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Abstract 
 
For regulatory submissions of next generation sequencing (NGS) data it is vital for the analysis 
workflow to be robust, reproducible, and understandable. This project demonstrates that the use 
of the IEEE 2791-2020 Standard, (BioCompute objects [BCO]) enables complete and concise 
communication of NGS data analysis results. One arm of a clinical trial was replicated using 
synthetically generated data made to resemble real biological data. Two separate, independent 
analyses were then carried out using BCOs as the tool for communication of analysis: one to 
simulate a pharmaceutical regulatory submission to the FDA, and another to simulate the FDA 
review. The two results were compared and tabulated for concordance analysis: of the 118 
simulated patient samples generated, the final results of 117 (99.15%) were in agreement. This 
high concordance rate demonstrates the ability of a BCO, when a verification kit is included, to 
effectively capture and clearly communicate NGS analyses within regulatory submissions. BCO 
promotes transparency and induces reproducibility, thereby reinforcing trust in the regulatory 
submission process.  
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Introduction: 
At present, no widely accepted standard exists for reporting NGS (Next generation sequencing) 
data analysis. This lack of standardization has likely contributed to the "reproducibility crisis” in 
science1. The continued expansion of NGS data and technologies will require researchers, 
clinicians, industry professionals, and regulatory scientists to collectively address the issues of 
data reproducibility, standardization, and interoperability2. It can be difficult to communicate or 
interpret big data effectively3, as these types of analyses are difficult to share and reproduce. 
Despite how common data-driven research practices are, good data management is still generally 
insufficient4. Several factors may contribute to the paucity of strong data management practices, 
most saliently including “inadequacies in the computational and data management approaches 
available to biomedical researchers. In particular, tools rarely scale to big data5.”  
 
Source code is often required to mimic a study; however, very few of the well-known 
bioinformatics focused journals require authors to include source code and data used in drafting a 
publication. GigaScience6 
[(https://academic.oup.com/gigascience/pages/instructions_to_authors]), Elsevier Journal of 
Proteomics ([https://www.elsevier.com/journals/journal-of-proteomics/1874-3919/guide-for-
authors#txt87510]), Genome Research 
[(https://genome.cshlp.org/site/misc/ifora_overview.xhtml]), ASBMB 
[(https://www.asbmb.org/journals-news/editorial-policies#data_availability]), and PLOS 
Computational Biology [(https://journals.plos.org/ploscompbiol/s/materials-and-software-
sharing#172])) are a few that request the source code be included when possible. Although 
requesting source code is a step in the right direction to replicate a bioinformatics analysis 
pipeline, it is often not enough to understand the study and verify the results.  
 
United States regulatory agencies face an even greater challenge as they typically cannot make a 
request for something so general. The government guidance needs to be very specific, and 
contain no legal ambiguities. The US Food and Drug Administration (FDA) has a few regulatory 
guidance documents pertaining to NGS data that are center-specific7; however, none that are 
applicable agency-wide. In July of 2019, the FDA’s Center for Drug Evaluation and Research 
(CDER) released a Technical Specification on submitting NGS sequence data7. The technical 
specification was a strong step towards synchronizing communication efforts related to NGS 
data, and was designed to address questions around how NGS data are generated based on 
experience with reviews of early NGS submissions: What NGS analysis pipelines are being 
used? How are these pipelines being validated? What algorithms are being used for specific 
applications in a pipeline? Is there reproducibility between algorithms? What parameters are 
used by the pipeline? How are the parameters optimized? How will the analysis pipeline be 
evaluated for regulatory review? What information will be required to make a regulatory 
decision? While the technical specification provided a framework for pharmaceutical partners to 
follow when describing their analyses, it did not specifically address issues related to data 
reproducibility. 
 
Comparative analysis is essential to effective research and regulatory review so, the lack of 
submission requirements surrounding in-silico or computational experiments in any situation can 
make it difficult to find all the necessary data, scripts, and algorithms used8. The Common 
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Workflow Language (CWL)9 is a well-known and established standard, which, as a mechanism 
for portability of execution, exclusively captures procedural information. Research Objects 
(ROs)10, 11 is another specification that aims to improve the shareability of research and results, 
and which focuses on operating as an aggregation of all resources needed for execution in a 
containerized package like Docker 12. Both of these specifications adhere to a common set of 
principles, known as FAIR13, or Findable, Accessible, Interoperable and Reusable14. CWL is 
lightweight but only covers procedural practices, while RO has everything included and can be 
very bloated as a result. A lightweight option to regulate the process of reporting information for 
a bioinformatics pipeline15 is a pressing need.  
 
Early discussions to address the challenge of workflow communication began in 2012 at a small 
scale, and in 2014, the FDA’s Genomics Working Group16 convened a meeting to formally 
discuss the topic (https://www.fda.gov/media/90504/download). It was determined the resulting 
solution to workflow communication should satisfy four main criteria: 

1. Be human readable. 
2. Be computer readable: designed to structure information with predefined fields and 

associated meanings of values. 
3. Contain enough information to understand the computational pipelines, interpret 

information, maintain records, and reproduce experiments. 
4. Be immutable: designed to ensure the information has not been altered. 

 
Funding for a technical solution began shortly thereafter. Five workshops, two publications, and 
input from over 300 participants associated with academic, government, and private institutions, 
resulted in the solution now known as BioCompute Object, and which has recently been 
standardized as IEEE 2791-202017.  
 
BioCompute Object (https://biocomputeobject.org) is a solution that includes a mechanism for 
recording provenance, metadata, execution environment, and the biological relevance of a 
computational analysis14. Similar to wet lab experiments, a computational analysis may 
incorporate a multitude of processes, each of which could also require a detailed description of 
the parameters, inputs, outputs, dependencies, and context for complete understanding of the 
analysis and its results. 
 
A document that conforms to the IEEE 2791-2020 standard is known as a BioCompute Object 
(BCO). A BCO abstracts the concept of a computational analysis, making it platform- and tool-
independent. Information in a BCO is categorized into conceptually significant “Domains,” 
making information easy to find. BCOs have been tested in a variety of contexts such as 
biocuration18-20, as a tool for coordinating a large number of geographically separate researchers 
(in the context of the World Health Organization’s ReSeqTB21 efforts); furthermore, as reported 
in this document, BCOs have been leveraged as a mechanism for transparently communicating 
the NGS results from a clinical trial to the FDA as part of a regulatory submission.  
 
The work reported here was a collaboration between GW (George Washington University, 
Washington, D.C., United States), FDA (Food and Drug Administration, United States) and 
DDL (DDL Diagnostic Laboratory, Rijswijk, The Netherlands) to use a BCO accompanying a 
regulatory submission: A private industry collaborator (DDL) analyzed data provided by GW 
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using a proprietary pipeline, and submitted the results and a BCO describing the process to the 
FDA Reviewer, who did not have prior access to the analysis process used by the industry 
collaborator. This proof-of-concept project began with simulation of NGS data to mimic a 
clinical trial22 submitted it to the FDA. The submission was in the form of a Verification  Kit for 
review as outlined in Figure 1. A Verification  Kit consists of the initial data and the 
accompanying template BCO (tBCO), which can be thought of as the initial blueprint for a more 
extended analysis. The tBCO can provide the basis for a wide variety of analysis and also used 
for verification and other researchers can map their own analysis to a tBCO (parent). In contrast 
with a tBCO, is a run BCO (rBCO). The rBCO can only exist as a derivative of the tBCO, and is 
a replicate of the tBCO. For example, in this study the DDL Athena tBCO (parent) is the first 
replicate and it has 99 rBCOs (children) that are derived from the tBCO. The rBCO should only 
differ from the tBCO (parent) in the inputs and outputs listed. 
 
The participant from private industry created a tBCO to report the results of their proprietary 
pipeline (Figure 2), which had been specifically validated  for viral (CMV, HBV, HCV ,  IAV, 
IBV, RSV, SARS-CoV-2 and WHV) variant calling analysis of NGS results from patients 
undergoing viral treatment to assess for resistance-associated amino acid substitutions in the 
target viral proteins. The DDL Athena pipeline has been previously used to perform variant 
calling analysis from several clinical trials with different trial phases (1-3). With this project we 
have specifically mimicked a clinical trial where a combination of drugs against HCV genotype 
1a was being tested. Antiviral drugs against hepatitis C virus (HCV) target either nonstructural 
protein 3/4A (NS3/4A) protease inhibitors, NS5A inhibitors, or NS5B polymerase inhibitors23. 
Treatment type for HCV genotype 1 (GT1) depends on a variety of conditions: subtype, presence 
of cirrhosis, and considerations of medication and insurance costs 
(https://www.hepatitisc.uw.edu/go/treatment-infection/treatment-genotype-1/core-
concept/all#studies-retreatment-adults-hcv-genotype-1-ledipasvir-sofosbuvir). Different 
combinations of two or three drugs can clear HCV in more than 90% of patients, including 
populations that were previously treatment resistant23.  
 
Several approved regimens for HCV include sofosbuvir (SOF), which targets the NS5B 
polymerase inhibitor and inhibits viral replication. Given sofosbuvir is known to have a high 
barrier to resistance23, bioinformatics approaches have been used to “characterize potential 
resistance-associated substitutions.” A report by FDA collaborators describes the methods to 
process/analyze NGS data submitted as part of the sofosbuvir (SOF) resistance analysis data 
set24.   
 
To test the utility of a BCO, upon receipt of the Verification Kit (Athena tBCO and the in-silico 
NGS samples), the FDA collaborator did an independent assessment of the reads, generated an 
FDA tBCO , and then compared the results of the two independent analysis using the tBCO . The 
goal was to determine: 1) comparability of results; 2) comparability of BCOs; 3) if the FDA can 
rely upon a tBCO generated by an outside source for accurate representation of the analysis 
pipeline and the results. The results of both pipelines were in concordance and provided the 
necessary information about the analysis pipeline. This synthetic clinical trial resistance data set 
was successfully reproduced using the tBCO as a primary reference in the submission and 
following the parametric and pipeline steps captured within. 
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Results  

Results: Pipeline and example trial 
 

We simulated a 100 patient clinical trial where 
18% of the patients experienced a treatment 
failure after eight weeks, which is tabulated in 
table 1. The in-silico generated samples have 
amino acid variants at the frequencies 
indicated in table 2. The variations that were 
introduced into the reference HCV GT1a 
sequences, listed in table 3, represented 
resistance-associated substitutions known to 
arise against a triple drug combination known 
as 3D.  This treatment regimen  includes a 
protease inhibitor (paritaprevir) + an NS5A 
inhibitor (ombitasvir) + a polymerase inhibitor 
(dasabuvir). Here is the scenario: After 8 
weeks of treatment, the failure subjects 
experience a virologic breakthrough (a serum 

viral load is detected after being undetectable for several weeks) and treatment was stopped for 
those subjects. The sponsor collected two samples for sequencing, one at baseline prior to the 
initiation of drug treatment (for all subjects) and one at Week 9 (for treatment failure subjects) 
when the breakthrough was discovered25. The synthetic viral reads were uploaded to the GW 
public instance of the HIVE platform26, 27 and shared with a representative from each of the 
respective institutions. The full set of reads generated is available for download from 
https://hive.biochemistry.gwu.edu/datasets#mockHCV1aTrial. 

Results: DDL Athena BCO and Verification Kit 
The data analysis of synthetic reads by DDL is described in Figure 2. The specific use case of the 
DDL Athena pipeline verified was for detection of minor HCV GT1a variants on the NS3, 
NS4A, NS5A and NS5B genes. The objective, to lighten the burden of communication during 
FDA submission while enabling the discovery of discrepancies found between the data analysis 
pipelines, was facilitated by using a BCO during our mock clinical trial data submission. 
 
The DDL Athena template BioCompute Object was written collaboratively after the analysis was 
completed for the first two samples. This exercise resulted in a completed BCO (Supplementary 
File 1) available at https://w3id.org/biocompute/portal/BCO_00022530 with robust provenance, 
usability, extension, parametric, input, description domain, and output domains.  

 
The BioCompute Object error domain is used to record values that gauge the accuracy and 
precision of the analysis the BCO describes. The empirical error subdomain represents observed 
variation or errors in a pipeline. For this project it was constructed from a tabulated comparison 
of the known values for the initial baseline sample and the initial treatment failure sample (table 

Table 1. The relationship between the various 
simulated patients, samples, and files are tabulated 
here. We simulated 100 patients with a total of 118 
samples which yielded a total of 236 paired-end 
FASTQ files. Eighteen of the patients were simulated 
to experience a treatment failure. The treatment 
failure population had a total of two additional 
samples taken (4 FASTQ files). 
 

 Items samples files 

Patient 118 236 

Baseline timepoint 100 200 

Treatment failure timepoint 18 36 
Items included in 
verification kit  2 4 
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3). This was based on previous work28 with the Unified Variant Pipeline (UVP) for ReSecTB21, 
which can be found in the UVP GitHub repository (https://github.com/biocompute-objects/UVP-
BCO). The algorithmic error domain represents built-in thresholds for error. The DDL Athena 
pipeline had a variant detection threshold of 1%, a read quality score requirement of  Q>20, and 
a coverage requirement of 500 reads to call a mutation at that locus. Together with the complete 
DDL Athena BCO, the two samples constitute the “Verification Kit”, as outlined in Figure 3. 
 
The FDA-CDER reviewers will typically provide 
the following recommendation for NGS  
submission to Division of Antiviral products: The 
Division of Antivirals performs an independent 
assessment of NGS data for resistance analyses. 
Please provide the raw fastq files and a frequency 
table of variations detected along with a detailed 
description of your NGS analysis pipeline. We 
encourage you to submit a mock dataset prior to 
the regular submission to ensure that the 
information that you intend to submit is acceptable 
and can be transferred to the agency. For details on 
what and how to submit NGS data to the division, 
please see the Guidance for Industry Technical 
Specifications Document, Submitting Next 
Generation Sequencing Data to the Division of 
Antivirals7. 
 
The BCO is used to describe the specifics of an NGS data analysis workflow and necessary to 
determine the quality of the analysis and FAIR principles. As there are so many different 
analysis methods, many of which are perfectly valid, there is no way to specify all possible 
workflows.  

Results: FDA reviewer results comparison and verification kit  
Samples from all subjects were sequenced at the initiation of treatment (baseline). Eighteen 
subjects who were simulated to have failed the 3D DAA regimen 
(paritaprevir+ombitasvir+dasabuvir) to treat their HCV GT1a infection at Week 9 of treatment 
(treatment failure) had a second sample sequenced at that time point. Supplementary Table 1 lists 
the 243 comparative variant calls for the entire treatment failure population in the mock trial. 
Comparison of the two methods show only two of the 242 variant calls (0.8%) were not in 
agreement. The threshold for agreement between two variant calls required the two following 
conditions: difference in coverage <500 reads  and the difference in variant frequency <0.05%.  
 
This proof-of-concept project demonstrated the utility of using BCO to communicate a complex 
NGS analysis workflow and the NGS results from that workflow in a robust and easily 
interpretable format suitable for regulatory review. The BCO provided complete transparency on 
the NGS data analysis workflow, provided a rational and interpretable structure of the data 

Table 2. The expected substitution frequencies 
observed in the baseline and treatment failure 
populations. 
 
Gene Substitution 

(amino acid) 
Baseline 
variation 

Treatment 
failure 
variation 

NS3 D168A 0.05% 22.00% 

NS3 D168Y 1.10% 56.00% 

NS5A M28T 1.00% 71.00% 

NS5A M28S 8.00% 3.00% 

NS5A Q30R 0.08% 18.00% 

NS5B C316N 0.00% 6.00% 

NS5B M414T 3.00% 44.00% 

NS5B S556G 0.00% 3.00% 
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analysis, contained the exact parameters used for the analyses, and delivered the verification kit 
from which it was possible to determine that the analysis pipeline was fit for its purpose. 

Table 3. The empirical error subdomain represents observed variation or error in a pipeline. This table displays 
the values of the empirical error domain for both tBCOs discussed in this paper (Athena tBCO and FDA tBCO). 
The first three columns (Percentage, Reads Generated, and Coverage) were applied for both analyses. 
Percentage: The portion of the entire population that the indicated amino acid substitution represents. Reads 
generated: number mutated of in-silico reads created to obtain the desired coverage and percentage for 
experiment. Coverage: The coverage provided for the genome based on the number of reads generated for the 
experiment (number of reads generated * read length / genome length). DDL Athena read count: number of 
reads identified by the Athena pipeline with mutation with the indicated variation. DDL Athena coverage: 
Total number of reads mapped to location. DDL Athena percentage: Athena determined percentage of 
identified mutation. DDL Athena forward count: Number of reads mapped to the forward strand for this 
position. DDL Athena reverse count: Number of reads mapped to the reverse strand for this position. DDL 
Athena FR score: FR score is a measure of the forward vs revers count for a location. Values < 0.5 are 
desirable. HIVE read count: number of reads identified by the Athena pipeline with mutation with the 
indicated variation. HIVE coverage: Total number of reads mapped to location. HIVE percentage: DDL 
Athena determined percentage of identified mutation. DDL Athena STDEV.P: value of STDEV.P for 
percentage and DDL Athena percentage. HIVE STDEV.P: value of STDEV.P for percentage and HIVE 
percentage. 
 

 
D168Y D168A M28T M28S Q30R C316N M414T S556G 

Percentage 0.56 0.22 0.71 0.03 0.18 0.06 0.44 0.03 
Reads 
generated 90029 35369 114144 4823 28938 9646 70737 4823 

Coverage 2800 1100 3550 150 900 300 2200 150 
DDL Athena 
read count 2853 1050 3652 149 934 297 2215 127 
DDL Athena 
coverage 5081 5081 5158 5158 5111 5002 5059 4738 
DDL Athena 
percentage 0.5615 0.20665 0.70803 0.02889 0.18274 0.05938 0.43783 0.0268 
DDL Athena 
quality 33.95 33.67 33.84 33.21 33.45 33.69 33.97 32.34 
DDL Athena 
forward 
count 1444 534 1794 73 449 150 1103 51 
DDL Athena 
reverse count 1409 516 1858 76 485 147 1112 76 
DDL Athena 
FR score 0.0186 0.0284 0.004 0.0093 0.0415 0.0466 0.0583 0.228 
HIVE read 
count 2853 1081 3623 156 947 302 2206 128 
HIVE 
coverage 5116 5116 5136 5136 5077 5007 5050 4739 
HIVE 
percentage 0.558 0.209 0.735 0.031 0.185 0.061 0.437 0.027 
DDL Athena 
STDEV.P 7.500E-04 6.675E-03 9.850E-04 5.550E-04 1.370E-03 3.100E-04 1.085E-03 1.600E-03 
HIVE 
STDEV.P 1.000E-03 5.500E-03 1.250E-02 5.000E-04 2.500E-03 5.000E-04 1.500E-03 0.000E+00 
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Discussion 
Here, we present the first synthesized trial submission of an analysis recorded as a BCO and 
submitted to an FDA Reviewer, along with the post-submission Reviewer analysis. This study 
was designed to simulate the generation of NGS data from a resistance analysis conducted as 
part of a clinical trial assessing the efficacy of an antiviral drug against HCV GT1a, and the use 
of BCO to capture the analyses and communicate the results and analysis processes to a 
regulatory agency. The results of this project indicate that the BCO is capable of capturing the 
processing workflow of those data by a private entity, and is suitable for submission of the 
analyses to the FDA.  NGS analysis is used to assess a viral target at baseline (prior to drug 
administration) and near time of failure (on drug treatment) to determine if amino acid changes 
can be identified that confer resistance to the drug. 
 
Communicating NGS data results has been a persistent challenge. The size of the data and 
complexity of the analysis often means direct observation is not feasible when evaluating how an 
analysis was conducted. Other methodologies need to be employed to evaluate the precision and 
accuracy of an analysis, and many times this is not immediately possible because of missing 
information. In many instances, an independent assessment of the data submitted for regulatory 
review has been required because of limitations associated with access to tools & pipeline 
specifics from the sponsor. Often review and verification of results is difficult because pipeline 
and parameters are vague, not included, or are treated as a "black-box”. Alternatively, an 
analysis pipeline may contain manual data analysis that is not described in great detail, if at all. 
All of these scenarios are examples of common but avoidable complications in the current ad hoc 
system of method communication, and underscore the need for more thorough communication 
and clarification. 
 
Both FDA and DDL received the reads, did an independent analysis, created a tBCO, generated 
the subsequent rBCOs,  and aggregated the results. Both groups compared the results and agreed 
that they were in concordance. The FDA reviewer compared tBCOs and concluded that the DDL 
BCO and the FDA BCO were comparable, that the DDL tBCO was interpretable, and that it 
provided sufficient information to perform a regulatory review of the NGS data. 
 
Using a tBCO also enabled us to address each of the questions outlined in the introduction. 
How are the data being analyzed? The specific variables used to filter the results and conduct 
quality assurances were all listed. Are the results robust? By comparing the DDL and FDA 
analysis we demonstrated that the results were robust, despite being generated on different 
analysis pipelines. And in turn each BCO for the respective pipeline demonstrated the robustness 
of the results via the error domain. Are the results reproducible? The use of DDL’s Athena BCO 
to create the HIVE BCO demonstrates that the results are reproducible, and that the BCO 
mechanism is platform independent. What programs and parameters are used? Each of the tools 
used is recorded with the inputs, outputs, dependencies, and parameters. Is the analysis pipeline 
publicly available? While the public availability of all aspects of a pipeline is not required to use 
or compose a valid BCO, the methods presented here can be easily applied in an open data 
context. 
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The BCO is used to describe the specific details of this NGS data analysis workflow that are 
missing on the current guidance, but that are necessary to determine the quality of the analysis 
and adherence to FAIR principles. As there are so many different analysis methods, many of 
which are perfectly valid, there is no way to specify all possible workflows.  
 
During regulatory review the questions a reviewer must answer are “What data are necessary to 
make a regulatory decision?”, “Are summary data from one analysis pipeline sufficient?”, and  
“How will the analysis pipeline be validated?”. The BCO (IEEE-2791-2020) standard ensures 
that the content to answer these questions are included, and the inclusion of a verification kit 
answers these questions explicitly. The use of a full Verification Kit provides the scaffold needed 
for a workflow/pipeline to adhere to FAIR data and reproducibility principles.  

Methods  

Methods summary 
To provide strong evidence for a proof-of-concept, it was critical to replicate an actual clinical 
trial in as much detail as possible. The sequencing files reported by a published HCV clinical 
trial (https://clinicaltrials.gov/ct2/show/NCT02613403) were reproduced in the in-silico samples 
we created. The amino acid substitutions outlined in table 2 was used to create in-silico reads 
which were distributed to DDL for analysis, and represent the full scope of the analysis in a 
BCO. Once the analysis was completed, the samples were transferred to the FDA reviewer via 
HIVE along with the BCO. No other information was provided to the reviewer. The FDA 
reviewer then recreated the analysis using HIVE tools and compared the results. The generalized 
workflow is outlined in Figure 1. 

Analysis design and example trial 
To replicate the example clinical trial, the following scenario was developed: A population of 
individuals (n=100 ) chronically infected with Hepatitis C Virus are treated with a triple drug 
combination known as 3D, which includes a protease (NS3-4A) inhibitor (paritaprevir) + an 
NS5A inhibitor (ombitasvir) + a polymerase (NS5B) inhibitor (dasabuvir). The sponsor collected 
two samples for NGS, one at baseline prior to the initiation of drug treatment and one at Week 9, 
to follow up for identification of drug resistance substitutions in subjects who failed treatment. 
We mimicked the presence of 18% (n=17/94) samples with a viral breakthrough at Week 8 as 
indicates a treatment failure and implies the stop of treatment. A viral breakthrough is analyzed 
in this study by comparing the amino acid % detected by NGS at baseline compared to sequences 
derived from Week 9 samples.  The Week 8 sample is considered to be the timepoint when 
resistance would be observed based on predetermined sampling and the Week 9 sequencing 
represents when the sample was sequenced. 
 
 
 
The simulated sequencing was designed to replicate 150 base pair Illumina MiSeq, with an 
output of paired end reads in FASTQ format.  
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Synthetic read generation for trial and verification kit 
Given the lack of intronic regions in viral genomes, the first base of the codon (C1) 
corresponding to a given protein residue (R) could be calculated using the formula 

�� �  � � ��� 	 �
 �  �) 
where S is the position in the genome where the gene starts. For each desired mutation the 
protein residues corresponding to the codon of interest as well as for two codons before and after 
were confirmed to match the reference (table 4). The nucleic acid mutation applied to the in-
silico sequence was the one that generated the desired protein substitution with the fewest 
number of nucleic acid changes. 
 
Table 4. Sequences used to generate the in-silico reads for the paired-end baseline samples (n=100) and for the 
paired-end Treatment Failure samples (n=18). 
 

Sequence name 
Accession 
number 

Genome 
location Sequence Name 

HCV_GT1a_H77 NC_004102.1 1-9646 Hepatitis C virus genotype 1a, complete genome 

HCV_GT1a_H77_3 NC_004102.1 3420-5312 NS3 protease gene 

HCV_GT1a_H77_5A NC_004102.1 6258-7601  NS5A gene 

HCV_GT1a_H77_5B NC_004102.1 7602-9374 NS5B polymerase gene 
 
Single codon substitution genomes were created as described above for all given protein 
substitutions. For the 'Baseline sample' read set, the sum of the populations containing any 
substitution was less than 100%. Reads could therefore be generated by combining reads from 
mutated genomes with single mutations (supplementary table 2). The number of reads generated 
by the HIVE DNA-InSilico tool26 for each variant sub-population was directly proportional to 
the protein substitution within the entire population, i.e., for a substitution with a frequency of 
8%, eight reads were generated. The remaining reads were replicated directly from the wild type 
(reference) genome. Reads were then divided between the 100 pseudo-sample read pair files with 
care taken to preserve order so as to retain the utility of the paired end reads. 
  
The 'Treatment Failure sample' reads required the generation of multi codon substitution 
genomes because the sum of protein substitutions in the in-silico population was greater than 
100%. This added a significant level of complexity to the read generation process. Multi codon 
substitution genomes were created as above combining nucleic acid mutations at all 
nonconflicting positions. For each mutation a number of reads was determined proportional to 
the given percentage of the mutant within the in-silico population, this added to higher than the 
number of reads needed to create the coverage of interest. Read creation followed an iterative 
process. First, a multi mutated genome containing all nonconflicting mutations was created. 
HIVE DNA-InSilico was used to create enough reads from this genome to cover the number of 
reads needed for the rarest desired substitution. Second, the number of reads needed for all 
substitutions present in this multi-mutated genome were reduced by the number of reads created. 
These steps were repeated until no more mutant reads were needed and the remaining coverage 
was obtained from the wild type reference genome (supplementary table 3). Reads were divided 
as for the 'baseline' pseudo-sample. The synthetic viral reads were uploaded to the GW public 
instance of the HIVE platform and shared with a representative from each of the respective 
institutions. The full set of reads generated is available for download from  
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https://hive.biochemistry.gwu.edu/datasets#mockHCV1aTrial . 

Clinical trial data analysis by DDL Athena Pipeline  
The DDL Athena virology pipeline (https://www.ddl.nl/bio-informatics/#athena-virology-
pipeline) was used to analyze the in-silico NGS reads created to mimic the HCV clinical trial. 
This variant calling analysis pipeline has been specifically developed and validated, as required 
for clinical trials evaluating antiviral drugs, where viral resistance substitutions should be 
monitored.  
 
The flowchart (Figure 2) shows the different steps of the DDL Athena-pipeline. The initial 
analysis of DDL Athena is to perform Quality Control (QC) on the input dataset. QC values are 
determined (number of reads, average read length, % of reads with average Q≥30), which can 
indicate bad data quality. After QC analysis, reference selection is carried out, using 10% of 
reads, to determine the specific reference to be used on the first mapping step, by assigning each 
of the reads to one of the selected references, using Bowtie229 and storing the aggregate results in 
an SQL database. In the first mapping step, reads are aligned to the selected reference using 
Bowtie229. The coverage is calculated, by calculating the per nucleotide (A, T, G, C and DEL) 
per position read counts and, subsequently, a first consensus sequence is extracted for each 
sample. In the second mapping step, the sample reads are remapped to the extracted first 
consensus sequence to increase the accuracy of the mapping and obtain maximum coverage. 
Finally, in the sample composition step of the DDL Athena pipeline, the position of the reads in 
the second mapping is used to compare the read contents with the original reference sequence. 
From this comparison, similarities as well as differences (substitutions, deletions and insertions) 
between reads and the reference sequence can be identified. This comparison is performed on 
nucleotide, codon and amino acid levels to ensure the traceability of the analysis and to allow 
viral sequence variation on these different levels. If data analysis is required to compare the 
variant calling results between different viral genotypes (e.g. HCV1, HCV2 and HCV3), DDL 
Athena can translate the individual genotype results to an universal reference (e.g. HCV1) and 
report the results accordingly. As seen in Figure 3 the specific features of the DDL Athena 
analysis applied in this study are highlighted and the different parameters used are listed. On 
completion of an Athena analysis different files can be reported: sample consensus sequence 
(fasta files) (similar to Sanger sequencing) with different ambiguity percentage if required (e.g. 
25% or 15%), tab-delimited text files consisting of variant data on all aforementioned levels (NT 
mapping level and Target sublevels) that include all the reference and variant records as derived 
from the read mappings along with record statistics, the gap tables with regions treated as gaps 
based on the minimum coverage threshold, a summary of the coverage achieved for each target, 
a full genome coverage graph and the per target coverage graphs (png files). Finally, also a high-
level overview of this data is presented in an automatically generated pdf report for every 
sample. DDL Athena reports are aligned with the latest FDA recommendations on how to report 
next generation sequencing data. 
 
During this study the specific data analysis performed by DDL Athena have been described in 
the provenance, usability, description, execution, parametric, input and output domains. The 
error domain was not included in the initial proof of concept but developed after the analysis had 
been completed. The finished BCO is included in 1. 
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When creating the Error Domain and verification kit to represent the DDL Athena analysis, the 
strategy built on previous work28 with the Unified Variant Pipeline (UVP) for ReSecTB21, which 
can be found in the GitHub repository for UVP (https://github.com/biocompute-objects/UVP-
BCO).  
 
The variant calling results were tabulated (Table 3) against the known variant proportions of the 
initial baseline sample and the initial treatment failure sample. The standard deviation of the 
population between the known variant percentages and called variant percentages was used to 
assess the actual error. Column descriptions are below, and are summarized in the table. The 
table was then converted to a JSON object with each row as an object.  
 
Given a reference length of 9,646, a desired coverage of 5,000, and a read length of 300 (150 b.p. 
paired end reads), the total number of reads was calculated as (reference length • coverage / read 
length), or 160,767 reads. Synthetically introduced mutations were generated sequentially, 
according to the table. 
 
“Percentage”: Proportions of variants desired in each sample (baseline and Week 9), expressed 
as a percentage of reads, taken from the representative clinical trial. 
 
"Reads Generated": The number of reads that sequenced the mutation in question. The value 
was calculated as the total number of reads for that experiment (calculated using the 
Lander/Waterman equation[PMID: 3294162]), multiplied by the percentage of reads 
representing the mutation. 
 
“Coverage”: Mean coverage per read times the number of reads representing that mutation. 
 
“Mutation Call Prob”: Probability that the DDL Athena pipeline will call the mutation in 
question. The Poisson distribution was used to calculate the probability that a mutation call 
would be made for each sample, based on the given parameters. For a population of genomes, 
the expected rate λ was calculated as total coverage • the proportion of the sample containing the 
mutation. The DDL Athena pipeline will make a mutation call if >= 1% of the reads representing 
a particular locus contain a variant, or λ • 1%, and this was used as the number of occurrences k. 
The probability was calculated as 1 - the cumulative probability of 0 through n-1, where n is the 
detection threshold. 
 
The intended use of the DDL Athena pipeline to be verified was the detection of minor HCV 
variants on NS3, NS4a, NS5A and NS5B. After FDA data submission, the data set was 
reanalyzed by the FDA pipeline, allowing for the detection of discrepancies between pipelines 
during data revision. The objective was to determine if the BCO facilitates FDA submission and 
to investigate possible discrepancies found between data analysis pipelines. 

FDA reviewer generated BCO and results comparison 
The DDL Athena BCO was uploaded to HIVE when completed by DDL and shared with the 
FDA reviewer. To more faithfully recapitulate an actual regulatory submission, the FDA 
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Reviewer did not have access to the data and procedural steps prior to submission. GW 
participants acted as intermediaries to keep information blinded. Using the BCO and synthetic 
reads generated, a workflow was constructed using HIVE-hexagon30 and HIVE heptagon26, 27. A 
BCO was created using the HIVE BCO tools and is included as #HIVE_BCO.json.  
 
The treatment failure samples of the synthetic reads were all reanalyzed using the HIVE pipeline 
described above. Data quality control was also done by HIVE. Variant calling was done using 
the HCV1a genome and the variant calls for each gene (NS5a, NS3, NS5b) from the HIVE 
pipeline were output to a CSV and combined with the DDL Athena variant calls to determine if 
the two methods were in “agreement” (Supplementary #table AnalysisComparison). The 
agreement was determined by the following conditions: 
 
If |���� 	 ����| � 500  &  |���� 	 ����| � 500  &  |���� 	 ����| � 0.05 ⇒ 
AGREEMENT 
 
where ���� is the variant coverage detected by HIVE, ���� is the variant coverage detected by 
DDL Athena, ���� is the total coverage detected by HIVE, ���� is the total coverage detected 
by DDL Athena, � !� is the variation percentage calculated by HIVE, and � !� is the variation 
percentage calculated by DDL Athena. This set of conditions requires that the two methods have 
a variant coverage within 500 reads of each other and a frequency within 0.05. Given these 
conditions only two of the 242 variant calls (0.8%) were not in agreement.  
 
The empirical error subdomain for the HIVE BCO was tabulated the same way as the DDL 
Athena BCO empirical error subdomain. Table 3 was converted to the JSON format and 
included as the empirical error subdomain in the HIVE BCO. The algorithmic subdomain was 
populated using the variant frequency cutoff value of 1% and the quality score cutoff of 25.  
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Figure legends: 
Figure 1. Mock Clinical Trial Next-Gen Sequencing Workflow. 
To mimic a clinical trial,136 in-silico samples were generated. Of these 36 were representative of 
a treatment failure population. The data were analyzed and a BCO was generated to report the 
analysis. The BCO was submitted to the FDA along with the data and  a verification kit.  
 
Figure 2. Overview of DDL Athena Pipeline.  
In the Genotyping/Reference Selection step, 10% of raw reads from fastq files are compared 
against all genotype and subtype reference sequences from a specific organism. After selecting 
the most appropriate reference, in the First Mapping step, all the raw data reads are mapped 
against this sequence. In step three, Coverage, the number of reads that reach desired quality 
threshold on each position are considered, which is further used to construct the consensus 
sequence. In the First Consensus Extraction step, a consensus sequence per sample, is derived 
based on coverage values. Insertions and deletions are not built in when creating the first 
consensus sequence. To improve the mapping statistics and coverage on each position of the 
reference sequence, in the Second Mapping step, all raw reads are mapped against the first 
consensus. In step six, Sample Composition, all the differences as well as similarities between 
the selected official reference sequence and raw reads of a samples are built on amino acid, 
codon, and nucleotide level. In QC Results step, quality control results are generated which help 
to determine the quality of the sequencing run of a sample. Using the coverages calculated from 
second mapping, a second consensus sequence is constructed, in Second Consensus extraction 
step, which consists of insertions and deletions found in raw data reads. Finally, in the Reference 
Conversion step, variant records from a genotype or subtype is converted to the universal (main) 
reference. 
 
Figure 3. Cartoon Representation of DDL Athena Workflow Highlighting Verification Kit 
This figure represents the tBCO from the DDL Athena pipeline. Light blue indicates the 
pipelines steps described in the description domain: QC, Reference selection, First mapping, 
First consensus extraction, Second mapping and Sample composition. Reference conversion, 
although is part of the pipeline, is not highlighted, as this feature is not used in this project. Only 
the specific pipelines steps used are described in the BCO. The input files listed in the input 
domain are represented in blue shade. On light red, the output files are represented as listed in 
the output domain. The different parameters applied on the different pipeline steps are listed in 
an orange share. In green, the verification kit is represented and specifically determined from the 
input and output files of this project.  
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Supplementary files legends  
Supplementary File 1: Athena.json 
 
Supplementary File #HIVE.json 
 
Supplementary Table 1. The comparative variant calls for all 236 samples in the mock trial 
submission. Based on a set of conditions determined by Donaldson it was determined that the 
two methods only two of the 242 variant calls (0.8%) were not in agreement. The conditions 
required that to be “in agreement” each variant call have a variant coverage within 500 reads of 
each other and a frequency with in 0.05%.  
 
Supplementary table 2. The number of reads generated by the HIVE DNA-InSilico tool for each 
mutation was directly proportional to the population of the corresponding protein mutation 
within the population. The remaining reads were taken from the wild type reference genome. 
Reads were then divided between the 200 pseudo-sample read pair files with care taken to 
preserve order in order to retain the utility of the paired end reads. 
 
Supplementary table 3. These reads required the generation of multi codon substitution genomes 
because the sum of protein mutations in the in-silico population was greater than 100%. This 
added a significant level of complexity to the read generation process. Multi codon substitution 
genomes were created as above combining nucleic acid mutations at all nonconflicting positions. 
For each mutation a number of reads was determined proportional to the given percentage of the 
mutant within the in-silico population, this added to higher than the number of reads needed to 
create the coverage of interest. Read creation followed an iterative process. First, a multi mutated 
genome containing all nonconflicting mutations was created. HIVE DNA-InSilico was used to 
create enough reads from this genome to cover the number of reads needed for the rarest desired 
mutation. Second, the number of reads needed for all mutations present in this multi-mutated 
genome were reduced by the number of reads created. These steps were repeated until no more 
mutant reads were needed and the remaining coverage was obtained from the wild type reference 
genome.  
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