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Abstract  14 

Neuronal oscillations putatively track speech in order to optimize sensory processing. However, it 15 

is unclear how isochronous brain oscillations can track pseudo-rhythmic speech input. Here we 16 

propose that oscillations can track pseudo-rhythmic speech when considering that speech time is 17 

dependent on predictions flowing from internal language models. We show that the temporal 18 

dynamics of speech are dependent on the predictability of words in a sentence. A computational 19 

model including oscillations, feedback, and inhibition is able to track the natural pseudo-rhythmic 20 

speech input. As the model processes, it generates temporal phase codes, which are a candidate 21 

mechanism for carrying information forward in time. The model is optimally sensitive to the 22 

natural temporal speech dynamics and can explain empirical data on temporal speech illusions. Our 23 

results reveal that speech tracking does not only rely on the input acoustics but instead entails an 24 

interaction between oscillations and constraints flowing from internal language models. 25 
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Introduction 27 

Speech is a biological signal that is characterized by a plethora of temporal information. The 28 

temporal relation between subsequent speech units allows for the online tracking of speech in order 29 

to optimize processing at relevant moments in time [1-7]. Neural oscillations are a putative index 30 

of such tracking [3, 8]. The existing evidence for neural tracking of the speech envelope is consistent 31 

with such a functional interpretation [9, 10]. In these accounts, the most excitable optimal phase of 32 

an oscillation is aligned with the most informative time-point within a rhythmic input stream [8, 33 

11-14]. However, the range of onset time difference between speech units seems more variable than 34 

fixed oscillations can account for [15-17]. As such, it remains an open question how is it possible 35 

that oscillations can track a signal that is at best only pseudo-rhythmic [16].  36 

  Oscillatory accounts tend to focus on the prediction in the sense of predicting “when,” 37 

rather than predicting “what”: oscillations function to align the optimal moment of processing given 38 

that timing is predictable in a rhythmic input structure. If rhythmicity in the input stream is 39 

violated, oscillations must be modulated to retain optimal alignment to incoming information. This 40 

can be achieved through phase resets [15, 18], directly coupling of the acoustics to oscillations [19], 41 

or the use of many oscillators at different frequencies [2]. However, the optimal or effective time 42 

of processing stimulus input might not only depend on when you predict something to occur, but 43 

also on what stimulus is actually being processed [20-23]. 44 

What and when are not independent, and certainly not from the brain’s-eye-view. If 45 

continuous input arrives to a node in an oscillatory network, the exact phase at which this node 46 

reaches threshold activation does not only depend on the strength of the input, but also on how 47 

sensitive this node was to start with. Sensitivity of a node in a language network (or any neural 48 

network) is naturally affected by predictions in the what domain generated by an internal language 49 

model [24-27]. If a node represents a speech unit that is likely to be spoken next, it will be more 50 

sensitive and therefore active earlier, that is, on a less excitable phase of the oscillation. In the 51 

domain of working memory, this type of phase precession has been shown in rat hippocampus [28, 52 

29] and more recently in human electroencephalography [30]. In speech, phase of activation and 53 

perceived content are also associated [31-35] and phase has been implicated in tracking of higher-54 

level linguistic structure [18, 36, 37]. However, the direct link between phase and the predictability 55 

flowing from a language model has yet to be established. 56 
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The time of speaking/speed of processing is not only a consequence of how predictable a 57 

speech unit is within a stream, but also a cue for the interpretation of this unit. For example, 58 

phoneme categorization depends on timing (e.g., voice onsets, difference between voiced and 59 

unvoiced phonemes), and there are timing constraints on syllable durations (e.g. the theta syllable 60 

[19, 38] that affect intelligibility [39]. Even the delay between mouth movements and speech audio 61 

can influence syllabic categorizations [20]. Most oscillatory models use oscillations for parsing, but 62 

not as a temporal code for content [40-43]. However, the time or phase of presentation does 63 

influence content perception. This is evident from two temporal speech phenomena. In the first 64 

phenomena, the interpretation of an ambiguous short /α/ or long vowel /a:/ depends on speech rate 65 

(in Dutch; [44-46]). Specifically, when speech rates are fast the stimulus is interpreted as a long 66 

vowel and vice versa for slow rates. However, modulating the entrainment rate effectively changes 67 

the phase at which the target stimulus - which is presented at a constant speech rate – arrives (but 68 

this could not be confirmed in [47]). A second speech phenomena shows the direct phase-69 

dependency of content [31, 34]. Ambiguous /da/-/ga/ stimuli will be interpreted as a /da/ on one 70 

phase and a /ga/ on another phase. This was confirmed in both a EEG as well as a behavioral study. 71 

An oscillatory theory on speech tracking should account for how temporal properties in the input 72 

stream can alter what is perceived. 73 

In the speech production literature, there is strong evidence that the onset times (as well as 74 

duration) of an uttered word is modulated by the frequency of that word in the language [48-52] 75 

showing that internal language models modulate the access to or sensitivity of a word node [24, 53]. 76 

This word-frequency effect relates to the access to a single word. However, it is likely that during 77 

ongoing speech internal language models use the full context to estimate upcoming words [54]. If 78 

so, the predictability of a word in context should provide additional modulations on speech time. 79 

Therefore, we predict that words with a high predictability in the producer’s language model should 80 

be uttered relatively early. In this way word-to-word onset times map to the predictability level of 81 

that word within the internal model. Thus, not only the processing time depends on the 82 

predictability of a word (faster processing for predictable words; see [55, 56] and [57] showing that 83 

speech time in noise matters), but also the production time (earlier uttering of predicted words). 84 

Language comprehension involves the mapping of speech units from a producer’s internal 85 

model to the speech units of the receiver’s internal model. In other words, one will only understand 86 

what someone else is writing or saying if one’s language model is sufficiently similar to the speakers 87 
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(and if we speak in Dutch, fewer people 88 

will understand us). If the producer’s 89 

and receiver’s internal language model 90 

have roughly matching top-down 91 

constrains they should similarly 92 

influence the speed of processing (either 93 

in production or perception; Figure 1A-94 

C). Therefore, if predictable words arrive 95 

earlier (due to high predictability in the 96 

producer’s internal model), the receiver 97 

also expects the content of this word to 98 

match one of the more predictable ones 99 

from their own internal model (Figure 100 

1C). Thus, the phase of arrival depends 101 

on the internal model of the producer 102 

and the expected phase of arrival 103 

depends on the internal model of the 104 

receiver (Figure 1D). If this is true, 105 

pseudo-rhythmicity is fully natural to 106 

the brain and it provides a means to use 107 

time or arrival phase as a content 108 

indicator. It also allows the receiver to be 109 

sensitive to less predictable words when 110 

they arrive relatively late. Current 111 

oscillatory models of speech parsing do 112 

not integrate the constraints flowing 113 

from an internal linguistic model into 114 

the temporal structure of the brain 115 

response. It is therefore an open question 116 

whether the oscillatory model the brain 117 

employs is actually attuned to the 118 

temporal variations in natural speech.  119 

Figure 1.  Proposed interaction between speech timing and 
internal linguistic models. A) Isochronous production and 
expectation when there is a weak internal model (even 
distribution of node activation). All speech units arrive 
around the most excitable phase B) When the internal 
model of the producer does not align with the model of 
the receiver temporal alignment and optimal 
communication fails. C) When both producer and receiver 
have a strong internal model, speech is non-isochronous 
and not aligned to the most excitable phase, but fully 
expected by the brain. D) Expected time is a constraint 
distribution which center can be shifted due to linguistic 
constraints.  
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Here, we propose that neural oscillations can track pseudo-rhythmic speech by taking into 120 

account that speech timing is a function of linguistic constrains. As such we need to demonstrate 121 

that speech statistics are influenced by linguistic constrains as well as showing how oscillations can 122 

be sensitive to this property in speech. We approach this hypothesis as follows: First, we 123 

demonstrate that in natural speech timing depends on linguistics predictions (temporal speech 124 

properties). Then, we model how oscillations can be sensitive to these linguistic predictions 125 

(modeling speech tracking). Finally, we validate that this model is optimally sensitive to the natural 126 

temporal properties in speech and displays temporal speech illusions (model validation). Our results 127 

reveal that tracking of speech needs to be viewed as an interaction between ongoing oscillations as 128 

well as constraints flowing from an internal language model [21, 24]. In this way, oscillations do 129 

not have to shift their phase after every speech unit and can remain at a relatively stable frequency 130 

as long as the internal model of the speaker matches the internal model of the perceiver.  131 

  132 
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Results 133 

Temporal speech properties: word frequency influences word duration 134 

To extract the temporal properties in naturally spoken speech we used the Corpus Gesproken 135 

Nederlands (CGN; (Version 2.0.3; 2014)). This corpus consists of elaborated annotations of over 900 136 

hours of spoken Dutch and Flemish words. We focus here on the subset of the data of which onset 137 

and offset timings were manually annotated at the word level in Dutch. Cleaning of the data 138 

included removing all dashes and backslashes. Only words were included that were part of a Dutch 139 

word2vec embedding (github.com/coosto/dutch-word-embeddings; needed for later modeling) and 140 

required to have a frequency of at least 10 in the corpus. All other words were replaced with an 141 

<unknown> label. This resulted in 574,726 annotated words with 3096 unique words. 2848 of the 142 

words were recognized in the Dutch Wordforms database in CELEX (Version 3.1) in order to 143 

extract the word frequency as well as the number of syllables per word. Mean word duration was 144 

0.392 seconds, with an average standard deviation of 0.094 seconds (Supporting Figure 1A). By 145 

splitting up the data in sequences of 10 sequential words we could extract the average word, 146 

syllable, and character rate (Figure Supporting Figure 1B). The reported rates fall within the 147 

generally reported ranges for syllables (5.2 Hz) and words (3.7 Hz; [5, 58]).  148 

We predict that knowledge about the language statistics influences the duration of speech 149 

units. As such we predict that more prevalent words will have on average a shorter duration (also 150 

reported in [50]). In Figure 2A the duration of several mono- and bi-syllabic words are listed with 151 

their word frequency. From these examples it seems that words with higher word frequency 152 

generally have a shorter duration. To test this statistically we entered word frequency in an 153 

ordinary least square regression with number of syllables as control. Both number of syllables 154 

(coefficient = 0.1008, t(2843) = 75.47, p < 0.001) as well as word frequency (coefficient = -0.022, 155 

t(2843) = -13.94, p < 0.001) significantly influence the duration of the word. Adding an interaction 156 

term did not significantly improve the model (F (1,2843) = 1.320, p = 0.251; Figure 2B+C). The effect 157 

is so strong that words with a low frequency can last three times as long as high frequency words 158 

(even within mono-syllabic words). This indicates that word frequency could be an important part 159 

of an internal model that influences word duration. 160 

The previous analysis probed us to expand on the relation between word duration and 161 

length of the words. Obviously, there is a strong correlation between word length and mean word 162 

duration (number of characters 0.824, p < 0.001; number of syllables: ρ = 0.808, p < 0.001; for 163 
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number of syllables already shown above; Figure2D+E). In contrast, this correlation is present, but 164 

much lower for the standard deviation of word duration (number of characters: ρ = 0.269, p < 0.001; 165 

number of syllables: ρ = 0.292, p < 0.001). Finding a strong correlation does not imply that for every 166 

time unit increase in the word length, the duration of the word also increases with the same time 167 

unit, i.e., bi-syllabic words do not necessarily have to last twice as long as mono-syllabic words. 168 

Therefore, we recalculated word duration to a rate unit considering the number of syllables/ 169 

characters of the word. Thus a 250 ms mono- versus bi-syllabic word would have a rate of 4 versus 170 

8 Hz respectively. Then we correlated character/syllabic rate with word duration. If word duration 171 

increases monotonically with character/syllable length there should be no correlation. We found 172 

that the syllabic rate varies between 3 and 8 Hz as previously reported (Figure 2E right; [5, 58]). 173 

However, the more syllables there are in a word, the higher this rate (ρ = 0.676, p < 0.001). This 174 

increase was less strong for the character rate (ρ = 0.499, p < 0.001; Figure 2D right).  175 

Figure 2. Word frequency modulates word duration. A) Example of mono- and bi-syllabic words of different 
word frequencies in brackets (van=from, zijn=be, snel=fast, stem=voice, hebben=have, eten=eating, 
volgend=next, toekomst=future). Text in the graph indicates the mean word duration. B) Relation between 
word frequency and duration. Darker colors mean more values. C) same as B) but separately for mono- and 
bi-syllabic words. D) Relation character amount and word duration. The longer the words, the longer the 
duration (left). The increase in word duration does not follow a fixed number per character as duration as 
measured by rate increases. E) same as D) but for number of syllables. Red dots indicate the mean. 
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These results show that the syllabic/character rate depends on the number of characters 176 

/syllables within a word and is not an independent temporal unit [38]. This effect is easy to explain 177 

when assuming that the prediction strength of an internal model influences word duration: 178 

transitional probabilities of syllables are simply more constrained within a word than across words 179 

[59]. This will reduce the time it takes to utter/perceive any syllable which is later in a word. 180 

Unfortunately, the CGN does not have separate syllable annotations to investigate this possibility 181 

directly. However, we can investigate the effect of transitional probabilities and other statistical 182 

regularities flowing from internal models across words (see next section and [17] for statistical 183 

regularities in syllabic processing). 184 

 185 

Temporal speech properties: word-by-word predictability predicts word onset differences 186 

The brain’s internal model likely provides predictions about what linguistic features and 187 

representations, and possibly about which specific units, such as words, to expect next when 188 

listening to ongoing speech [21, 24]. As such, it is also expected that word-by-word onset delays are 189 

shorter for words that fit the internal model (i.e. those that are expected; [54]). To investigate this 190 

possibility, we created a simplified version of an internal model predicting the next word using 191 

recurrent neural nets (RNN). We trained an RNN to predict the next word from ongoing sentences 192 

(Figure 3A). The model consisted of an embedding layer (pretrained; github.com/coosto/dutch-193 

word-embeddings), a recurrent layer with a tanh activation function, and a dense output layer with 194 

a softmax activation. To prevent overfitting, we added a 0.2 dropout to the recurrent layers and the 195 

output layer. An adam optimizer was used at a 0.001 learning rate and a batch size of 32. We 196 

investigated four different recurrent layers (GRU and LSTM at either 128 or 300 units; see 197 

Supporting Figure 4). The final model we use here includes a LSTM with 300 units. Input data 198 

consistent of 10 sequential words (label encoding) within the corpus (of a single speaker; shifting 199 

the sentences by one word at a time), and an output consisted of a single word. A maximum of four 200 

unknown labeled words (words not included in the word2vec estimations. Four was choosen as it 201 

was < 50% of the words). was allowed in the input, but not in output. Validation consisted of a 202 

randomly chosen 2% of the data. 203 

 The output of the RNN reflects a probability distribution in which the values of the RNN 204 

sum up to one and each word has its own predicted value (Figure 3A). As such we can extract the 205 
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predicted value of the 206 

uttered word and relate the 207 

RNN prediction with the 208 

stimulus onset delay relative 209 

to the previous word. We 210 

entered word prediction in a 211 

regression using the 212 

stimulus onset difference 213 

between the current word in 214 

the sentence and the 215 

previous word (i.e. onset 216 

difference of words). We 217 

added the control variables 218 

bigram (using the NLTK 219 

toolbox based on the 220 

training data only), 221 

frequency of previous word, 222 

syllable rate (rate of the full 223 

sentence input), and mean 224 

duration of previous word 225 

(all variables that can 226 

account for part of the 227 

variance that affects the 228 

duration of the last word). 229 

We only used the test data 230 

(total of 7361 sentences, 231 

excluding all word not 232 

present in Celex. 4837 233 

sentences). Many of the variables were skewed to the right, therefore we transformed the data 234 

accordingly (see Table 1; results were robust to changes in these transformation). 235 

 All predictors except word frequency of the previous word showed a significant effect 236 

(Table 1). The variance explained by word frequency was likely captured by the mean duration 237 

Figure 3. RNN output influence word onset differences. A) 
Sequences of ten words were entered in an RNN in order to predict 
the content of the next word. Three examples are provided of input 
data with the label (bold word) and probability output for three 
different words. The regression model showed a relation between 
the duration of last word in the sequence and the predictability of 
the next word such that words were systematically shorter when the 
next word was more predictable according to the RNN output 
(illustrated here with the shorted black boxes). B) Regression line 
estimated at mean value of word duration and bigram. C) Scatterplot 
of prediction and onset difference of data within ± 0.5 standard 
deviation of word duration and bigram. Note that for B and C the 
axes are linear on the transformed values. Translation of the 
sentences in A from top to bottom: “... that it has for me and while 
you have no answer [on]”, “... the only real hope for us humans is a 
firm and [sure]”, “... a couple of glass doors in front and then it would 
not have been [in]”.  
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variable of the 238 

previous word 239 

which is 240 

correlated to 241 

word frequency. 242 

The RNN 243 

predictor could 244 

capture more 245 

variance than the bigram model suggesting that word duration is modulated by the level of 246 

predictability within a fuller context than just the conditional probability of the current word given 247 

the previous word (Figure 3B+C). Importantly, it was necessary to use the trained RNN model as a 248 

predictor; entering the RNN predictions after the first epoch did not results in a significant predictor 249 

(t(4837) = -1.191, p = 0.234). Also adding the predictor word frequency of the current word did not 250 

add significant information to the model (F(1, 4830) = 0.2048, p = 0.651). These results suggest that 251 

words are systematically lengthened (or pauses are added. However, the same predictors are also 252 

significant when excluding sentences containing pauses) when the next word is not strongly 253 

predicted by the internal model.  254 

 255 

Modeling speech tracking: Speech Tracking in a Model Constrained Oscillatory Network (STiMCON) 256 

In order to investigate how much of these duration effects can be explained using an oscillator 257 

model, we created the model Speech Tracking in a Model Constrained Oscillatory Network 258 

(STiMCON). STiMCON in its current form will not be exhaustive; however, it can extract how 259 

much an oscillating network can cope with asynchronies by using its own internal model 260 

illustrating how the brain’s language model and speech timing interact [60]. The current model is 261 

capable of explaining how top-down predictions can influence the processing time as well as 262 

provide an explanation for two known temporal illusions in speech. 263 

 STiMCON consists of a network of semantic nodes of which the activation A of each level 264 

in the model l is governed by: 265 

𝐴𝐴𝑙𝑙,𝑇𝑇 = 𝐶𝐶𝑙𝑙−1→𝑙𝑙 ∗ 𝐴𝐴𝑙𝑙−1,𝑇𝑇 + 𝐶𝐶𝑙𝑙+1→𝑙𝑙 ∗ 𝐴𝐴𝑙𝑙+1,𝑇𝑇 + 𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇) + 𝑜𝑜𝑜𝑜𝑜𝑜(𝑇𝑇)    (1) 266 

Table 1. Summary of regression model for logarithm of onset difference of words 
Variable Trans B β SE t p VIF 
Intercept x 0.9719  0.049 19.764 <0.001  
RNN prediction x (1/6) -0.3370 -0.0862 0.047 -7.163 <0.001 1.5 
Bigram log(x) -0.0118 -0.0316 0.005 -2.424 0.015 1.8 
Word frequency W-1 x 0.0049 0.0076 0.009 0.546 0.585 2.0 
Mean duration W-1 log(x) 1.1206 0.7003 0.022 50.326 <0.001 2.0 
Syllable Rate x -0.1033 -0.2245 0.004 -23.014 <0.001 1.0 
Model R2 = 0.542. Trans = transformation, W-1 = previous word, B = unstandardized  
coefficient, β = standardized coefficient, SE = standard error, t = t value, p = p value,  
VIF = variance inflation factor 
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in which C represents the connectivity patterns between differrent hierarchical levels, T the time 267 

in a sentence, and Ta the vector of times of an individual node in an inhibition function (in 268 

milliseconds). The inhibition function is a gate function:  269 

𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇) = �
−3 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖, 𝑇𝑇𝑇𝑇 < 20

3 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖, 20 ≤ 𝑇𝑇𝑇𝑇 < 100
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑖𝑖𝑖𝑖, 𝑇𝑇𝑇𝑇 > 100

     (2) 270 

in which BaseInhib is a constant for the base level of inhibition (negative value, set to -0.2). As such 271 

nodes are by default inhibited, as soon as they get activated above threshold (activation threshold 272 

set at 1) Ta sets to zero. Then, the node will have suprathreshold activation, which after 20 273 

milliseconds returns to increased inhibition until the base level of inhibition is returned. The 274 

oscillation is a constant oscillator: 275 

𝑜𝑜𝑜𝑜𝑜𝑜 (𝑇𝑇) = 𝐴𝐴𝐴𝐴 ∗ 𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋+ 𝑖𝑖𝑖𝑖        (3) 276 

in which Am is the amplitude of the oscillator, ω the frequency, and φ the phase offset. As such we 277 

assume a stable oscillator which is already aligned to the average speech rate (see [15, 19] for phase 278 

alignment models). The model used for the current simulation has one an input layer (l-1 level) and 279 

one single layer of semantic word nodes (l level) that receives feedback from a higher level layer 280 

(l+1 level). As such only the word (l) level is modeled according to equation 1-3 and the other levels 281 

form fixed input and feedback connection patterns. 282 

 283 

Modeling speech tracking: language models influence time of activation 284 

To illustrate how STiMCON can explain how processing time depends on the prediction of internal 285 

language models, we instantiated a language model that had only seen three sentences and five 286 

words presented at different probabilities (I eat cake at 287 

0.5 probability, I eat nice cake at 0.3 probability, I eat 288 

very nice cake at 0.2 probability; Table 2). This language 289 

model will serve as the feedback arriving from the l+1-290 

level to the l-level. The l-level consists of five nodes that 291 

each represent one of the words and receives 292 

proportional feedback from l+1 according to Table 2 293 

with a delay of 0.9*ω seconds, which then decays at 0.01 294 

Table 2. Example of a language model 
 I eat very nice cake 
I 0 1 0 0 0 
eat 0 0 0.2 0.3 0.5 
very 0 0 0 1 0 
nice 0 0 0 0 1 
cake 0 0 0 0 0 
This model has seen three sentences at 
different probabilities. Rows represent the 
prediction for the next word, e.g. /I/ 
predicts /eat/ at a probability of 1, but after 
/eat/ there is a wider distribution. 
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unit per millisecond and influences the l-level at a proportion of 1.5. This feedback is only initiated 295 

when supra-activation arrives due to l-1-level bottom-up input. Each word at the l-1-level input is 296 

modelled as a linearly function to the individual nodes lasting length of 125 milliseconds (half a 297 

cycle, ranging from 0-1 arbitrary units). As such, the input is not the acoustic input itself but rather 298 

reflects a linear increase representing the increasing confidence of a word representing the specific 299 

node. φ is set such that the peak of a 4 Hz oscillation aligns to the peak of sensory input of the first 300 

word. Sensory input is presented at a base stimulus onset asynchrony of 250 milliseconds (i.e. 4 Hz).  301 

When we present this model with different sensory input at an isochronous rhythm of 4 302 

Hz it is evident that the timing at which different nodes reach activation depends on the level of 303 

feedback that is provided (Figure 4). For example, while the /I/-node needs a while to get activated 304 

after the initial sensory input, the /eat/-node is activated earlier as it is pre-activated due to 305 

feedback. After presenting /eat/ the feedback arrives at three different nodes and the activation 306 

timing depends on the stimulus that is presented (earlier activation for /cake/ compared to /very/). 307 

 308 

Modeling speech tracking: time of presentation influences processing efficiency 309 

To investigate how the time of presentation influences the processing efficiency we presented the 310 

model with /I eat XXX/ in which the last word was varied in content (either /I/, /very/, /nice/, or 311 

/cake/), intensity (linearly ranging from 0 to 1), and onset delay (ranging between -125 to +125 312 

Figure 4. Model output for different sentences. For the supra-threshold activation dark red indicates 
activation which included input from l+1 as well as l-1, orange indicates activation due to l+1 input.  
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relative to isochronous presentation). We extracted the time at which the node matching the 313 

stimulus presentation reached activation threshold first (relative to stimulus onset, and relative to 314 

isochronous presentation). 315 

 Figure 5A shows the output. When there is no feedback (i.e. at the first word /I/ 316 

presentation) , a classical efficiency map can be found in which processing is most optimal (possible 317 

at lowest stimulus intensities) at isochronous (in phase with the stimulus rate) presentation and 318 

then drops to either side. For nodes that have feedback, input processing is possible at earlier times 319 

relative to isochronous presentation and parametrically varies with prediction strength (earlier for 320 

Figure 5. Model output on processing efficiency and rhythmicity. A) Time of presentation influences 
efficiency. Outcome variable is the time at which the node reached threshold activation (supra-time). The 
dashed line is presented to ease comparison between the four content types. White indicates that 
threshold is never reached. B) Same as A, but estimated at a threshold of 0.53 showing that oscillations 
regulate feedforward timing. Panel A shows that the earlier the stimuli are presented (on a weaker point 
of the ongoing oscillation), the longer it takes until supra-threshold activation is reached. This figure 
shows that timing relative to the ongoing oscillation is regulated such that the stimulus activation timing 
is closer to isochronous. Line discontinuities are a consequence of stimuli never reaching threshold for a 
specific node. C) Strength of 4 Hz power depends on predictability in the stream. When predictability is 
alternated between low and high, activation is more rhythmic when the predictable odd stimulus arrives 
earlier and vice versa. D) Slice of D at intensity of 0.8 and 1.0. E) Magnitude spectra at three different odd 
word offsets at 1.0 intensity. To more clearly illustrate the differences the magnitude to the power of 20 
is plotted. 
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/cake/ at 0.5 probability, then /very/ at 0.2 probability). Additionally, the activation function is 321 

asymmetric. This is a consequence of the interaction between the supra-activation caused by the 322 

feedback and the sensory input. As soon as supra-activation is reached due to the feedback, sensory 323 

input at any intensity will reach supra-activity (thus at early stages of the linearly increasing 324 

confidence of the input). This is why for the /very/ stimulus activation is still reached at later delays 325 

compared to /nice/ and /cake/ as the /very/-node reaches supra-activation due to feedback at a later 326 

time point.   327 

 When we investigate timing differences in stimulus presentation it is important to also 328 

consider what this means for the timing in the brain. Before, we showed that the amount of 329 

prediction can influence timing in our model. It is also evident that the earlier a stimulus was 330 

presented the more time it took (relative to the stimulus) for the nodes to reach threshold (more 331 

yellow colors for earlier delays). This is a consequence of the oscillation still being at a relatively 332 

low excitability point at stimulus onset for stimuli that are presented early during the cycle. 333 

However, when we translate these activation threshold timing to the timing of the ongoing 334 

oscillation, the variation is strongly reduced (Figure 5B). A stimulus timing that varies between 130 335 

milliseconds (e.g. from -59 to +72 in the /cake/ line; excluding the non-linear section of the line) 336 

only reaches the first supra-threshold response with 19 milliseconds variation in the model 337 

(translating to a reduction of 53% to 8% of the cycle of the ongoing oscillation, i.e. a 1:6.9 ratio). 338 

This means that within this model (and any oscillating model) the activation of nodes is robust to 339 

some timing variation in the environment. This effect seemed weaker when no prediction was 340 

present (for the /I/ stimulus this ratio was around 1:3.5. Note that when determining the /cake/ 341 

range using the full line the ratio would be 1:3.4). 342 

 343 

Modeling speech tracking: top-down interactions can provide rhythmic processing for non-344 

isochronous stimulus input 345 

The previous simulation demonstrate that oscillations provide a temporal filter and the processing 346 

itself can actually be closer to isochronous than what can be solely extracted from the stimulus 347 

input. Next, we investigated whether dependent on changes in top-down prediction, processing 348 

within the model will be more or less rhythmic. To do this, we create stimulus input of 10 sequential 349 

words at a base rate of 4 Hz to the model with constant (low at 0 and high at 0.8 predictability) or 350 
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alternating word-to-word predictability. For the alternating conditions word-to-word 351 

predictability alternates between low to high (sequences which word are predicted at 0 or 0.8 352 

predictability, respectively) or shift from high to low. For this simulation we used Gaussian sensory 353 

input (with a standard deviation of 42 ms aligning the mean at the peak of the ongoing oscillation; 354 

see Supporting Figure 5 for output with linear sensory input). Then, we vary the onset time of the 355 

odd words in the sequence (shifting from -100 up to +100 ms) and the stimulus intensity (from 0.2 356 

to 1.5). We extracted the overall activity of the model and computed the Fast Fourier transform of 357 

the created time course (using a Hanning taper only including data from 0.5 – 2.5 seconds to exclude 358 

the onset responses).  359 

The first thing that is evident is that the model with no content predictions has overall 360 

stronger power, and specifically around isochronous presentation (odd word offset of 0 ms) at high 361 

stimulus intensities (Figure 5C-E). Adding overall high predictability drops the power, but also here 362 

the power seems symmetric around zero. The spectra of the alternating predictability conditions 363 

look different. For the low to high predictability condition the curve seems to be shifted to the left 364 

such that 4 Hz power is strongest when the predictable odd stimulus is shifted to an earlier time 365 

point (low-high condition). This is reversed for the high-low condition. At middle stimulus 366 

intensities there is a specific temporal specificity window at which the 4 Hz power is particularly 367 

strong. This window is earlier for the low-high than the high-low alternation (Figure 5D, Figure 368 

5E, and Supporting Figure 6). The effect only occurs at specific middle intensity combination as at 369 

high intensities the stimulus dominates the responses and at low intensities the stimulus does not 370 

reach threshold activation. These results show that even though stimulus input is non-isochronous, 371 

the interaction with the internal model can still create a potential rhythmic structure in the brain 372 

(see [61, 62]). Note that the direction in which the brain response is more rhythmic matches with 373 

the natural onset delays in speech (shorter onset delays for more predictable stimuli). 374 

  375 

Model validation: STiMCON’s sinusoidal modulations of RNN predictions is optimally sensitive to 376 

natural onset delays 377 

Next, we aimed to investigated whether STiMCON would be optimally sensitive to speech input 378 

timings found naturally in speech. Therefore, we tried to fit STIMCON’s expected word-to-word 379 

onset differences to the word-to-word onset differences we found in the CGN. At a stable level of 380 
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intensity of the input and inhibition, the only aspect that changes the timing of the interaction 381 

between top-down predictions and bottom-up input within STiMCON is the ongoing oscillation. 382 

Considering that we only want to model for individual words how much the prediction (𝐶𝐶𝑙𝑙−1→𝑙𝑙 ∗383 

𝐴𝐴𝑙𝑙−1,𝑇𝑇) influences the expected timing we can set the contribution of the other factors from 384 

equation (1) to zero remaining with the relative contribution of prediction:  385 

𝐶𝐶𝑙𝑙+1→𝑙𝑙 ∗ 𝐴𝐴𝑙𝑙+1,𝑇𝑇 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −𝑜𝑜𝑜𝑜𝑜𝑜(𝑇𝑇)     (4) 386 

We can solve this formula in order to investigate the expected relative time shift (T) in processing 387 

that is a consequence of the strength of the prediction (ignoring that in the exact timing will also 388 

depend on the strength of the input and inhibition): 389 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 1
2𝜋𝜋𝜋𝜋

(arcsin �𝐶𝐶𝑙𝑙+1→𝑙𝑙∗𝐴𝐴𝑙𝑙+1,𝑇𝑇
−𝐴𝐴𝐴𝐴

� − 𝜑𝜑)      (5) 390 

ω was set as the syllable rate for each sentence, Am and φ were systematically varied. We fitted a 391 

linear model between the STiMCON’s expected time and the actual word-to-word onset 392 

differences. This model was similar to the model described in the section word-by-word 393 

predictability predicts word onset differences and included the predictor syllablerate and duration 394 

of the previous word. However, as we were interested in how well non-transformed data matches 395 

the natural onset timings we did not perform any normalization besides equation (5). As this might 396 

involve violating some of the assumptions of the ordinary least square fit, we estimate model 397 

performance by repeating the regression 1000 times fitting it on 90% of the data (only including 398 

the test data from the 399 

RNN) and extracting R2 400 

from the remaining 10%.  401 

 Results show a 402 

modulation of the R2 403 

dependent on the 404 

amplitude and phase 405 

offset of the oscillation 406 

(Figure 6A) which was 407 

stronger than the non-408 

transformed R2 (which 409 

was 0.389). This suggests 410 

Figure 6.  Fit between real and expected time shift dependent on 
predictability. A) Phase offset and amplitude of the oscillation modulate 
the fit to the word-to-word onset durations. B) Histogram of the 
predictions created by the deep neural net. C) Histogram of the relative 
time shift transformation at phase of -0.15π and amplitude of 1.5. 
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that STiMCON expected time durations matches the actual word-by-word duration. This was even 411 

more strongly so for specific oscillatory alignments (around -0.25π offset) suggesting an optimal 412 

alignment phase relative to the ongoing oscillation is needed for optimal tracking [3, 8]. 413 

Interestingly, the optimal transformation seemed to automatically alter a highly skewed prediction 414 

distribution (Figure 6B) towards a more normal distribution of relative time shifts (Figure 6C).  415 

 416 

Model validation: STiMCON can explain perceptual effects in speech processing 417 

Due to the differential feedback strength and the inhibition after suprathreshold feedback 418 

stimulation, STiMCON is more sensitive to lower predictable stimuli at phases later in the 419 

oscillatory cycle. This property can explain two illusions that have been reported in the literature, 420 

specifically, the observation that the interpretation of ambiguous input depends on the phase of 421 

presentation [31, 32, 63] and on speech rate [46]. The only assumption that has to be made is that 422 

there is an uneven base prediction balance between the ways the ambiguous stimulus can be 423 

interpreted.  424 

 The empirical data we aim to model comprises an experiment in which ambiguous syllables, 425 

that could either be interpreted as /da/ or /ga/, were presented [31]. In one of the experiments in 426 

this study, broadband simuli were presented at specific rates to entrain ongoing oscillations. After 427 
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the last entrainment stimulus an 428 

ambiguous /daga/ stimulus was 429 

presented at different delays 430 

(covering two cycles of the 431 

presentation rate at 12 different 432 

steps), putatively reflecting 433 

different oscillatory phases. 434 

Dependent on the delay of 435 

stimulation participants perceived 436 

either /da/ or /ga/ suggesting that 437 

phase modulates the percept of the 438 

participants. Besides this 439 

behavioral experiment, the authors 440 

also demonstrated that the same 441 

temporal dynamics were present 442 

when looking at ongoing EEG data 443 

showing that the phase of ongoing 444 

oscillations at the onset of 445 

ambiguous stimulus presentation 446 

determined the percept [31]. 447 

To illustrate that 448 

STiMCON is capable of showing a 449 

phase (or delay) dependent effect, we use an internal language model similar to our original model 450 

(Table 2). The model consists of four nodes (N1, N2, Nda, and Nga) at which N1 activation predicts 451 

a second unspecific stimulus (S2) represented by N2 at a predictability of 1. N2 activation predicts 452 

either da or ga at 0.2 and 0.1 probability respectively. Then, we present STiMCON (same parameters 453 

as before) with /S1 S2 XXX/. XXX is varied to have different proportion of the stimulus /da/ and /ga/ 454 

(ranging from 0% /da/ to 100% /ga/ in 12 times steps; these reflects relative propotions that sum up 455 

to 1 such that at 30% the intensity of /da/ would be at max 0.3. and of /ga/ 0.7) and is the onset is 456 

varied relate to the second to last word. We extract the time that a node reaches suprathreshold 457 

activity after stimulus onset. If both nodes were active at the same time the node with the highest 458 

total activates was choosen. Results showed that for some ambiguous stimuli, the delay determines 459 

Figure 7.  Results for /daga/ illusions. A) Modulations due to 
ambiguous input at different times. Illustration of the node that 
is active first . Different proportions of the /da/ stimulus show 
activation timing modulations at different delays (B). R2 for the 
grid search fit of the full model, a model without inhibition (no 
inhib), without uneven feedback (no fb), or without an 
oscillation (no os). C) Fit of the full model on the rectified 
behavioral data of [31]. Blue crossed indicate rectified data and 
red lines indicate the fit.  
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which node is activated first, modulating the ultimate percept of the participant (Figure 7A, also 460 

see supplementary Figure 7A). The same type of simulation can explain how speech rate can 461 

influence perception (supplementary Figure 7B; but see [47].). 462 

To further scrutinize on this effect we fitted our model to the behavioral data of Ten Oever 463 

& Sack [31]. As we used an iterative approach in the simulations of the model, we optimized the 464 

model using a grid search. We varied the parameters of proportion of the stimulus being /da/ or /ga/ 465 

(ranging between 10:20:80%), the onset time of the feedback (0.1:0.2:1.0 cycle), the speech of the 466 

feedback decay (0:0.02:0.1), and a temporal offset of the final sound to account for the time it takes 467 

to interpret a specific ambiguous syllable (ranging between -0.05:0.02:0.05 sec). Our outcome 468 

variable was the node that show the first suprathreshold activation (Nda = 1, Nga = 0). If both nodes 469 

were active at the same time the node with the highest total activates was choosen. If both nodes 470 

had equal activation or never reached threshold activation we coded the outcome to 0.5 (i.e. fully 471 

ambigous). These outcomes were fitted to the behavioral data of the 6.25 Hz and 10 Hz presentation 472 

rate (the two rates showing a significant modulation of the percept). This data was normalize to 473 

have a range between 0-1 to account for the model outcomes being binary (0, 0.5 or 1).  474 

We found that our model could fit the data at an average explained variance of 43% (30% 475 

and 58% for 6.25 Hz and 10 Hz respectively; Figure 7B+C). This explained variance was higher than 476 

the original sinus fit (40% for 3 parameter sinus fit [amplitude, phase offset, and mean]). Note that 477 

our fit cannot account for variance ranging inbetween 0-0.5 and 0.5-1, while the sinus fit can do 478 

this. If we correct for this (by setting the sinus fit to the closest 0, 0.5 or 1 value and doing a grid 479 

search to optimize the fitting) the average fit of the sinus is 21%. The average AIC of the model and 480 

sinus fit are -27.0 and -24.1 respectively suggesting that the STiMCON model has the better fit. 481 

Thus, STiMCON does better than a fixed-frequency sinus fit. This is a likely consequence of the 482 

sinus fit not being able to explain the dampening of the oscillation later (i.e. the perception bias is 483 

stronger for shorter compared to longer delays). 484 

Finally, we investigated the relevance of the three key features of our model for this fit: 485 

inhibition, feedback, and oscillations. We repeated the grid search fit but set either the inhibition 486 

to zero, the feedback matrix equal for both /da/ and /ga/ (both 0.15), or the oscillation at an 487 

amplitude of zero. Results showed that especially the oscillation and the differential feedback were 488 

essential to reach a good fit (Figure 7B). Without the oscillation the model could not even fit better 489 

than the mean of the model (R2 < 0). Removing the inhibition had the least influence on the fit. 490 
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This suggest that all features (with a lesser extend the inhibition) are required to model the data 491 

suggesting that oscilatory tracking is dependent on linguistic constrains flowing from the internal 492 

language model. 493 

  494 
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Discussion 495 

In the current paper, we combined an oscillatory model with a proxy for linguistic knowledge, an 496 

internal language model, in order to investigate the model’s processing capacity for onset timing 497 

differences in natural speech. We show that word-to-word speech onset differences in natural 498 

speech are indeed related to predictions flowing from the internal language model (estimated 499 

through an RNN). Fixed oscillations aligned to the mean speech rate are robust against natural 500 

temporal variations and even optimized for temporal variations that match the predictions flowing 501 

from the internal model. Strikingly, when the pseudo-rhythmicity in speech matches the 502 

predictions of the internal model, responses were more rhythmic for matched pseudo-rhythmic 503 

compared to isochronous speech input. Our model is optimally sensitive to natural speech 504 

variations, can explain phase dependent speech categorization behavior [31, 35, 44, 63], and 505 

naturally comprises a neural phase code [40, 42, 43]. These results show that part of the pseudo-506 

rhythmicity of speech is expected by the brain and it is even optimized to process it in this manner, 507 

but only when it follows the internal model. 508 

 Speech timing is variable and in order to understand how the brain tracks this pseudo-509 

rhythmic signal we need a better understanding of how this variability arises. Here, we isolated one 510 

of the components explaining speech time variation, namely, constraints that are posed by an 511 

internal language model. This goes beyond extracting the average speech rate [5, 19, 58], and might 512 

be key to understanding how a predictive brain uses temporal cues. We show that speech timing 513 

depends on the predictions made from an internal language model, even when those predictions 514 

are highly reduced to be as simple as word predictability. While syllables generally follow a theta 515 

rhythm, there is a systematic increase in syllabic rate as soon as more syllables are in a word. This 516 

is likely a consequence of the higher close probability of syllables within a word which reduces the 517 

onset differences of the later uttered syllables [59]. However, an oscillatory model constrained by 518 

an internal language model is sensitive to these temporal variations, it is actually capable of 519 

processing them optimally.  520 

 The oscillatory model we here pose has three components: oscillations, feedback, and 521 

inhibition. The oscillations allow for the parsing of speech and provide windows in which 522 

information is processed [3, 39, 64, 65]. Importantly, the oscillation acts as a temporal filter, such 523 

that the activation time of any incoming signal will be confined to the high excitable window and 524 

thereby is relatively robust against small temporal variations (Figure 5B). The feedback allows for 525 
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differential activation time dependent on the sensory input (Figure 5A). As a consequence, the 526 

model is more sensitive to higher predictable speech input and therefore active earlier on the duty 527 

cycle (this also means that oscillations are less robust against temporal variations when the feedback 528 

is very strong). The inhibition allows for the network to be more sensitive to less predictable speech 529 

units when they arrive later (the higher predictable nodes get inhibited at some point on the 530 

oscillation; best illustrated by the simulation in Figure 7A). However, adding inhibition only 531 

slightly improved the modeling fit (Figure 7B). In this way speech is ordered along the duty cycle 532 

according to its predictability [43, 66]. The feedback in combination with an oscillatory model can 533 

explain speech rate and phase dependent content effects. Moreover, it is an automatic temporal 534 

code that can use time of activation as a cue for content [42]. The three components in the model 535 

are common brain mechanisms [29, 42, 67-70] and follow many previously proposed organization 536 

principles (e.g. temporal coding and parsing of information). While we implement these 537 

components on an abstract level (not veridical to the exact parameters of neuronal interactions), 538 

they illustrate how oscillations, feedback, and inhibition interact to optimize sensitivity to natural 539 

pseudo-rhythmic speech. 540 

The current model is not exhaustive and does not provide a complete explanation of all the 541 

details of speech processing in the brain. For example, it is likely that the primary auditory cortex 542 

is still mostly modulated by the acoustic pseudo-rhythmic input and only later brain areas follow 543 

more closely the constraints posed by the language model of the brain. Therefore, more hierarchical 544 

levels need to be added to the current model (but this is possible following equation (1)). Moreover, 545 

the current model does not allow for phase or frequency shifts. This was intentional in order to 546 

investigate how much a fixed oscillator could explain. We show that onset times matching the 547 

predictions from the internal model can be explained by a fixed oscillator processing pseudo-548 

rhythmic input. However, when the internal model and the onset timings do not match the internal 549 

model phase and/or frequency shift are still required and need to be incorporated (see e.g. [15, 19]). 550 

Still, any coupling between brain oscillations and speech acoustics [19] needs to be extended with 551 

the coupling of brain oscillations to brain activity patterns of internal models [71]. 552 

In the current paper we use an RNN to represent the internal model of the brain. However, 553 

it is unlikely that the RNN captures the wide complexities of the language model in the brain. The 554 

decades-long debates about the origin of a language model in the brain remains ongoing and 555 

controversial. Utilizing the RNN as a proxy for our internal language model makes a tacit 556 
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assumption that language is fundamentally statistical or associative in nature, and does not posit the 557 

derivation or generation of knowledge of grammar from the input [72, 73]. In contrast, our brain 558 

could as well store knowledge of language that functions as fundamental interpretation principles 559 

to guide our understanding of language input [21, 24, 53, 65, 74]. Knowledge of language and 560 

linguistic structure could be acquired through an internal self-supervised comparison process 561 

extracted from environmental invariants and statistical regularities from the stimulus input [75-562 

77]. Future research should investigate which language model can better account for the temporal 563 

variations found in speech. 564 

A natural feature of our model is that time can act as a cue for content implemented as a 565 

phase code [43, 66]. This code unravels as an ordered list of predictability strength of the internal 566 

model. We predict that if speech nodes have a different base activity, ambiguous stimulus 567 

interpretation 568 

should 569 

dependent on 570 

the time/phase of 571 

presentation (see 572 

[31, 63]). Indeed, 573 

we could model 574 

two temporal 575 

speech illusions 576 

(Figure 7). There 577 

have also been 578 

null results 579 

regarding the 580 

influence of 581 

phase on 582 

ambiguous 583 

stimulus 584 

interpretation 585 

[47, 78]. For the 586 

speech rate 587 

effect, when 588 

Figure 8.  Predictions of the model. A) Acoustics signals will be more rhythmic 
when a producer has a weak versus a strong internal model (top right). When the 
producer’s strong model matches the receiver’s model the brain response will be 
more rhythmic for less rhythmic acoustic input. B) When a producer realizes the 
model of the receiver is weak it might transform its model and thereby their speech 
timing to match the receiver’s expectations. 
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modifying the time of presentation with a neutral entrainer (summed sinusoidals with random 589 

phase), no obvious phase effect was reported [47]. A second null result relates to a study where 590 

participants were specifically instructed to maintain a specific perception in different blocks which 591 

likely increases the pre-activation and thereby the phase [78]. Future studies need to investigate 592 

the use of temporal/phase codes to disambiguate speech input and specifically use predictions in 593 

their design.   594 

 The temporal dynamics of speech signals needs to be integrated with the temporal dynamics 595 

of brain signals. However, it is unnecessary (and unlikely) that the exact duration of speech matches 596 

with the exact duration of brain processes. Temporal expansion or squeezing of stimulus inputs 597 

occur regularly in the brain [79, 80] and this temporal morphing also maps to duration [81-83] or 598 

order illusions [84]. Our model predicts increased rhythmic responses for non-isochronous speech 599 

matching the internal model. The perceived rhythmicity of speech could therefore also be an 600 

illusion generated by a rhythmic brain signal somewhere in the brain.   601 

When investigating the pseudo-rhythmicity in speech it is important to identify situations 602 

where speech is actually more rhythmic. Two examples are the production of lists [85] and infant-603 

directed speech [86]. In both these examples it is clear that a strong internal predictive language 604 

model is lacking either on the producer’s or on the receiver’s side, respectively. The infant-directed 605 

speech also illustrates that a producer might proactively adapt its speech rhythm to the expectations 606 

Table 3. Predictions from the current model 
The more predictable a word, the earlier this word is uttered. 
When there is a flat constraint distribution over an utterance (e.g., when probabilities are 
uniform over the utterance) the acoustics of speech should naturally be more rhythmic (Figure 
8A). 
If speech timing matches the internal language model, brain responses should be more rhythmic 
even if the acoustics are not (Figure 8A). 
The more similar the internal language models of two speakers, the more effective they are in 
‘entraining’ each other’s brain. 
If speakers suspect their listener to have a flatter constraint distribution than themselves (e.g., 
the environment is noisy, or the speakers are in a second language context), they adjust to the 
distribution by speaking more rhythmically (Figure 8B). 
One adjusts the weight of the constraint distribution to a hierarchical level when needed. For 
example, when there is noise, participants adjust to the rhythm of primary auditory cortex 
instead of higher order language models. As a consequence, they speak more rhythmically. 
The theoretical account provides various predictions that are listed in this table.  
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of the internal model of the receiver to align better with the predictions from the receiver’s model 607 

(Figure 8B; similar to when you are speaking to somebody that is just learning a new language). 608 

Other examples in which speech is more isochronous is during poems, during emotional 609 

conversation [87], and in noisy situations [88]. While speculative, it is conceivable that in these 610 

circumstances one puts more weight on a different level of hierarchy than the internal linguistic 611 

model. In the case of poems and emotional conversation an emotional route might get more weight 612 

in processing. In the case of noisy situations, stimulus input has to pass the first hierarchical level 613 

of the primary auditory cortex which effectively gets more weight than the internal model. 614 

 615 

Conclusions 616 

We argued that pseudo-rhythmicity in speech is in part a consequence of top-down predictions 617 

flowing from an internal model of language. This pseudo-rhythmicity is created by a speaker and 618 

expected by a receiver if they have overlapping internal language models. Oscillatory tracking of 619 

this signal does not need to be hampered by the pseudo-rhythmicity, but can use temporal 620 

variations as a cue to extract content information since the phase of activation parametrically relates 621 

to the likelihood of an input relative to the internal model. Brain responses can even be more 622 

rhythmic to pseudo-rhythmic compared to isochronous speech if they follow the temporal delays 623 

imposed by the internal model. This account provides various testable predictions which we list in 624 

Table 3 and Figure 8. We believe that by integrating neuroscientific explanations of speech tracking 625 

with linguistic models of language processing [21, 24], we can improve to explain temporal speech 626 

dynamics. This will ultimately aid our understanding of language in the brain and provide a means 627 

to improve temporal properties in speech synthesis.  628 
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 639 

Supporting figure 1. Distribution of mean duration (A) and of average rate (B). 640 
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 641 

Supporting figure 2. Distribution of mean duration split up for word length (in characters).  642 

 643 

 644 

Supporting figure 3. Distribution of mean duration split up for syllable length.  645 
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 646 

Supporting figure 4. Recurrent neural network evaluation. Probability is defined as the mean of the 647 
model output value at the node representing the next word. 648 

 649 

 650 

Supporting figure 5. Power at 4 Hz using linearly increasing sensory input. Conventions are the 651 
same as in Figure 5D and E.  652 

  653 
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 654 

Supporting figure 6. Example of overall activation at threshold 0.8 (gaussian shaped input).  655 

  656 
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 657 

Supporting figure 7. Explaining speech timing illusions. A) Model activation of two example delays 658 
for the fitting (figure 7A). B) Modulations due to ambiguous input at different speech rates. 659 
Illustration of the node that is active first. Different proportions of the /da/ stimulus show activation 660 
timing modulations at different speech rates. Conventions are the same as figure 7A. 661 

 662 
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