensory and motor cortices can result in observable behavioral 50 

responses such as whisker movement (Brecht et al., 2004; Doron et al., 2014; Houweling and Brecht, 2008; 51 

Voigts et al., 2008). However, single neurons carry surprisingly little information in the rate and timing of 52 

their action potentials (Alenda et al., 2010; Panzeri et al., 2001; Petersen et al., 2001; Quian Quiroga and 53 

Panzeri, 2009). Given that pooling information across simultaneously recorded neighboring neurons 54 

minimally contributes to the information carried in local populations because neighboring neurons carry 55 

largely redundant information (Petersen et al., 2002, 2001), the target postsynaptic neurons are likely to 56 

reconstruct the stimulus by spatiotemporal integration across behaviorally relevant spatial and temporal 57 

scales (Azarfar et al., 2018; Celikel and Sakmann, 2007). 58 

Here, we performed intracellular recordings and used computational modeling to address the 59 

principles of information processing in the somatosensory cortex.  Surprisingly (to us), we found that the 60 

sensory stimulus can be fully reconstructed with the information available in the subthreshold responses of 61 

single excitatory neurons (i.e. the recorded EPSPs in L2/3 neurons). Up to 90% of this information is lost 62 

during intracellular information transfer, i.e. when an action potential is generated from these subthreshold 63 

responses, in agreement with previous observations on the information content of action potentials in barrel 64 

cortical neurons (Alenda et al., 2010; Panzeri et al., 2001; Petersen et al., 2002). In vivo information loss is 65 

likely to exceed this value, due to background ongoing activity (Destexhe et al., 2003). Next, we assessed 66 

information recovery on the population level using an analysis based on bootstrapped groups of neurons 67 

recorded in vitro. We found that information lost during action potential generation can be fully recovered 68 

by as little as 100 neurons with a time resolution of 2-3 ms.  Finally, we turned to a realistic and well-69 

constrained simulation of a barrel column (Huang et al., 2020) to study the relation between encoding 70 

strategies in L4 and decoding strategies in L2/3 to determine the mechanisms of information recovery. 71 
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Comparing candidate encoding strategies in the L4 population, we found that a population rate code (using 72 

peri-stimulus time histograms obtained in the in vivo recordings) is unsuitable for information transfer in a 73 

cortical network because the trial-to-trial reliability is too low to fit the high information recovery that we 74 

found as in our experiments. Codes with higher trial-to-trial reliability in timing and rate perform 75 

substantially better, with optimal performance reached if neurons fire reliably across trials. In this case, the 76 

L4 activity can be fully decoded by small groups (~25 cells) of both excitatory and inhibitory neurons in 77 

L2/3 within ~20 ms after stimulus onset, and within a few ms after the first spike response.  In summary, 78 

we show that intracellular information transfer is highly lossy, and thus potentially selective. However, by 79 

combining the limited but complementary information in the spike trains of L2/3 inhibitory and excitatory 80 

neurons, single neurons could fully reconstruct stimulus resulting in lossless representation of sensory 81 

information in their subthreshold responses.    82 
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Results 83 

L2/3 single cell responses to in vivo whisker stimulation 84 

We performed whole-cell current-clamp recordings of Layer (L) 2/3 pyramidal neurons in the juvenile rat 85 

primary somatosensory cortex, in the barrel cortical subregion under ketamine anesthesia.  During these in 86 

vivo recordings, sensory stimulation was provided by direct stimulation of the principal and 1st order 87 

surround whiskers with a piezo stimulator in 2 directions (up-down: Fig. 1A). The cumulative synaptic 88 

input in response to these stimuli was quantified in properties of the somatic post-synaptic potential (PSP), 89 

i.e. the onset time, slope, and peak amplitude (Fig. 1B-D).  Principal whisker stimulation-evoked PSPs 90 

exhibited the shortest latency, as well as the highest slope and amplitude, in comparison to PSPs evoked by 91 

the stimulation of surrounding whiskers, in agreement with previous observations (Brecht et al., 2003).  92 

Although the PSPs were highly reliable (PW: 99.8%, SW: 91.8% of trials evoked PSPs), action potentials 93 

(spikes) were sparse and unreliable, even after principal whisker deflections (PW: 6.2% (SD 8.6%) ; SW: 94 

1.7% (SD 2.9%)  of trials included evoked APs).  95 

Properties of sub- & suprathreshold responses of L2/3 neurons to L4 stimulation 96 

Mutual information calculations require long sampling durations, which limits the possibilities for unbiased 97 

calculation of information processing with high-dimensional naturalistic stimuli in vivo.  Therefore we 98 

performed acute slice experiments with simplified stimuli (Fig.1E-P).  Bipolar electrodes in L4 were used 99 

to deliver square pulses with varying slopes as described before (Fig.1E-F; Huang et al., (2016); see 100 

Materials and Methods). Visualized L2/3 neurons were recorded in whole-cell current clamp configuration.  101 

PSP responses of L2/3 neurons systematically varied with the four stimulus patterns (Fig. 1G-J).  Spike 102 

responses showed a similar dependence on the stimulus slope when averaged over multiple trials, with 103 
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delayed spike times, increased threshold and decreased spike probability for shallower slopes of stimulation 104 

(Fig. 1K-M). 105 

The average properties shown above indicate that individual cells qualitatively correspond to 106 

whisker deflections mimicking spatial stimuli. However, during sensory processing, animals have to deduce 107 

object location from single trials, not from averages over many trials, which is only possible when trial-to-108 

trial variability is low.  Spikes exhibited a far greater temporal trial-to-trial variability than PSPs (Fig. 1N-109 

P).  PSP onset times showed an average progression with stimulus slope, with a small trial-to-trial 110 

variability (Fig. 1N, SD = 0.42-0.63 ms), whereas spike time variability was threefold higher (Fig.1O, SD 111 

= 1.2-2.3 ms). Therefore, spike times could only to a very limited degree be predicted on the basis of PSP 112 

onset times, with spikes often occurring with significant and variable delays (Fig. 1P, 2.8-4.7 (SD 1.1-2.1) 113 

ms).  Spike generation was also failure prone, with average spike failures rates up to 31.7% of the trials 114 

[Range : 0-85%]. While spike failures bear information in rate-based codes, in timing-based codes 115 

information is missing when the neuron fails to fire an action potential.  To study the influence of trial-to-116 

trial variability in timing and rate on stimulus information, we calculated Shannon's mutual information 117 

between the stimulus and several PSP and spike properties. This mutual information provides largely 118 

agnostic estimates of the transmitted information between stimulus and response.  119 

Information transmission between somatic PSPs and Spikes 120 

How much information does a somatosensory neuron carry about the sensory stimulus (S) and how much 121 

of this information does it transfer to its postsynaptic targets? Surprisingly, the information between a single 122 

somatic PSP and the stimulus contains the bulk (~95%, I(S;PSP) vs. H(S), Fig. 2A) of the entropy of the 123 

sensory stimuli.  The information between the onset time (81%, Fig. 2B), slope (8.4%, Fig. 2B) and 124 

amplitude (6.4%, Fig. 2B) of the PSP and the stimulus contribute largely independently to the total 125 

information content of a PSP (Fig. 2C). However most of this information is lost upon spike generation 126 
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(down to 24%, I(S;(St,Vt), Fig. 2A), where spike timing (St, 16%, Fig. 2D) and voltage threshold (Vt, 6.2%, 127 

Fig. 2D) carry most of the stimulus information contained in the spikes. 128 

We can directly quantify how much of the information in the PSP is transferred to the spike (see 129 

Materials and Methods). Unsurprisingly, the total entropy in the PSP (i.e across onset, slope and amplitude 130 

together) exceeds the stimulus information multifold (6.4 bits, 3.2-fold, Fig. 2E).  The transferred 131 

information from PSP to spike amounts to 22% and 15% of the PSP entropy for St and Vt respectively (Fig. 132 

2E, comparison of medians). However, most of this information is redundant, since the actual amount of 133 

stimulus information contained in a spike is much lower (0.41 bit, Fig. 2A).  The individual PSP properties 134 

on the other hand contribute slightly synergistically to the timing information in the spike (Fig. 2F, 6.4%, 135 

p<10-5). Consequently, while a substantial amount of the information about the stimulus in the PSP is 136 

transferred to the spike, this information is insufficient to encode the present stimulus space at the single 137 

neuron level on a single neuron and single trial basis.  138 

Information recovery in local neural populations in silico and in vitro 139 

If the PSP-to-spike transformation causes a dramatic drop in information about the stimulus carried in the 140 

neural activity, how can the somatic PSPs of L2/3 neurons carry near complete information (Fig.2A)? Since 141 

these neurons are four synapses away from the sensory periphery, a recovery of information has to occur at 142 

the network level. Information recovery was analyzed both in an anatomically and physiologically well-143 

constrained network model of a rat barrel column (Fig. 3) and on bootstrapped populations of the in vitro 144 

data (Fig. 4,  see Materials and Methods and Huang et al., (2020)). 145 

The model has anatomically correct numbers and laminar locations of major classes of inhibitory 146 

and excitatory neurons in L4 and L2/3 (Fig. 3A), single neuron dynamics based on experimental 147 

observations as well as statistically defined connectivity and synaptic transmission parameters. Stimulation 148 

was provided analogously to the in vitro stimulation in L4, using previously collected L4 peri-stimulus time 149 
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histograms (PSTH) of principal and surround whisker stimulation in vivo (Fig. 3B, L4 response to principal 150 

whisker in gray (Celikel et al., 2004). PSTHs of simulated L2/3 excitatory and inhibitory neurons 151 

correspond to experimentally observed ones under similar conditions (De Kock et al., (2007), Fig. 3B red 152 

and blue, respectively). 153 

In the model, the timing of and information in PSPs and spikes closely matched the properties of 154 

the real neurons in biological networks (compare Fig 3 to Fig.1-2).  In the simulations, the trial-to-trial 155 

variability in spike timing was substantially and significantly larger than the variability in PSP timing 156 

(Fig. 3C, compare with Fig. 1A).  Stimulus information was nearly fully retained in the somatic PSPs of 157 

excitatory neurons (Fig. 3D, red, 88.8% of the stimulus entropy), yet reduced substantially (20.1%) during 158 

spike generation, similar to our observations in biological neurons (Fig. 2A).  Interestingly, inhibitory 159 

neurons carried significantly less information in their PSPs (Fig. 3D, blue, 77.3%), but also exhibited less 160 

information loss during spike generation (43.6%). 161 

 In the bootstrapped data, the stimulus information could be almost fully recovered from populations 162 

of excitatory L2/3 neurons recorded in vitro (>81.1%, Fig. 4B). The amount of information recovered was 163 

substantially greater for decoding including timing (81.1%, in timing of the 1st spike, binned at 2ms, 100 164 

cells), than for rate based only decoding (50.5%, red vs. light red) and was largely independent of the 165 

population size (i.e. the MI saturates quickly as a function of population size).  To avoid an overestimation 166 

of information from high-dimensional population data (due to the limited sampling bias), we first decoded 167 

the stimulus from single trial responses using a support vector machine (SVM) based decoder (Fig. 4A) 168 

before computing the MI (Ince et al., 2010b, 2010a; Quian Quiroga and Panzeri, 2009).  To verify that this 169 

method did not introduce a positive bias, we computed the information in response to an artificial 170 

uninformative stimulus set (same PSTH for all stimuli, independent Poisson spiking), which yielded near-171 

zero MI values (Fig. 4C). The performance of the SVM provided significantly better results (correctly 172 

predicting 94% of the stimuli), than linear (79%) or quadratic (80%) decoders. However, better decoders 173 
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than the SVM may still exist, and the information calculated here therefore constitutes a lower bound on 174 

the available information in the population data.  Also, it should be noted that the present timing code does 175 

not automatically include the rate code, since only the first spike is considered (see Materials and Methods). 176 

Contribution of timing/rate reliability for information recovery 177 

While a well-defined stimulus can be provided in vitro, the details of the L4 population activity cannot be 178 

controlled.  From the perspective of information transmission in single trials, the most important property 179 

of the neural response is the reliability across trials.  We utilized the barrel column in silico (Huang et al., 180 

2020) to investigate the influence of the encoding strategy in L4 (reliability of spike timing and spike count) 181 

on the information transfer to L2/3. 182 

We first considered three extreme cases of encoding in L4, with a more systematic exploration in 183 

the following section.  In the first case (‘Rate + Poisson’), stimuli are encoded only by the population PSTH, 184 

but spikes across trials and neurons are drawn with Poisson statistics. In the second case (‘Rate + Trial 185 

Reliability’), stimuli are encoded by the population PSTH in L4, but also by the spike timing and count of 186 

its individual neurons (i.e. the spike trains were identical for each trial with the same stimulus conditions). 187 

Within the constraints of the experimentally observed PSTHs, these two cases constitute the lower and 188 

upper bound of trial-to-trial reliability in L4. In the third case (‘No Rate + Trial Reliability’), the population 189 

PSTH carries no information about the stimulus, but all information about the stimulus is encoded in the 190 

spike timing and count of individual neurons. The latter case is added for comparison with the other two 191 

encoding paradigms. Here, the population PSTH does not distinguish between stimuli, which happens for 192 

instance for texture recognition tasks (Arabzadeh et al., 2005). These three cases are illustrated in the insets 193 

of Fig. 4D-F. More details regarding the construction of these cases are given in Materials and Methods. 194 

In the ‘Rate + Poisson’ case, information transfer is overall low, with interneurons providing a 195 

superior readout of the information about the stimulus in L2/3 compared to excitatory neurons, both when 196 
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the information was decoded in rate and in timing (Fig 4D right, light and solid colors respectively, 197 

excitatory (red) vs. inhibitory (blue) neurons). While timing and rate codes are similarly efficient in 198 

interneurons, substantially larger populations of excitatory neurons are required to decode information in 199 

rate than in time.  Given that the timing of the stimulus is only present on the population level in L4, the 200 

dominance of this temporal readout in L2/3 is remarkable. Assuming the emulated stimuli in silico 201 

approximate the stimuli in vitro with high accuracy (see Figs. 1 and 2), the ‘Rate + Poisson’ coding does 202 

not reflect the L4 encoding scheme in the present experiments. 203 

In the ‘Rate + Trial Reliability’ case, the information transfer is overall substantially higher than in 204 

the ‘Rate+Poisson’ case (Fig. 4E right). In this condition the number of neurons required to recover the full 205 

stimulus information is the lowest (~25) of the three cases.  This was expected, since in this case two sources 206 

of information - rate and timing - are used in the encoding of the stimulus. Remarkably, both cell-types and 207 

both decoding strategies yield very similar information values here, suggesting this encoding strategy is 208 

optimal for information transfer.  209 

 In the ‘No Rate + Trial Reliability’ case, the information transfer is intermediate between the two 210 

preceding cases. Here, the stimulus is only encoded by the responses of individual L4 neurons, not by the 211 

population PSTH. Interestingly, the opposite from the 'Rate + Poisson'-case can be observed here in the 212 

decoding efficiency between L2/3 cell-types: contrary to the 'Rate + Poisson'-case, where interneurons 213 

transfer more stimulus information, here excitatory neurons become substantially more efficient at 214 

representing information (compare Fig. 4D to 4F). 215 

In summary, the availability of stimulus information in L2/3 spike trains is highly dependent on 1) 216 

the encoding properties of L4, 2) the decoding strategy in L2/3 and 3) the identity of the L2/3 neuronal 217 

populations (inhibitory or excitatory, for a summary see Table 1).  Information about the stimulus in the 218 

spikes of L4 single units is best recovered by L2/3 excitatory neurons (Fig. 4F), given that there is a 219 
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reasonable trial-to-trial reliability. Next, we systematically modulated the information content in L4 spike 220 

trains to investigate the consequences for L2/3 information availability.  221 

Population and single unit information selectively influence inhibitory or excitatory cells 222 

While we only considered the extreme cases of L4 encoding above, realistic encoding will necessarily cover 223 

a range of cases between these extremes. Different stimuli will often, but not always, lead to different 224 

population PSTHs (but different surface textures may well lead to similar population PSTHs while finely 225 

modulating single unit responses (Arabzadeh et al., 2005). Conversely, even in cases where the population 226 

PSTH carries substantial information about the stimulus identity, spiking may well not be Poisson, but more 227 

reliable (especially at the response onset see e.g. (Amarasingham et al., 2006)). 228 

 We investigated the contributions from the population and the single unit separately. Information 229 

on the population level was represented as the average PSTH of the population (see Figure 6A1). Stimulus 230 

information was encoded in L4 spike trains either as timing or rate differences. Timing differences were 231 

implemented as shifts of the PSTHs (ΔT), whereas firing rate differences were implemented as rate factors 232 

between the PSTHs (ΔC). If ΔT = 0 ms and ΔC = 1, then no information is contained in the population PSTH. 233 

Conversely, if ΔT = 4ms and ΔC = 4, the combined differences between the PSTHs are similar to the 234 

experimentally observed ones. These parameters allow us to study the susceptibility of L2/3 neurons to the 235 

different encoding strategies of L4 neurons (examples of spike patterns are shown in Fig. 5A1 above the 236 

PSTHs, 10 trials each). 237 

For decoding using spike times, inhibitory neurons exhibited a substantially greater susceptibility 238 

to variations in the distinguishability of stimuli on the L4 population level compared to excitatory neurons 239 

(blue vs. red, Fig. 5A2). This was true for both variations in time (ΔT) and rate (ΔC) in L4. Similarly, for 240 

rate decoding, inhibitory neurons were more susceptible to changes in rate than excitatory neurons (Fig. 241 
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5A3). Timing had little effect on rate decoding, since this corresponds mostly to a shift in the analysis 242 

window (unrestricted here), with no change in rate information in L2/3. 243 

Next, we considered the influence of various levels of single unit information on the information 244 

availability in L2/3. Here, the population PSTH is kept fixed, but the temporal and count reliability are 245 

varied on a neuron-to-neuron basis (see Fig. 5B1). The timing reliability was varied by introducing a 246 

temporal jitter to individual spikes across trials (SDT), while contracting spiking patterns to remain 247 

consistent with the population PSTH. Count reliability was varied selectively by a linear transition between 248 

a completely reliable and a Poisson model, while maintaining the population PSTHs. This was done by 249 

shifting spikes between neurons while maintaining the temporal variability across neurons. 250 

For decoding using spike times, excitatory neurons showed much greater susceptibility to single 251 

unit differences in reliability in L4, both for rate and time (Fig. 5B2). Interestingly, this carried over to the 252 

rate decoding to an even greater degree, which may be the domain of action for inhibitory neurons (Fig. 253 

5B3).  254 

In summary, L2/3 excitatory neurons are much more sensitive than L2/3 inhibitory neurons to the 255 

spike timing of L4 single neurons, whereas the information encoded by the population PSTH in L4 is carried 256 

mostly by inhibitory L2/3 neurons. Hence, we propose that the inhibitory and excitatory populations 257 

perform stimulus decoding in parallel, extracting stimulus information from distinct features in L4 activity 258 

(see Table 1). Together they have the ability to represent the entire information efficiently in small 259 

populations. 260 

Information recovery occurs rapidly within a few milliseconds 261 

Information processing in the sensory cortices is under severe temporal constraints, especially in S1, where 262 

the sensory input is tightly integrated with the motor output for the purpose of precise and adaptive whisking 263 

control (Li et al., 2015; Proville et al., 2014; Voigts et al., 2015, 2008). The state of processing at a given 264 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.08.415729doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?dhyTRF
https://doi.org/10.1101/2020.12.08.415729
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

12 

time can be estimated by computing the mutual information over limited time windows, which 265 

progressively include a larger proportion of the neural response (Fig. 6A, all excitatory and inhibitory 266 

neurons separated for a single trial). In combination with varying the group size, we can thus obtain a 267 

‘neurotemporal’ overview over the process of information availability in L2/3 as a function of neuronal 268 

class. 269 

 We consider three different encoding strategies by L4, ‘Rate + Poisson’, ‘Rate + Trial Reliability’ 270 

and ‘No Rate + Trial Reliability’ as in the previous section (Fig. 6B-D). In the ‘Rate + Poisson’ case, the 271 

mutual information begins to increase with interneurons leading over excitatory neurons (Fig. 6B, left, 272 

group size = 10 cells) around 12-14ms after stimulus onset (in L4). The inhibitory neurons reach maximal 273 

stimulus information, and do not achieve full stimulus information. Groups of inhibitory neurons encode 274 

more information than excitatory neurons, independent of the time relative to the stimulus onset and almost 275 

independent of group size (Fig. 6B, right). 276 

For the ‘Rate + Trial Reliability’ encoding condition in L4, the difference in the information content 277 

between cell types in L2/3 is small, with inhibitory neurons carrying slightly more information at early peri-278 

stimulus times and across all group-sizes (Fig. 6C, right). The difference in onset timing renders the 279 

information content of the inhibitory neurons higher only during the initial 1-2ms after response onset, due 280 

to the earlier response times of the inhibitory neurons (Fig. 6C, left). 281 

 In the ‘No Rate + Trial Reliability’ condition, the times when the information content increases are 282 

very comparable for excitatory and inhibitory neurons. However, after a few milliseconds, excitatory 283 

neurons prevail over inhibitory neurons. This advantage is preserved over time, whereas the difference in 284 

information content as a function of group size is strongly reduced, with inhibitory neurons eventually 285 

catching up with excitatory neurons (Fig. 6D, right). 286 

 In summary, the representation of stimulus information in L2/3 is rapidly completed within only a 287 

few milliseconds (3-5) after response onset. Which neurons, i.e. excitatory or inhibitory, carry more 288 
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stimulus information is determined by the encoding strategy in L4 (corresponding potentially to different 289 

types of stimuli), but not much on the peri-stimulus time. As before, pure rate coding on the level of L4 is 290 

identified as an insufficient coding strategy, as it does not fit our experimental results of almost complete 291 

information recovery. 292 

Discussion 293 

We demonstrated that although the intracellular information transfer, i.e. the PSP-to-action potential 294 

transformation, results in a significant loss of information about the stimulus, local networks can overcome 295 

this loss by integrating information from a small, experimentally tractable, number of neurons. Therefore, 296 

the somatic PSPs received by a single cortical neuron contain nearly complete information about the 297 

stimulus, even several synapses away from the sensory periphery. The efficiency of such information 298 

recovery is determined by a conjunction between the encoding scheme, neuronal class and decoding 299 

strategy. Excitatory and inhibitory cells take complementary roles in carrying information in single unit or 300 

population activity, respectively. 301 

Contribution of temporal coding in somatosensory cortex 302 

Encoding information on short temporal scales can enrich the information content of neural activity 303 

relative to coarser average rates (Bialek et al., 1991; Bialek and Rieke, 1992). There has been a long 304 

discussion about whether the brain uses such a ‘spike code’ or ‘rate code’ (for a review, see Brette, 2015). 305 

It has been argued that since cortical networks are both noisy and very sensitive to perturbations, a rate 306 

code is the only way to perform reliable computations (London et al., 2010, but see Denève and Machens, 307 

2016). However, others have pointed to the presence of temporally encoded information in the 308 

somatosensory (Alenda et al., 2010; Panzeri and Diamond, 2010; Petersen et al., 2001) and other sensory 309 

cortices (Kayser et al., 2012, 2010). In particular, the timing of the first (few) spike(s) in response to a 310 
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stimulus conveys much of the information present in a spike train (Gollisch and Meister, 2008; Johansson 311 

and Birznieks, 2004). Consistently, we find that the majority of the information in the PSP is encoded in its 312 

timing. However, the timing of a spike in response to such a PSP is substantially more variable than the 313 

PSP timing, such that only a small proportion of the information in the PSP is transferred to the spike 314 

(Fig. 2). The amount of information loss could even be more substantial in vivo in the presence of 315 

background ongoing activity. On the population level, we find again that the temporal information is highly 316 

relevant during information recovery. In agreement with the previously observed importance of the first 317 

spikes, we find that the information content in the population asymptotes within 5 ms after the first spike 318 

in local populations, consistent with the time-scales of neuronal read-out in whisker cortex estimated before 319 

(5-8 ms, (Stüttgen and Schwarz, 2010)). 320 

The temporal information described above can be fully characterized by single neuron variations 321 

in rate, and hence does not include higher order temporal codes, such as the pattern of inter-spike intervals. 322 

Due to the sparse response nature of supragranular excitatory neurons, such a fine-grained higher order 323 

temporal code could only exist in the inter-spike intervals of inhibitory neurons or spike-patterns across 324 

multiple (excitatory or inhibitory) neurons. The term temporal code is however still appropriate for our 325 

results, since the time scales of the response are not only reflecting dynamics in the stimulus, but correspond 326 

to intrinsic computations of the neural network (Nemenman et al., 2004). 327 

 For the present dataset, Shannon's mutual information was computed with responses aligned to the 328 

stimulus onset. Recent work by Panzeri and colleagues (Panzeri et al., 2010; Panzeri and Diamond, 2010) 329 

have pointed out that such a reference time is not necessarily available to a decoder in S1. How would a 330 

change to an internal reference time, such as the efference copy of the whisking signal (Crochet et al., 2011; 331 

Crochet and Petersen, 2006; Poulet and Petersen, 2008) or a population-based timing (e.g. the “Columnar 332 

Synchronous Response”, CSR, event defined by (Panzeri and Diamond, 2010)) affect the present results? 333 

Assuming that the population response can be approximated by a set of individually recorded neurons (as 334 
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in (Panzeri et al., 2010; Panzeri and Diamond, 2010)), the influence of such an intrinsic reference on our 335 

results would be only minor, since the relative timing - and thus the relative trial-to-trial variability in timing 336 

- would be the same as in the stimulus locked case. Hence, the information content would not be modified. 337 

If, on the other hand, synchronization between neural groups occurs, results could be significantly 338 

influenced, since then variability could be transferred from spikes to PSPs (in which case the alignment 339 

would be based on the near-synchronous CSR). According to Petersen and colleagues (Petersen et al., 340 

2001), covariability, measured as noise correlation, was assessed to be ~0.1, and subsequent studies have 341 

found even lower values (Renart et al., 2010), suggesting that stimulus-independent synchronization is not 342 

substantial (note however the results of (Franke et al., 2016) 343 

High information availability and multiplexed codes 344 

To understand ‘how the brain works’, we need to understand what the neural computations are that 345 

make an animal interact with its environment, i.e. how neural activity is transformed from the low-level 346 

response, to perceptual input, to the high-level neural activity that generates behavior (Eliasmith and 347 

Anderson, 2002). For instance, perceptual invariance (an object can be recognized as one and the same 348 

under different circumstances) and selectivity (an object can be distinguished from other, similar objects) 349 

need to be explained by any consistent theory of perception (Seung and Yuste, 2012). A model of how 350 

increasingly abstract features can be recognized by neural networks along the sensory axis was already 351 

explained by for instance the perceptron-model (Rosenblatt, 1958; Seung and Yuste, 2012). When neurons 352 

in each processing layer respond to only a single, increasingly abstract, preferred feature, they disregard 353 

necessarily a lot of information. Therefore, on the single-neuron level, the transformation from input to 354 

output is expected to be very sparse, and ‘lossy’. However, whether on a population level it is necessary to 355 

be able to fully reconstruct the stimulus, remains an open question. We have shown here that the entire 356 

stimulus information is maintained in layer 2/3 of the barrel cortex and encoded by local populations in a 357 
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distributed fashion. This information can be recovered already on the basis of a small subset of neurons 358 

(~10-20, if single unit information is present) on short time-scales (~5ms relative to response onset), 359 

ensuring a lossless representation of the sensory world in real-time, i.e. before the next sensory information 360 

arrives from the periphery (in the case of active tactile exploration in freely behaving rodents, the inter-361 

contact intervals are >30 ms (Voigts et al., 2015, 2008)). In different setups (Dalgleish et al., 2020), in 362 

mouse visual cortex (Sriram et al., 2020) and in salamander retina (Marre et al., 2015), comparable values 363 

have been reported . This suggests that the full stimulus information is needed for the computations at 364 

several levels. Combined with the single neuron selectivity, our results suggest that this network performs 365 

a form of coordinate transformation (Denève and Pouget, 2003). However, what the exact nature of the 366 

computations of this and downstream networks is, remains an open question.  367 

The neural activity of excitatory neurons in cortical layers 2/3 is generally considered to be sparser 368 

than in Layer 4 (see (Barth and Poulet, 2012) for a review, although the evidence is not yet fully conclusive). 369 

This sparsity has been linked to higher selectivity of encoding, in terms of fewer, more specific features 370 

represented per neuron. This increased selectivity could be the reason for the observed information loss 371 

during the transformation of PSPs to spikes. It has been argued that the sparsity of the transformation of 372 

presynaptic spike trains to PSPs to postsynaptic spikes is the result of optimal non-linear processing: only 373 

redundant information, that has been gained before and can be predicted from previous activity, is 374 

discarded, and postsynaptic neurons only respond to ‘new’ information (Denève, 2008; Ujfalussy et al., 375 

2015). Our result that the postsynaptic membrane potential still contains the full stimulus information, is in 376 

agreement with this argument, and the observation that most information is contained in the first spikes 377 

mentioned before could also be explained this way. However, whether the information that is lost in the 378 

spike-generating process is truly ‘discarded’ information, or, contrarily, redundant information, depends on 379 

the presumed decoding of the neuron: which information is redundant or essential depends on the message 380 

that needs to be conveyed.  381 
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 The distributed persistence of complete stimulus information could provide a practical solution to 382 

one of the classical dilemmas of neural encoding: the compatibility between a specific feature and the 383 

context of the entire stimulus space. Concretely, a readout neuron in L2/3 may have privileged access to L4 384 

neurons selective for one type of feature, with in addition access to a wide range of inputs from a random 385 

subset of the population. It could thus act as a comparator and evaluate the dominant feature in relation to 386 

a representation of the entire stimulus. This becomes especially relevant in the case of multiple concurrent 387 

stimulations on different whiskers, corresponding to the natural situation an animal is exposed to during 388 

active exploration (Voigts et al., 2015). In this case, multiple signals (i.e. the signals from multiple whiskers, 389 

that carry different spatial and temporal information) have to be processed by a single population of 390 

neurons. If this population can be separated into independent-subpopulations, this implies that a population 391 

consists of multiple channels (in the information-theory sense), but if this is not the case, multiple signals 392 

are coded by a single population, so the code becomes multiplexed: a single channel (population) carries 393 

complementary information through different codes. The observation that multiple subsets of neurons carry 394 

complete stimulus information and the observation that spike timing and firing rate of the same population 395 

(channel) can contain independent information about the stimulus hints at such multiplexing ((Panzeri et 396 

al., 2001; Quian Quiroga and Panzeri, 2009), for a review, see (Panzeri et al., 2010)). Our finding that 397 

different postsynaptic populations can decode the timing-encoded and rate-encoded information shows that 398 

the information from both coding schemes (rate and timing by inhibitory and excitatory neurons) of such 399 

multiplexed encoded information can also be used by the brain for further processing in later stages. 400 

Information in inhibitory populations can then be forwarded by for instance disynaptic (dis)inhibition and 401 

the modulation of firing rates or spike probabilities of  excitatory populations. Multiplexed codes have been 402 

discussed recently in the context of local field oscillations (Alenda et al., 2010), and the presence of 403 

selective and general information as described herein may provide an additional example of multiplexing 404 

(Fig. 7).  405 
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 Given the information content across the excitatory and inhibitory neural populations calculated 406 

herein, we speculate that distinct tactile features are encoded by rate and timing of spiking during 407 

information encoding and decoded by excitatory and inhibitory neurons separately (Fig. 7A). If an animal 408 

were to use its whiskers to locate a tactile target in space for example (Celikel and Sakmann, 2007; Peron 409 

et al., 2015), this model predicts that inhibitory neurons would carry the largest amount of information 410 

during the first contact as the animal detects the edge of the tactile target. Similarly, at the detection of a 411 

contact during passive whisking (Clem et al., 2008), inhibitory neurons would preferentially respond to the 412 

onset of touch, serving as an edge detector. The information content of different signals within the L4-to-413 

L2/3  channel is temporally constrained as the animal continues to explore its immediate environment, and 414 

makes additional whisker contacts with the tactile target (Fig. 7B; (Voigts et al., 2015, 2008)), presumably 415 

to predict object distance and extract additional surface feature information about the target.  With the 416 

change of whisking pattern, the sensory history and the statistics of the local network activity, relative 417 

information in the excitatory population will eventually dominate the neural representation of touch (Fig. 418 

7C).   419 

How to convey stimulus information both lossless and efficiently, and how this depends on physical 420 

properties such as network connectivity and node (neuron) properties, is an important open question in 421 

network science, and neuroscience specifically (Maheswaranathan et al., 2018; Mastrogiuseppe and 422 

Ostojic, 2017), in which computational models like the one we present here (Huang et al., 2020) play an 423 

invaluable role. Recently, it has been shown that there is a trade-off between the sparsity and the amount 424 

of recovered information in neural coding (Billings et al., 2014): lossless coding is only possible if the 425 

connectivity in the network is not too sparse. Specifically, the authors showed that optimal connectivity 426 

included only a few excitatory synapses and strong inhibition. Moreover, activity-dependent thresholds 427 
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appear to play an invaluable role in such efficient information transmission (Billings et al., 2014; Huang et 428 

al., 2016). 429 

For future in vivo studies, an important question will be, whether complete information 430 

representation persists if larger stimulus sets/spaces are considered, since it is expected that the 431 

dimensionality of the response, and hence the number of neurons needed for complete information 432 

recovery, depends on the complexity of the stimulus (Gao and Ganguli, 2015). Due to the requirements of 433 

accurate estimation of mutual information, we had to restrict the stimulus space to four stimuli in the context 434 

of whole-cell recordings (leading to ~300 trials per recorded cell). Note, however, that even under these 435 

conditions, trial-to-trial variability could have prevailed and prevented complete stimulus reconstruction on 436 

the single neuron and population level. Moreover, the present results can only provide a lower bound on 437 

the available information, since not all possible codes were explored and the decoding step between 438 

stimulus and response renders all results lower bounds (Quian Quiroga and Panzeri, 2009). In contrast to a 439 

previous study in the auditory cortex (Ince et al., 2013), we find that more complex decoding methods 440 

provide an improved decoding quality and hence more mutual information. Concretely, support vector 441 

machine decoding with radial basis functions provided superior performance (94%) than either diagonal 442 

linear (77%), linear (79%), or quadratic (80%) decoders. In order for the neural system to achieve this 443 

quality of decoding, it would, however, need to have readout mechanisms which use decoding strategies 444 

beyond linear or quadratic combinations. 445 

Predictions for cell-type specific coding strategies  446 

The cortical population of neurons is composed of various cell-types, which differ in their morphology, 447 

location and physiology (De Kock et al., 2007; Narayanan et al., 2015; Oberlaender et al., 2012; Staiger et 448 

al., 2015). These differences suggest distinct roles in information processing, some of which have recently 449 
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been elegantly elucidated (Ko et al., 2011). Coarsely, on the level of their firing patterns, inhibitory neurons 450 

can be distinguished from excitatory neurons, by more dense responses, based on a greater convergence of 451 

connections (reviewed in Harris and Mrsic-Flogel (2013)). The connectivity in the present model was set 452 

in precise accordance with the latest results from the literature from identified, pairwise recordings (see 453 

Huang et al. (2020) for detailed references), and consequently recreates these differences in firing behavior. 454 

Going beyond previous work, we find the coding balance to lean to either cell class, depending on the 455 

encoding strategy used in L4. 456 

We explored these encoding strategies in L4, finding that excitatory neurons more effectively 457 

convey information encoded in L4 single units, requiring a level of reliability in L4 beyond Poisson-spiking 458 

(Figure 6B). Conversely, inhibitory neurons are more effective in carrying L4 population rate information 459 

(Figure 6A). Hence, together, excitatory and inhibitory neurons make effective use of the combined 460 

information in population rate and single unit responses in L4. 461 

 The L4 encoding is likely to depend on the stimulus condition: Many stimuli will induce time-462 

varying population rates, which distinguish them from other stimuli. However, exceptions exist, such as the 463 

comparison of similar textures (Arabzadeh et al., 2005), which have only small differences in population 464 

rate, and differ more in their fine-structure. On the other hand, temporally structured inputs (e.g. many 465 

natural stimuli) lead to stronger time locking between neurons in L4 (Amarasingham et al., 2011; Litwin-466 

Kumar and Doiron, 2012). Based on our results, we suggest that excitatory and inhibitory neurons might 467 

focus on distinct individual and population information to optimize the availability of stimulus information 468 

in local networks. Since long-range projections of inhibitory neurons are rare (Thomson and Lamy, 2007), 469 

the information content in the spiking of the inhibitory neurons is likely to be most relevant for local 470 

processing. Testing this hypothesis will not be trivial, since the inhibitory neurons cannot be removed from 471 

the network without influencing the overall network dynamics.  Nonetheless, transient optogenetic 472 

modulation of the rate and timing of select inhibitory neurons’ activity while studying neural encoding of 473 
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stimuli in the rest of the network will help to answer the question about which inhibitory neurons contribute 474 

more to the transfer and recovery of information  within a column (i.e. local) and across columnar networks. 475 

 476 

 477 

 In summary, the results presented here suggest that single neurons are efficient real-time encoders 478 

of stimuli even several synapses away from the sensory periphery, but intracellular information transfer 479 

results in a substantial loss in the information transmitted to the postsynaptic neurons.  The lost information 480 

can be recovered rapidly, i.e. within 20 ms, by comparatively small numbers of neurons in local populations, 481 

so that lossless information transfer along the sensory axis is ensured.  The information recovery depends 482 

critically on the type of the neuron as well as the coding properties of both the presynaptic and postsynaptic 483 

pools of neurons, such that excitatory and inhibitory populations process complementary information about 484 

the stimulus in the somatosensory cortex.   485 

  486 
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Materials and Methods 487 

Experimental procedures 488 

Rats from either sex were used according to the Guidelines of National Institutes of Health and were 489 

approved by the local Institutional Animal Care and Use Committee. All data can be found in this online 490 

repository: https://doi.org/10.34973/59my-jm24, the relevant code can be found here: 491 

https://github.com/DepartmentofNeurophysiology/Information-transfer-and-recovery-for-sense-of-touch-492 

code-for-figures  493 

In vitro recordings 494 

In vitro whole-cell current-clamp recordings were performed in acutely prepared slices of the barrel cortex 495 

between P18-21, after maturation of evoked neurotransmitter release (Martens et al., 2015) as described 496 

before (Allen et al., 2003; Celikel et al., 2004; Clem et al., 2008). Oblique thalamocortical slices (300 mm, 497 

(Finnerty and Connors, 2000)) were cut 45° from the midsagittal plane in chilled low-calcium, low-sodium 498 

Ringer’s solution (in mM; sucrose, 250; KCl, 2.5; MgSO4.7H2O, 4; NaH2PO4.H2O, 1; HEPES, 15; D-(+)-499 

glucose, 11; CaCl2, 0.1).  Slices were first incubated at 37ºC for 45 minutes and were subsequently kept in 500 

room temperature in carbonated (95% O2/5% CO2) bath solution (pH 7.4, normal Ringer’s solution: in 501 

mM, NaCl, 119; KCl, 2.5; MgSO4, 1.3; NaH2PO4, 1; NaHCO3, 26.3; D-(+)-glucose, 11; CaCl2, 2.5).   502 

Visualized whole-cell recordings were performed using an Axoclamp-2B amplifier under IR-DIC 503 

illumination.  A custom-made tungsten bipolar extracellular stimulation electrode (inter-tip distance 150 504 

micrometer) was placed in the lower half of a L4 barrel.  Stimulation protocol was as described before 505 

(Huang et al., 2016). In short, 10 ms long current pulses were delivered using a bipolar electrode located in 506 

the lower half of a mystacial whisker’s barrel. The pulses were square and had equal maximal amplitude 507 

although the rising phase of the stimulus had different slopes.  It took 0,2,4 or 6 ms for the pulse to reach 508 
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the maximum amplitude for stimulus (S)1, S2, S3 and S4, respectively. All intracellular recordings (pipette 509 

resistance 3-4 MOhm) were performed in L2/3, orthogonal to the stimulation electrode within 150-300 µm 510 

of the cortical surface. The internal solution (pH 7.25) consisted of, in mM, potassium gluconate, 116; KCl, 511 

6; NaCl, 2; HEPES, 20 mM; EGTA, 0.5; MgATP, 4; NaGTP, 0.3. For whole cell recordings, putative 512 

excitatory cells were selected based on pyramidal shaped somata, apical dendrites and distal tuft orientation, 513 

and regular pattern of spiking to somatic current injections (500 ms; data not shown).  Data was low-pass 514 

filtered (2 kHz), digitized at 5 kHz using a 12-bit National Instruments data acquisition board and acquired 515 

using Strathclyde Electrophysiology Suite for offline data analysis. 516 

In vivo recordings 517 

In vivo whole-cell current-clamp recordings were performed under ketamine/xylazine anesthesia at P28-518 

30.  Anesthesia was induced using 100 mg/kg (ketamine) and 10 mg/kg (xylazine) mixture and maintained 519 

with intraperitoneal ketamine-only injections (20% of the initial dose) as necessary.  Upon complete loss 520 

of facial and hind-limb motor reflexes, the skull was exposed. A head-bolt was fixed posterior to lambda 521 

using cyanoacrylate and was used to immobilize the animal during experiments.   522 

The surface over the primary somatosensory cortex (from Bregma, -0.5mm to -2.5mm, from Midline -523 

2.5mm to -4.5mm was thinned using a dental drill.  The surface was kept moist with a thin layer of low-524 

viscosity mineral oil to maintain the transparency of the thinned skull.  Cortical representation of the D2 525 

whisker was localized in the contralateral hemisphere using intrinsic optical imaging as described before 526 

(Stewart et al., 2013) while deflecting individual whiskers using piezoelectric actuators as described 527 

elsewhere (Celikel et al., 2004). The skull above the center of mass of the functional whisker representation 528 

was punctured using a 28 gauge needle to allow patch electrodes to access the cortical region of interest.  529 

All electrode penetrations were perpendicular to the cortical surface.  In vivo whole-cell recordings were 530 

performed as described before (Margrie et al., 2002) with recording electrodes (6-7 MOhm) filled with the 531 
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same intracellular solution used in slice experiments.  Two different whisker deflection protocols were 532 

used:  During optical mapping experiments single whiskers were deflected along the dorsoventral axis at 5 533 

Hz with 8° deflections for 20 times with an inter-trial interval of 20 sec (Stewart et al., 2013).  During 534 

electrophysiological recordings single dorsoventral whisker deflections were delivered at 0.2 Hz for 200 535 

times.  In each trial 4° whisker deflections were delivered at 10 Hz for 1s. Throughout the experiment the 536 

animal's core body temperature was maintained at 36.5±0.5°C. 537 

Data analysis  538 

All analyses were performed off-line in Matlab (Mathworks, Inc), the code for the figures can be found 539 

online: https://github.com/DepartmentofNeurophysiology/Information-transfer-and-recovery-for-sense-540 

of-touch-code-for-figures.  Raw voltage traces were smoothed using running window averaging (1ms 541 

window size) and the following variables were calculated for all evoked responses: Onset time (Ot, in ms): 542 

Latency of the postsynaptic potential (PSP) onset in respect to onset of the stimulus; Rise time (Rt, in ms): 543 

Time it takes for the membrane to reach 90% of the PSP amplitude relative to the onset of PSP; PSP slope 544 

(Sl, in mV/ms) between 10-90% of the PSP amplitude and amplitude of the EPSP (Amp, in mV).  If the 545 

trial included an action potential, the peak of the EPSP was set to the spike threshold (Vt). The spike 546 

threshold was defined as the membrane potential value at which the second derivative of the membrane 547 

potential reached a maximum as described before (Wilent and Contreras, 2004). In slice recordings, resting 548 

membrane potential (Vm, in mV) was calculated as the average membrane potential in a 40 ms time window 549 

prior to the stimulus onset. For in vivo recordings the same time window was used but the sweep was 550 

included in the data analysis only if the variance of the membrane potential was < 0.5mV during the time 551 

window.  For those sweeps in which a spike was observed, the spike threshold and spike latency (St) were 552 

also calculated.    553 
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Mutual information analysis for single neurons.  554 

Only cells with more than 250 acceptable sweeps (summed across all stimulus conditions) were 555 

used to perform Shannon information analysis. The mutual information (MI) between any two 556 

variables S, R can be calculated as 557 

 ,                                                    (1) 558 

in which H is the entropy of a given variable R: 559 

                                                  (2) 560 

and H(R|S) is defined as 561 

                      (3) 562 

where i ranges over the stimulus/response types.  Note that the stimulus entropy shows a small variability 563 

due to rejected trials. Similarly, the mutual information between one variable S and multiple R (joint mutual 564 

information) can also be calculated using equation (1). In this case, the synergistic effect of R can be 565 

expressed as the difference between the linear sum of the mutual information between S and each individual 566 

R and the joint information I(S;R): 567 

                                          (4) 568 

Information calculations were performed using the Information Breakdown toolbox (Magri et al., 2009) in 569 

Matlab (Mathworks. Inc). In short, each variable was first digitized using the equal space ('eqspace') binning 570 

method with 7 bins. The effect of different binning methods as well as the number of bins on MI values are 571 

also explored (Fig. S1). In the analysis based on the ‘eqpop’ binning method, the size of individual bins 572 

was modified so that a roughly equal number of observations was placed in each bin, instead of keeping 573 

the size of individual bins constant. Because in most trials only one spike was observed, only the first spike 574 

was considered when calculating the information in St. Thus, the spike latency St can be digitized to a 575 

single word, which has (number of bin + 1) possible outcomes, instead of a binary list which could have 576 
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2^(number of bin) possible values. Shuffle correction combined with Panzeri-Treves (Panzeri and Treves, 577 

1996) bias correction was used to perform all information calculations for neural recordings (note that 578 

shuffle corrections can introduce a small source of variability, which can be seen for instance in comparing 579 

I(S,PSP) in Figure 2A with and H(S) or with the joint MI in 2C, or that can lead to an error bar above the 580 

stimulus entropy or below 0). The performance of the algorithm was evaluated by randomly selecting a 581 

subset of trials to calculate the mutual information (I(S;PSP), I(PSP;Vt) and I(PSP;St)), and subsequently 582 

checking the number of trials (Ns) needed for the calculated information values to reach asymptote (Fig. 583 

S2). When the ‘eqspace’ binning method was used, all information values reached asymptote after Ns > 70, 584 

well below the average Ns in the present data set (124±33.2 (range: 78-220) stimulus repetitions per 585 

stimulus).  586 

Calculation of minimum observation size: 587 

 An essential step in the information calculation method listed above is the estimation of the stimulus-588 

response probability distributions from the experimental data. Following Panzeri and colleagues (Ince et 589 

al., 2010b)  we calculated the number of experimental trials per stimulus condition, Ns, to be ~32 times 590 

larger than the number of possible response pattern, R, to get an accurate estimation (Ns/R≈32). This also 591 

means that to accurately estimate information between the subthreshold responses (Am, Sl, Ot, all binned 592 

to 7 bins) and the stimulus, 32×7×7×7 = 10976 trials/ stimulus =91h continuous recordings will be needed.  593 

Given technical infeasibility of maintaining whole cell access for the designated period we performed bias 594 

corrections to account for the upward bias in information estimation with limited sample sizes (see (Ince et 595 

al., 2010b) and (Victor, 2009) for further discussion). Methods like quadratic extrapolation (QE), Panzeri-596 

Treves (PT) correction (Panzeri and Treves, 1996) and Nemenman-Shafee-Bialek (NSB) t experiments and 597 

94±25.6 (range, 60-146) trials/stimulus for the in vivo whole-cell recordings.   598 
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Mutual information analysis for multiple neurons    599 

For multi-neuron MI analysis we followed the approach to first decode and then estimate the MI between 600 

stimuli and the confusion matrix of the decode (Ince et al., 2010b; Panzeri and Diamond, 2010; Quian 601 

Quiroga and Panzeri, 2009) using support vector machine (SVM) in MATLAB with radial basis functions 602 

as the kernel transform. We utilized 90/10% cross validation during decoding to obtain an estimate of the 603 

generalized performance of the decoder. SVM decoding outperformed other decoders with an average 604 

performance of 94%, compared with some other decoders (diagonal linear  (77%), linear (79%), quadratic 605 

(80%)). The use of an intermediate decoder ensured that the calculation was bias free (given that we observe 606 

the correct value of 0 bits for an uninformative set of stimuli, with otherwise very similar properties (see 607 

Fig. 3G)), but came at the expense of lower bound in MI estimates since a (potentially existing) better 608 

decoder would improve the MI.  609 

For the in-vitro recordings we first had to generate bootstrapped populations of sufficient size to perform 610 

the population MI calculations. In order to preserve the within-cell variability of responses across stimulus 611 

and trials, we only drew bootstrap samples from the trials of each cell independently. As in the simulations 612 

we drew 100 samples of groups of each population size. Curves in Fig. 4 display averages over these 613 

samples.  614 

Network Simulations 615 

The reconstruction of information in the neural network was performed in an in silico model of the barrel 616 

cortex.  617 
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Neural network 618 

The model included a realistic account of the number of (Izhikevich, 2004, 2003) neurons and connectivity 619 

(Supplemental Table 1) within a barrel column for Layers 2/3, with inputs arriving from the L4, mimicking 620 

the conditions in the in vitro/in vivo experiments. For more details on the network model, see (Huang et al., 621 

2020). 622 

Synaptic currents in this network were modeled by a double-exponential function. Parameters of those 623 

functions (peak amplitude, rise time, half width, and pair-pulse ratio) were adjusted to match experimentally 624 

measured PSPs in barrel cortex (Supplemental Table 1; see Thomson and Lamy (2007) for a review). The 625 

onset latency was calculated from the distance between cell pairs; the conduction velocity of action potential 626 

was set to 190µm/ms. 627 

Differences in activation state of cortex were included in the model by setting the common initial voltage 628 

and the equilibrium potential vr of all cells to -80, -70, or -60mV in a third of the trials, thus accounting for 629 

potential up- and down-states as well as an intermediate state. 630 

Synaptic input from layer 4  631 

Layer 4 stimulation was provided in the model based on population PSTHs collected extracellularly in 632 

anesthetized animals in vivo (Celikel et al., 2004). We used PSTHs of principal and 1st order surround 633 

whisker stimulation, as well as two linear interpolations between the two, yielding 4 stimuli with 2 bits total 634 

entropy, matching the numbers in the in vitro experiments. The PSTHs only specified the population firing 635 

rate in L4. We further explored population coding properties, by modifying the variability of spike timing 636 

across trials. If response times and spike counts were conserved across multiple trials, spike timing and 637 

counts within and between neurons start to carry additional information.  638 
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In the ‘Rate + Poisson’ condition, we assumed no trial-to-trial reliability beyond that given by the 639 

PSTH. Spike times were drawn based on Poisson statistics for each time with the PSTH modulating the 640 

firing rate (see Fig. 4D left). This condition forms a lower bound on the transferred information between 641 

L4 and L2/3, under the experimental constraints on the model. On the other extreme, in the ‘Rate + Trial 642 

Reliability’ condition, the PSTHs varied as before, but in addition neurons emitted the same sequence of 643 

spikes for every trial, preserving timing and count perfectly. This condition forms an upper bound on the 644 

information transfer, since within the experimental constraints no additional variability is introduced, which 645 

would reduce the mutual information. Finally, we consider the ‘No Rate + Trial Reliability’ condition, 646 

where the population PSTHs are uninformative across stimuli, and stimulus information is only contained 647 

in the spike trains of individual neurons. This case is a reference for other stimulus scenarios, where the 648 

PSTH may not vary much (e.g. texture-type stimuli), and individual timing becomes more important.  649 

We also explored conditions between these extremes (Fig. 5), where the information in population 650 

or single neuron response was systematically varied. For the case of the population response we varied the 651 

different in time and firing rate of the PSTHs for different stimuli (Fig. 5A). Time differences were 652 

implemented by simply shifting the entire PSTH in time (tested shifts: [0,1,2,3] ms per stimulus, i.e. 653 

maximum shift was 9 ms). Rate differences were implemented as the fraction between the maximal and the 654 

minimal stimulus (tested fractions were [1,2,3,4], where e.g. 4 corresponds to the weakest stimulus being 655 

25% of the strongest stimulus at the peak of the PSTH). The case of time shift 0 ms and rate fraction 1 is 656 

uninformative on the level of population rate. Single neuron reliability in this case was chosen as a medium 657 

level of single unit reliability (SDT = 3 ms, SDC = 20%). Single neuron reliability in response was also 658 

explored in timing and rate (Fig. 5B). Starting from perfect timing and rate, we degraded the information 659 

extractable from single neurons, by introducing timing variability (spike times were shifted by Gaussian-660 

distributed noise with standard deviation SDT) and rate/count variability (spikes were deleted or added, by 661 
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linearly mixing between Poisson and perfectly reliable spiking, with mixing parameter SDC, denoted as % 662 

in the figure). For both procedures, the modifications were performed while keeping the population PSTH 663 

approximately unchanged, i.e. for timing the overall timing distribution was contracted to keep the original 664 

PSTH, and for rate, spikes were shifted between neurons, rather than only removed from individual neurons. 665 

These independent variations of population and single unit responses allowed us to separate the 666 

contribution of these two information sources to the information available in groups of L2/3 excitatory and 667 

inhibitory neurons (see Results).  668 
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Abbreviations 669 

AP : Action potential / spike PSP : Postsynaptic potential 670 

PW : Principal whisker  SW : Surround whisker 671 

H : Entropy   I : (Mutual) Information 672 

S : Stimulus   PSTH : Peristimulus time histogram 673 

ΔT : Variation in spike timing ΔC : Variation in spike rate 674 

L : (Cortical) layer   CSR : Columnar Synchronous Response  675 

  676 
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Tables 685 

Table 1: Summary of information recovery results depending on L4 encoding and L2/3 decoding schemes. 686 

L4 encoding→ population level single neuron level 

L2/3 decoding↓ 

timing  

(ΔT>0, ΔC = 1) 

rate 

(ΔT=0, ΔC > 1) 

timing reliability 

(SDT>0, shift=0) 

count reliability 

(SDT=0, shift>0) 

spike times inhibitory neurons 

more susceptible 

inhibitory neurons 

more susceptible 

excitatory neurons 

more susceptible 

excitatory neurons 

more susceptible 

rate no effect  inhibitory neurons 

more susceptible 

excitatory neurons 

more susceptible 

excitatory neurons 

more susceptible 

  687 
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Figures 688 

 689 
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Figure 1. In vivo and in vitro stimulus representation in single L2/3 somatosensory cortical neurons 690 

(A) We deflected whisker D2 and its first order neighbors (D1,D3,C2,E2) individually to determine the 691 

spatial encoding properties of cortical L2/3 pyramidal neurons in the D2 barrel under anesthesia using 692 

whole cell current clamp recordings. (B-D) EPSP response to in vivo stimulation. Analysis of the EPSP 693 

parameters showed that principal whisker stimulation was correlated with earlier onset times (B), larger 694 

slopes (C) and larger amplitudes (D) compared to the surround whiskers. Onset time was described as the 695 

latency between stimulus onset and the time it takes for the membrane to reach 10% of the peak somatic 696 

EPSP amplitude. The EPSP slope was calculated to be between 10-90% of the somatic EPSP.  The 697 

amplitude was measured at the peak. All measurements were performed on monosynaptic EPSPs.  698 

(E-M) Response to in vitro stimulation mimicking in vivo stimulation. Due to the sparse nature of action 699 

potentials in vivo, we developed a stimulation protocol to mimic the subthreshold stimulus encoding 700 

properties of L2/3 neurons in vitro. (E) Whole cell intracellular current clamp recordings were performed 701 

in L2/3 while L4 neurons were stimulated using a bipolar electrode. (F) Soma location of randomly selected 702 

neurons. (G) The stimuli were direct current injections with equal maximal amplitudes as the in vivo 703 

EPSCs, but the rising slope of the current was systematically reduced across the four stimulus conditions 704 

(see (Huang et al., 2016)). (H-M) L2/3 pyramidal neurons’ responses to L4 stimulation. Each circle shows 705 

the average (over trials) response of one neuron (N=11).  (H-J)  EPSP response to in vitro stimulation. H: 706 

Onset time, I: Slope, J: EPSP amplitude; (K-M)  Spike response to in vitro stimulation. K: Spike time, i.e. 707 

latency to spike after stimulus onset; L: Spike threshold, described as the membrane potential at which the 708 

second derivative reaches a global (positive) maximum; M: Action potential (i.e. spike) probability, across 709 

trials. (N-P) Spike versus EPSP response to in vitro stimulus. While both EPSP and spike parameters 710 

displayed an average dependence on the stimulus, EPSP parameters are more accurately determined by the 711 

stimulus than spike parameters on single trials. 712 

  713 
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 714 

Figure 2. Postsynaptic potentials encode substantially more stimulus information than spikes in vitro 715 

(A) The information between PSPs and the stimulus is significantly higher than the information between 716 

spikes and the stimulus. While the PSP contains a large fraction of the stimulus entropy (95%, I(S;PSP), 717 

1.81±0.31 bit vs. H(S), 1.86±0.17 bit, p = 0.16), most of this information is not transferred to the spike 718 

(I(S;Spike), 0.47 ±0.19 bit, 24%). (B) The majority of the information in the PSP is carried by the onset 719 

timing (Ot, 1.6±0.31 bit, 85%), while slope (Sl, 0.17 ±0.09 bit, 10%) amplitude (Am, 0.13 ±0.07 bit, 5%) 720 

carry only small amounts of information. (C) Ot, Sl, and Am add their information independently, as the 721 

synergy between them is close to 0 (Synergy : 0.03 ±0.18 bit, p = 0.15, t-test). (D) The information in the 722 

spike is contributed by spike time (St, 0.31 ±0.13 bit, 16%) and threshold (Vt, 0.12 ±0.08 bit, 6.2%), and 723 

jointly only reach 21% of the total information (repeated from A). (E) Substantial information transfer 724 

occurs between the PSP and the spike, although this constitutes only 22% (St) and 15% (Vt) of the entropy 725 
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in the PSP. (F) The information in the properties of the PSP adds largely independently to the joint 726 

information, with a small but highly significant synergistic contribution of different PSP properties (0.41 727 

±0.13 bit, 6.4%, p<10-5). In all figures data is plotted as inter-quartile intervals and red lines denote the 728 

median of each distribution. Outliers are plotted as red dots. The dotted line denotes the maximal stimulus 729 

entropy.  730 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.08.415729doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415729
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

38 

 731 

 732 

Figure 3. Anatomically constrained barrel column in silico reproduces the relationships between sub- 733 

and supra-threshold information 734 

(A) An anatomically based model of a barrel column for L2/3/4 was generated to analyze the information 735 

transfer between L4 and L2/3 in analogy to the physiological recordings (see Huang et al. (2020) for 736 

details).  (B) In response to stimulation in L4 with a whisker-like PSTH (grey), excitatory (red) and 737 

inhibitory (blue) cells respond in L2/3, with inhibitory activity eventually extinguishing the total activity in 738 

the network. (C) Corresponding to the in vitro/in vivo data, the timing of PSPs for a given stimulus is more 739 
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precise than the spikes they evoke (compare to Fig. 1L). (D) The relationship between PSPs and spikes in 740 

terms of timing and reliability leads to single cell mutual information very similar to the recorded data 741 

(excitatory cells, compare to Fig.2A). Inhibitory cells (not recorded), show less information in their PSP 742 

response, but more information in the spikes (all properties combined for both cell-types). Dotted line: 743 

stimulus entropy. 744 
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Figure 4. Information recovery in neural populations recorded in vitro.  746 

If a postsynaptic EPSP carries near complete information about the stimulus in the periphery 747 

(Figure 2), how does the postsynaptic neuron reconstruct this information from poorly informative 748 

action potentials of the presynaptic neurons? (A) To address this question we evaluate the mutual 749 

information from population spike trains of groups of excitatory or inhibitory neurons. To prevent 750 

the sampling bias, MI is estimated between the stimulus and an SVM decoding from the population 751 

response. (B) Population information estimated from bootstrapped in vitro recordings show nearly 752 

complete recovery of stimulus information. Asymptote is reached above 81% for 100 neurons for 753 

temporal decoding (dark red), and remains systematically lower for the rate-based decoding (light 754 

red). (C) Estimating population information for non-informative stimuli (identical PSTH, Poisson-755 

spiking) leads to vanishingly low MI values, demonstrating that the analysis does not introduce a 756 

positive bias. (D) If the population activity in L4 is only constrained by the PSTH and otherwise 757 

spikes are drawn according to Poisson-distributions (bottom left, different colors = different 758 

stimuli), then inhibitory neurons carry more information for both time (dark blue) and rate (light 759 

blue) decoding, than excitatory neurons (dark & light red respectively). The gray line denotes the 760 

entropy of the stimulus. (E) If PSTHs differ across stimuli but spike timing is stereotypical across 761 

trials (‘Rate + Trial Reliability’, top left, multiple trials per neuron above each other), coding 762 

becomes highly effective and independent of the cell-type and coding strategy (~25 cells). (F) If 763 

L4 PSTHs do not distinguish stimuli, but only the timing of individual neurons across trials is 764 

stereotypical (No Rate + Trial Reliability, top left), a remarkable shift occurs, with excitatory 765 

neurons reaching almost complete information for much smaller group sizes (~25 cells). In all 766 

plots the vertical grey line indicates where 90% of the information is represented. 767 

 768 
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Figure 5. Stimulus encoding by presynaptic single neurons and populations of neurons selectively 770 

influences the decoding performance of the postsynaptic excitatory or inhibitory neurons, 771 

respectively. 772 

 (A1) Stimulus information can be encoded in differences in rate or timing on the level of the 773 

population PSTH. Different combinations of these two coding dimensions are varied, with ΔT 774 

(abscissa) indicating different timing for different stimuli (different colors, see Fig. 4), and ΔC 775 

(ordinate) indicating different rates for different stimuli. Maximal information is achieved for high 776 

values of ΔT and ΔC. For each condition the population PSTHs and two example cells are shown 777 

(raster plot for 10 trials, above). Spike-times of individual neurons are Poisson-distributed given 778 

the PSTH. NB C1 and C2 denote the responses of two different example cells. (A2) Decoding of 779 

first spike timing reveals a greater sensitivity of inhibitory neurons (blue) to the level of 780 

information in the L4 population response, both for time and rate information in L4. Conversely, 781 

excitatory neurons (red) are comparatively insensitive. (A3) Decoding of rate again reveals a 782 

greater sensitivity of inhibitory neurons to the level of information in the L4 response for different 783 

rates. Since we did not limit the time window of analysis, neither of the cell types is influenced by 784 

variation in time, while leaving the rate information unchanged. (B1) Stimulus information can 785 

also be encoded in the reliable discharge of single units. We modulated the reliability by 786 

introducing variability in timing (SDT) or variability in count (SDC) independent of each other. 787 

Maximal information is achieved for SDT and SDC both close to 0, i.e. perfectly reliable responses. 788 

Colors and raster plots as in A1. (B2) Decoding of first spike timing reveals a great sensitivity of 789 

excitatory neurons to the L4 information in single unit responses for both variability in time (SDT) 790 

and rate (SDC). (B3) Decoding of rate shows a very strong sensitivity of excitatory neurons on the 791 

single unit information. Conversely, inhibitory neurons exhibit almost no sensitivity to single unit 792 

information in L4, and are thus dominated by L4 population information.  793 
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Figure 6. Neuronal information recovery is completed in <20ms after stimulus onset.  795 

(A) Time-scales of information recovery computed by calculating the MI between stimulus (not shown) 796 

and spike trains (single trial example shown) over time-windows of increasing lengths (6-30ms at 3ms 797 

steps) (B) For the ‘Rate + Poisson’ encoding in L4, both excitatory (red) and inhibitory (blue) neurons in 798 

L2/3 reach their respective maximal information (left: group size of 10 cells, the gray line denotes the 799 

entropy of the stimulus), ~25-30ms after stimulus onset. L2/3 inhibitory neurons (blue) encode more 800 

information, independent from the peri-stimulus time and group size (right). The color code shows the 801 

difference in MI between the excitatory and inhibitory groups, with red for larger MI in the excitatory, and 802 

blue for greater MI for the inhibitory neurons. (C) For the ‘Rate + Trial Reliability’ condition in L4, the 803 

information content of the two populations is quite similar (left) with a slight advantage for the inhibitory 804 

neurons at early times, but no dependence on group size (right). (D) In the ‘No Rate - Trial Reliability’’ 805 

case, the divergence between information content only begins around 12ms after stimulus onset, after which 806 

excitatory neurons achieve a substantial coding advantage, especially for smaller group sizes.  807 
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 808 

Figure 7. Multiplexed coding of touch.  809 

If intracellular information transfer, i.e. from EPSP-to-spike, results in a significant loss of near complete 810 

information, originally available in a single EPSP (Fig. 2), and if this information is recovered in local 811 

networks (Fig. 4 and 5) before the next sensory stimulus arrives (Fig. 6) using the rate and timing of spikes 812 

at the single cell and population levels (Fig. 4-6), selective decoding of stimulus properties by excitatory 813 

and inhibitory neural populations (Fig.5) will result in a multiplexed code for sensory processing.  (A) If 814 

excitatory and inhibitory neurons preferentially decode the stimulus information from the spike timing of 815 

individual neurons and the population rate of presynaptic neuronal activity (Fig. 5), respectively, 816 

information content of the activity in excitatory and inhibitory neurons should vary predictably – see the 817 

suggested coding schema for touch. (B-C)  The information content across the neural populations will also 818 

vary depending on the complexity of the stimulus. (B) During tactile object localization in freely behaving 819 

animals (Celikel and Sakmann, 2007; Voigts et al., 2015, 2008), for example, as the animal approaches the 820 

tactile target and makes multiple contacts, the information content will change not only because the 821 

kinematics of touch varies, e.g. the amplitude whisker deflections is reduced to match the predicted position 822 

of the sensory target (Voigts et al., 2015), but also the neurons will represent different features of the sensory 823 
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target.  (C) We speculate that information in the inhibitory neurons will better predict the stimulus location, 824 

although the information content of the excitatory neurons will eventually supersede as surface features are 825 

encoded with the subsequent contacts with the target.   826 

 827 

  828 
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