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Abstract 

Two forms of information – frequency (content) and ordinal position (structure) – 

have to be stored when retaining a sequence of auditory tones in working memory 

(WM). However, the neural representations and coding characteristics of content and 

structure, particularly during WM maintenance, remain elusive. Here, in two 

electroencephalography (EEG) studies, by transiently perturbing the ‘activity-silent’ 

WM retention state and decoding the reactivated WM information, we demonstrate 

that content and structure are stored in a dissociative manner with distinct 

characteristics throughout WM process. First, each tone in the sequence is associated 

with two codes in parallel, characterizing its frequency and ordinal position, 

respectively. Second, during retention, a structural retrocue successfully reactivates 

structure but not content, whereas a following white noise triggers content but not 

structure. Third, structure representation remains stable whereas content code 

undergoes a dynamic transformation through memory progress. Finally, the noise-

triggered content reactivations during retention correlate with subsequent WM 

behavior. Overall, our results support distinct content and structure representations in 

auditory WM and provide a novel approach to access the silently stored WM 

information in the human brain. The dissociation of content and structure could 

facilitate efficient memory formation via generalizing stable structure to new auditory 

contents. 
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Introduction 

Memories are not stored in fragments; instead, multiple items or events are constantly 

linked and organized with each other according to certain relationships. For a 

sequence of items to be successfully retained in working memory (WM), two basic 

formats of information need to be encoded and maintained in the brain – features that 

describe each item (content) and ordinal position of the item in the list (structure). For 

instance, making a phone call relies on correct assignment of ordinal labels to each 

digit, and rehearsing a piece of favorite melody requires sorting of each musical tone 

in certain temporal order. Thus, retaining even a simplified version of auditory 

temporally structured experience (e.g., a tone sequence) necessitates storage of two 

types of code – content (e.g., frequency for each tone) and structure (e.g., ordinal 

position for each tone) – in brain activities. 

How does the human brain maintain content and structure information in WM 

system? Although amounts of previous studies have addressed the issue using 

different approaches in both animals and humans (e.g., Marshuetz, 2005; 

Komorowski et al., 2009; Eichenbaum, 2014; Kalm et al., 2014; Davachi & DuBrow, 

2015; Kamiński & Rutishauser, 2020; Masse et al., 2020; Summerfield & Sheahan, 

2020), most of the findings have been focused on the encoding period when the to-be-

memorized stimuli are physically presented. Meanwhile, when entering the WM 

retention period, the brain would reside in a relatively ‘activity-silent’ state, during 

which information is ‘silently’ retained in synaptic weights of the network rather than 

showing sustained response to be explicitly decoded (e.g., Mongillo et al., 2008; 

Lewis-Peacock et al., 2012; Stokes, 2015, Rose et al., 2016, Masse et al., 2020). As a 

consequence, directly accessing neural representations of content and structure during 

retention and examining their WM behavioral relevance pose a huge challenge in the 

WM field.  

Here in two auditory sequence WM experiments, we examined how content and 

structure information are encoded and maintained in auditory WM, by using a time-

resolved multivariate decoding approach on the electroencephalography (EEG) 
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recordings. Crucially, as mentioned previously, since the recorded macroscopic 

activities during the delay period tend to stay in an “activity-silent” state, it is difficult 

to directly and reliably assess the maintained WM information from EEG recordings. 

To this end, we employed an impulse-response approach (Wolff et al., 2017) to 

transiently perturb the neural network during retention and then measure the 

subsequently reactivated WM information. Specifically, two triggering events were 

presented successively during retention– a structure retrocue and a white-noise 

auditory impulse. The former, as an abstract structure cue, is hypothesized to 

reactivate the stored structure representation (i.e., ordinal position), while the latter – a 

neutral white-noise auditory impulse – might trigger content information (i.e., tone 

frequency) by perturbing the auditory cortex where contents likely reside. 

Our results demonstrate that content and ordinal structure of an auditory tone 

sequence are encoded and maintained in a dissociative manner with distinct 

characteristics. First, each presented tone during encoding is associated with two 

codes in parallel, characterizing its frequency and ordinal position, respectively. 

Second, during the ‘activity-silent’ retention period, a structural retrocue successfully 

reactivates structure but not content, whereas a following white noise triggers content 

but not structure, implying their storage in different brain regions. Third, neural 

representation of structure information remains largely unchanged from encoding to 

retention whereas content code undergoes dynamical transformation, signifying their 

distinct representational formats. Finally and importantly, the white-noise-triggered 

content reactivations during retention correlate with subsequent memory performance, 

confirming its genuine indexing of WM operations. Taken together, our results 

provide new evidence advocating a dissociated and distinct form of content-structure 

storage in auditory WM and also constitute a novel approach to directly access WM 

information in human brains.  
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Results 

Experimental procedure and time-resolved multivariate decoding analysis 

In Experiment 1, thirty human participants performed an auditory delayed-match-to-

sample working memory task while their 64-channel EEG activities were recorded. 

Each participant performed 1080 trials in total (6 hours in two separate days). As 

shown in Figure 1A, in each trial, three pure tones with different frequencies that were 

pseudo-randomly selected from six fixed values ( 𝑓1: 381 𝐻𝑧, 𝑓2: 538 𝐻𝑧,

𝑓3: 762 𝐻𝑧, 𝑓4: 1077 𝐻𝑧, 𝑓5: 1524 𝐻𝑧, 𝑓6: 2155 𝐻𝑧) were presented sequentially, 

and participants were required to memorize both the ordinal position and frequency of 

the three tones. During the delay period, a retrocue (‘1’, ‘2’ or ‘3’) was first presented 

to indicate which of the three tones would be tested later, followed by a 100-ms 

white-noise auditory impulse. During the retrieval period, a target auditory tone was 

presented, and participants were instructed to determine whether its frequency was 

higher or lower than that of the cued tone. Note that the frequency of the target tone 

was determined in a pretest so that the overall memory performance would be around 

75%. Indeed, the behavioral performance for the auditory WM task was 75.35% (SE 

= 1.00%).  

A time-resolved representational similarity analysis (RSA) (Kriegeskorte et al., 

2008) was performed on the EEG responses to evaluate the neural representation of 

frequency and ordinal position, respectively, throughout the encoding and maintaining 

phases, at each time point and in each participant (see details in Methods). Notably, 

instead of binary decoding, the RSA analysis here is based on a hypothesis that the 

neural representational similarity is proportional to the factor-of-interest similarity, 

i.e., the neural response for 𝑓1 (381 𝐻𝑧) and 𝑓2 (538 𝐻𝑧) would be less dissimilar 

than that for 𝑓1 (318 𝐻𝑧) and 𝑓5 (1524 𝐻𝑧). To quantify the representational 

strength, we next calculated the linear regression (𝛽) between the factor dissimilarity 

and the corresponding neural representational dissimilarity for frequency and ordinal 

position, respectively. The decoding analysis was performed on content and structure 

information, respectively, i.e., decoding one factor (e.g., frequency) while 
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marginalizing the other factor (e.g., ordinal position), and vice versa.  
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Figure 1. Experimental paradigm and neural representations of content and 

structure during encoding and retention periods (Exp 1) 

(A) Experimental paradigm (Exp1). In each trial, three pure tones (1st, 2nd, and 3rd 

Memory Tones) with different frequencies (selected from 381 Hz, 538 Hz, 762 Hz, 

1077 Hz, 1524 Hz and 2155 Hz) were serially presented and participants were 

instructed to memorize both frequencies and ordinal positions of the three tones. 

During the maintaining period, a retrocue (‘1’ or ’2’ or ‘3’) appeared to indicate which 

of the three tones would be tested at the end of the trial. Next, a completely task-

irrelevant white-noise auditory impulse was presented. During the retrieval period, a 

target pure tone was presented, and participants needed to compare it to the cued 

memory tone, i.e., higher or lower in frequency. (B) Neural representations of content 

(i.e., frequency) and structure (i.e., ordinal position) during encoding period. Upper 

panels: Grand average (N = 30) neural representational dissimilarity (mean-centered) 

as a function of physical dissimilarity of the memory tone, for frequency (left) and 

ordinal position (right), as a function of time. Lower panels: Grand average (N = 30, 

mean ± SEM) beta values of the regression between neural representational 

dissimilarity and physical dissimilarity of memory tones (i.e., decoding performance), 

for frequency (left) and ordinal position (right), as a function of time. Gray bar on x-

axis indicates memory tone presentation. (C) Same as B but during retention period 

after retrocue. Gray bar on x-axis indicates retrocue presentation. Dotted blue line 

(right panel): sensory-information-removed decoding strength for ordinal position; 

corrected. (D) Same as B but during retention period after white-noise auditory 

impulse. Gray bar on x-axis indicates white-noise presentation. Note that only correct 

trials were analyzed in each participant. (Shaded area represents ± 1 SEM across 

participants. ***: p < 0.001; **: p < 0.05; solid line: corrected using cluster-based 

permutation test, cluster-forming threshold p < 0.05). 

 

 

Neural representations of structure and content during WM encoding  

During the encoding period, each of the three tones could be characterized by two 

factors, i.e., frequency (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6) and ordinal position (1st, 2nd, 3rd). 

Therefore, we could assess the neural representations of content and structure, 

respectively, from the same EEG response for each tone. Specifically, when 

examining frequency encoding, each tone would be labelled in terms of its frequency, 

regardless of its ordinal position, whereas analyzing structure representation would be 

based on ordinal positions regardless of the frequencies. Moreover, a cross-validated 

confound regression approach (Snoek et al., 2019) was employed to regress out 

possible influences from global field power courses for the three tones on the 
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multivariate decoding analysis.  

The upper panels of Figure 1B plot the time-resolved neural representational 

dissimilarity as a function of physical dissimilarity (y axis) after the onset of each 

tone, for frequency (left) and ordinal position (right). It is clear that for both 

properties, the neural dissimilarity is minimum at center and gradually increases to the 

two sides when the physical difference becomes larger, supporting that the neural 

responses contain information for both content and structure. The lower panel of 

Figure 1B shows the corresponding regression weights of the dissimilarity matrices, 

for frequency (𝛽𝑓𝑟𝑒𝑞, left) and ordinal position (𝛽𝑝𝑜𝑠, right), separately. Specifically, 

both the frequency representation 𝛽𝑓𝑟𝑒𝑞 (left; p < 0.001, corrected) and the ordinal 

position representation 𝛽𝑝𝑜𝑠 (right; p < 0.001, corrected) emerged shortly after the 

onset of each tone.  

In summary, during the encoding period when a sequence of tones is presented to 

be retained in WM, each sound is signified by two separate neural codes that 

characterize its content (frequency) and structure (ordinal position), respectively (see 

Figure S1 for another analysis to confirm the separate encoding of frequency and 

ordinal position).    

 

Reactivations of structure and content information during ‘activity-silent’ 

retention 

After establishing the representations of content and structure information during the 

encoding phase, we next examined their maintenance during retention when the brain 

responses enter an ‘activity-silent’ state (see Figure S2). Crucially, the triggering 

events – retrocue (Figure 1C) and white noise (Figure 1D) – successfully reactivated 

WM information from the silent state, yet content (left panel) and structure (right 

panel) displayed distinct temporal profiles. Specifically, as shown in Figure 1C, the 

retrocue triggered the emergence of ordinal position information (right, blue line) (p < 

0.001, corrected) but not that for tone frequency (left, red line; p > 0.5, corrected). In 

contrast, the subsequent white-noise auditory impulse (Figure 1D) successfully 
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activated the tone frequency representation (left, red line; 200 – 260 ms: p = 0.017, 

corrected) but not the ordinal position (right, blue line; p > 0.359, corrected). Thus, 

contents and ordinal structure are maintained in a dissociated way, i.e., being 

reactivated by different triggering events. Note that the RSA decoding analysis was 

performed in reference to the memory-related information, e.g., a trial with retrocue 

of ‘2’ and 𝑓4 (1077 𝐻𝑧) as the 2nd memorized tone frequency would be labelled as 

‘2’ for ordinal position and 𝑓4 for frequency.   

 Importantly, since the retrocue stimuli are physically different (e.g., ‘1’, ‘2’, ‘3’), 

the observed structure representation after the retrocue (Figure 1C, right, blue solid 

line) would also contain the low-level sensory information. To address this issue, we 

further regressed the neural response dissimilarity according to two indexes – the 

ordinal positional dissimilarity (genuine structure information) and the dissimilarity 

between the neural response in the current experiment and that in a control 

experiment where participants viewed the identical retrocue stimuli (sensory 

information). This would allow us to remove the low-level sensory contributions from 

the structure decoding results. As shown in Figure 1C, the sensory-removed decoding 

performance remained present (right, dotted blue line), supporting that the ordinal 

position representations are not just caused by sensory inputs. It might still be argued 

that there are other confounding factors carried by the retrocue stimuli, an issue we 

further addressed using an encoding-to-maintaining generalization analysis (see 

Figure 2).  

Another concern is whether the white noise impulse presented during retention 

would interfere with auditory WM. A control experiment with completely different 

participants (N =19; see Figure S3) excluded the possibility, by revealing similar WM 

behavioral performance with or without noise. The results further support that the 

white noise serves as a ‘neutral’ probe to assess the information retained in WM 

network.  

Overall, during the ‘activity-silent’ maintaining period, a structural retrocue 

successfully reactivates structure but not content information, whereas a following 
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white-noise auditory impulse triggers WM content (to-be-recalled tone frequency) but 

not structure representation, implying their storage in different brain regions. 

 

Distinct encoding-to-maintaining representational generalizations for structure 

and content  

Having confirmed the neural representations during both encoding (Figure 1A) and 

maintaining periods for structure (Figure 1C, after retrocue) and content (Figure 1D, 

after white noise), we next conducted an encoding-to-maintaining generalization 

analysis to estimate whether these two phases share similar coding formats. Put 

another way, if the neural codes for encoding (Figure 1B) could be successfully 

generalized to those elicited during retention (Figure 1CD), this would support a 

stable WM coding, otherwise a dynamic coding transformation.  

We first used the same RSA approach as before to examine the cross-temporal 

generalization, except that here the response dissimilarity was calculated between the 

encoding and retention activations. As shown in Figure 2B, only the structural 

information showed a significant cross-temporal generalization (right; 230 – 280 ms: 

p = 0.026, corrected), whereas the content information did not (left; p > 0.089, 

corrected). To further verify the results, we used a lasso-regularized logistic regression 

models to test the cross-temporal generalization. As shown in Figure 2C, likewise, 

only the structure information showed significant encoding-to-maintenance 

generalization (right; 90 – 570 ms: p < 0.001, corrected), but not for frequency 

information (left; p > 0.438, corrected). Importantly, the successful cross-temporal 

generalization for ordinal position further confirmed the genuine structure information 

triggered by the retrocue during retention, since no visual cues (i.e., ‘1’, ‘2’, ‘3’ 

stimuli) were presented during the encoding period yet the structural codes could still 

be generalized to that during retention. 

Taken together, structure and content are endowed with distinct representational 

transformation properties, i.e., structure representation remains stable from encoding 

to maintaining periods, while the content code undergoes a dynamic transformation, 
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signifying their distinct representational formats.  

 

 

 

Figure 2. Encoding-to-Maintaining representational generalization (Exp 1) 

(A) Illustration of the cross-temporal generalization from encoding to maintaining 

periods for frequency (left) and ordinal position (right). Left: frequency 

generalization, i.e., encoding-phase response (within 90 - 130 ms) were used as train 

data to test the maintaining-phase responses at each time point after white-noise 

auditory impulse. Right: ordinal position generalization, i.e., encoding-phase response 

(within 140 - 180 ms) were used as train data to test the maintaining-phase responses 

at each time point after retrocue. (B) Grand average (N = 30, mean ± SEM) cross-

temporal decoding generalization results using RSA as a function of time during 

maintaining, for frequency (left) and ordinal position (right). Gray bar on x-axis 

indicates white-noise (left) and retrocue (right). (C) Same as B but using lasso-

regularized logistic regression models. Note that only correct trials were analyzed in 

each participant. (Shaded area represents ± 1 SEM across participants. ***: p < 0.001; 

**: p < 0.05; solid line: corrected using cluster-based permutation test, cluster-

forming threshold p < 0.05). 
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Content reactivations during retention correlate with WM behavior 

Finally, we evaluated whether the neural representations of content and structure 

retained in WM, which could be reactivated by the retrocue and white noise 

respectively, have any behavioral consequence. To this end, we performed the same 

RSA analysis on correct trials and incorrect trials separately, in each participant. We 

ensured equal numbers of correct and incorrect trials to make a fair comparison (see 

details in Methods). Interestingly, as shown in Figure 3A, the correct (dark red) and 

wrong trials (light red) displayed distinct frequency reactivations after the white noise 

(correct vs. wrong: black asterisks; 210 – 250 ms: p = 0.053, corrected). Specifically, 

the correct-trial group (dark red) showed significant frequency decoding performance 

(200 – 260 ms: p = 0.018, corrected), whereas the wrong-trial group (light red) did 

not. Interestingly, the wrong-trial group also showed a trend of late reactivation (440 – 

460 ms: p = 0.178, corrected; maximum p = 0.049, uncorrected), with a trend of 

behavioral relevance (wrong vs. correct: 440 – 450 ms: p = 0.351, corrected; 

maximum p = 0.016, uncorrected).  

 Meanwhile, the structure reactivations (i.e., encoding-to-maintaining 

generalization, given its genuine indexing of structure information independent of 

retrocue stimulus) displayed no behavioral relevance, i.e., correct and wrong trials 

showed comparable structure reactivations (RSA, Figure 3B, p > 0.138, corrected; 

Lasso-regularized logistic regression model, Figure 3C, p > 0.106, corrected). 

Furthermore, the neural representation during the encoding period did not show 

behavioral correlates for both frequency (Figure 3D, p > 0.287, corrected) and ordinal 

position (Figure 3E, p > 0.5, corrected), suggesting that the deteriorating WM 

performance in wrong trials were not attributable to encoding failure.  

 Thus, content information (i.e. tone frequency) maintained in WM, which could 

be assessed using a neutral white-noise auditory impulse during retention, covaries 

with subsequent WM recalling performance, thus further confirming the reactivation’s 

genuine indexing of WM operations.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2021. ; https://doi.org/10.1101/2020.12.05.412791doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.05.412791
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

 

 

 

Figure 3. Behavioral correlates of content and structure representations in 

auditory WM (Exp 1) 

(A) Grand average (N = 30, mean ± SEM) frequency decoding performance during 

maintaining period after white-noise auditory impulse, for correct (dark red) and 

wrong (light red) trials. Gray bar on x-axis indicates white-noise presentation. (B) 

Grand average (N = 30, mean ± SEM) structure decoding performance during 

maintaining period after retrocue (i.e., encoding-to-maintaining generalization), for 

correct (dark blue) and wrong (light blue) trials. Gray bar on x-axis indicates retrocue 

presentation. (C) Same as B but using lasso-regularized logistic regression models. 

(D) Same as A but during encoding period. Gray bar on x-axis indicates memory tone 

presentation. (D) Same as B but during encoding period. Note that the decoding 

analyses were performed on correct and wrong trials with equal trial numbers. 

(Shaded area represents ± 1 SEM across participants. ***: p < 0.001; **: p < 0.05; 
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solid line: corrected using cluster-based permutation test, cluster-forming threshold p 

< 0.05; dotted line: uncorrected).  

 

 

Experiment 2: task control 

In Experiment 1, participants were instructed to retain a list of auditory tones and 

recall the tone frequency according to the retrocue (1st, 2nd, 3rd). Meanwhile, since the 

recalling task only tested the content, participants might have discarded the structure 

information after the retrocue. This would constitute an alternative interpretation for 

why the white-noise impulse failed to trigger structure representations (Figure 1CD). 

To address this possibility, we performed Experiment 2 (N = 18), during which the 

participants did exactly the same task as Experiment 1 but needed to additionally 

recall the position of the memorized tone (Figure S4A).  

 The behavioral accuracies for frequency and ordinal position were 75.17% (SE = 

1.08%) and 98.80% (SE = 0.22%), respectively. As shown in Figure 4, Experiment 2 

largely replicated the results of Experiment 1 (see Figure S4B for results during 

encoding period in Exp 2), thus excluding the task demand interpretation. 

Specifically, the retrocue elicited structure representation (Figure 4A, right; 60 – 600 

ms: p = 0.003, corrected) but not frequency (Figure 4A, left; p > 0.337, corrected), 

whereas the white noise reactivated content (Figure 4B, left, dark red; 250 – 320 ms: 

p = 0.006, corrected) but still failed to drive structure information (Figure 4B, right, 

p > 0.350, corrected). Moreover, same as Experiment 1, the cross-temporal 

generalization results showed a significant encoding-to-maintaining generalization for 

structure (Figure 4C, right, dark blue; 140 – 180 ms: p = 0.046, corrected) but not for 

content (Figure 4C, left, p > 0.251, corrected). Finally, also consistent with 

Experiment 1, correct trials showed better content reactivations than wrong trials 

(Figure 4B, left, black star, 250 – 280 ms: p = 0.054, corrected), but not for ordinal 

position (Figure 4C, right p > 0.158, corrected).  

 We next combined Experiment 1 and Experiment 2 (N = 48), given that they 

shared the same design through encoding and retention periods and showed similar 

activation patterns. Consistently, the white noise triggered stronger content 
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reactivation for correct than incorrect trials (Figure 4D, black, 210 – 270 ms: p = 

0.011, corrected), while the retrocue did not (Figure 4E, p > 0.148, corrected). 

Intriguingly, there was still a trend of late content reactivation for incorrect trials (430 

– 450 ms: p = 0.179, corrected; maximum p = 0.045, uncorrected), which was even 

marginally higher than that for correct trials (430 – 450 ms: p = 0.178, corrected; 

maximum p = 0.045, uncorrected), implying that the WM content in wrong trials 

might not be lost completely, but tends to be maintained in a less excitable latent state 

of WM network (see Discussion).  

 Taken together, the new control experiment fully replicated previous results, 

supporting that the lack of structure reactivation after the white-noise impulse is not 

due to task demands in Experiment 1.  
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Figure 4. Experiment 2 results 

(A) Neural representations of content (i.e., frequency) and structure (i.e., ordinal 

position) during maintaining period after retrocue. Grand average (N = 18, mean ± 

SEM) beta values of the regression between neural representational dissimilarity and 

physical dissimilarity of cued tones, for frequency (left) and ordinal position (right), 
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as a function of time. (B) Left: Grand average (N = 18, mean ± SEM) frequency 

decoding performance after white noise, for correct (dark red) and wrong (light red) 

trials. Right: Grand average ordinal position decoding performance after white noise. 

(C) Grand average (N = 18, mean ± SEM) encoding-to-maintaining generalization 

results for frequency (left) and ordinal position (right) for correct (dark blue) and 

wrong (light blue) trials. (D) Grand average (N = 48, mean ± SEM) frequency 

decoding performance after white noise, for correct (dark red) and wrong (light red) 

trials, by combining Exp 1 and Exp 2. (E) Grand average (N = 48, mean ± SEM) 

encoding-to-maintaining generalization results for ordinal position after retrocue, for 

correct (dark blue) and wrong (light blue) trials, by combining Exp 1 and Exp 2. Note 

that the analyses were performed on correct and wrong trials with equal numbers in 

each participant. (Shaded area represents ± 1 SEM across participants. ***: p < 0.001; 

**: p < 0.05; solid line: corrected using cluster-based permutation test, cluster-

forming threshold p < 0.05; dotted line: uncorrected).  
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Discussion 

As we learn about the world, memories are formed not only for individual events but 

also for their relational structure. Here, we demonstrate that content (tone frequency) 

and structure (ordinal position) of a tone sequence are encoded and stored in a distinct 

way in human auditory WM. Each item is signified by two separate neural codes – 

content and structure – which could be subsequently reactivated from the ‘activity-

silent’ state during WM retention, by white-noise auditory impulse and retrocue, 

respectively. Furthermore, content and structure demonstrate distinct temporal 

properties throughout memory process, i.e., stable representation for structure and 

dynamical coding for content. Importantly, the content reactivations during retention 

are further correlated with WM recalling performance. Overall, the human brain 

extracts and separates structure and content information from auditory inputs and 

maintains them in distinct formats in the WM network. Our work also provides a 

novel approach to access the ‘silently’ stored WM information in the human brain.  

It has long been posited that structure information that characterizes the abstract 

relationship between objects serves as a primary rule to organize fragmented contents 

and influences perception (i.e., Gestalt principle; Wagemans et al., 2012), memory 

(Davachi & DuBrow, 2015; DuBrow & Davachi, 2013; Gershman et al., 2013) and 

learning (Luyckx et al., 2019). How is the structure information implemented in the 

brain? One typical example is the hippocampus neurons that are sensitive to specific 

spatial location or time bin that are independent of the attached contents, signifying 

their coding of spatial (Eichenbaum et al., 1999; Muller, 1996; O'Keefe & 

Dostrovsky, 1971; O'keefe & Nadel, 1978), temporal (Eichenbaum, 2014; MacDonald 

et al., 2011; Manns et al., 2007; Paz et al., 2010; Tsao et al., 2018), and abstract 

structures even in nonspatial tasks, i.e., cognitive map (Aronov et al., 2017; Garvert et 

al., 2017; Schuck & Niv, 2019). Parietal regions are also involved in structural 

representation and learning (Feigenson et al., 2004; Summerfield et al., 2020;). Here 

we focused on the ordinal information of a tone sequence, a typical and important 

relational structure to sort contents in auditory experience. Indeed, neural coding of 
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ordinal position has been found in both animal recordings (Fortin et al., 2002; Naya & 

Suzuki, 2011) and neuroimaging studies (Baldassano et al., 2017; Carpenter et al., 

2018; DuBrow & Davachi, 2016; Hsieh et al., 2014; Kikumoto & Mayr, 2018; Liu et 

al., 2020; Rajji et al., 2017; Roberts et al., 2013; Huang et al., 2018). Our results are 

thus consistent with previous findings and further expand to auditory sequence 

memory, particularly during the maintaining period.  

Different from visual studies, only a few studies have assessed the neural 

correlates of auditory WM (Albouy et al., 2017; Kumar et al., 2016; Luo et al., 2013; 

Weisz et al., 2020; Wolff et al., 2020). Here, by combining RSA-based decoding and 

impulse-response approach, we demonstrate that a neutral white-noise auditory 

impulse could successfully reactivate the tone frequency information ‘silently’ held in 

auditory WM. This is consistent with the hidden-state WM view, which posits that 

information is stored in synaptic weights via short-term neural plasticity principles 

(Lewis-Peacock et al., 2012; Masse et al., 2020; Mongillo et al., 2008; Stokes, 2015). 

As a result, a transient disturbance of the neural network (e.g., a flash or a white 

noise) would endow the neural assemblies that maintain WM information in synaptic 

weights with larger probability to be activated (Stokes, 2015). In other words, the 

white-noise here serves as a ‘neutral’ probe to assess the information that has already 

been retained in WM and would not modify WM contents (also see the control 

experiment, Figure S3). Nevertheless, not all the triggering events could efficiently 

reactivate contents, e.g., the retrocue failed to trigger content information, implying 

that content and structure might be stored in different regions and have different 

characteristics. Auditory content, presumably retained in sensory cortex, is sensitive 

to auditory perturbation, while structure information might be maintained in high-

level areas, e.g., parietal region (Bueti et al., 2009; Parkinson et al., 2014; 

Summerfield et al., 2020) and frontal cortex (Berdyyeva & Olson, 2010; Hsieh et al., 

2011; Naya et al., 2017; Ninokura et al., 2003).  

The white-noise-elicited content reactivation during retention correlates with 

subsequent recalling performance, further supporting its genuine indexing of content 
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maintenance in auditory WM. Interestingly, a trend of late content reactivation for 

incorrect trials suggests that content information might not be completely lost but still 

retained in WM, yet in a less excitable latent state, i.e., being triggered in a late and 

less robust way. A recent visual WM study reveals that top-down attention could 

modulate the latent states of WM items, i.e., the most task-relevant one would be in a 

more excitable state and tends to be reactivated earlier by TMS perturbation (Rose et 

al., 2016). Moreover, computational modelling that incorporates competition between 

items also predicts late reactivation for weakly stored WM items (Mongillo et al., 

2008). Therefore, besides reactivation strength, the latency of content reactivations 

might also serve as a potential index to assess subsequent WM performance.  

What would be the benefit of the dissociated content and structure representation 

in WM system? An apparent advantage is that this would allow rapid and versatile 

transfer of the structure information to new contents (Behrens et al., 2018; Friston et 

al., 2016; Kaplan et al., 2017; Tse et al., 2007; Whittington et al., 2018). Visual WM 

studies also reveal that different attributes (e.g., color, shape or orientation) of a single 

object are coded independently (Bays et al., 2011; Cowan et al., 2013; Fougnie & 

Alvarez, 2011). Back to the current experiment, all trials share the fixed sequence 

structure (e.g., 3-tone sequence), and it would therefore be more efficient for the brain 

to separately encode and maintain the ordinal position information and allocate tone 

information anew in each trial to the corresponding ordinal positions.  

Finally, structure and content also show different coding dynamics, i.e., stable and 

dynamic representations, respectively. The transformed code for WM contents has 

been widely found (e.g., Barak et al., 2010; Kamiński & Rutishauser, 2020; Lundqvist 

et al., 2016, 2018; Meyers et al., 2008; Parthasarathy et al., 2017, 2019; Quentin et al., 

2019; Rademaker et al., 2019; Spaak et al., 2017; Sprague et al., 2016; Trübutschek et 

al., 2017; Wolff et al., 2017, 2020; Yu et al., 2020; Yue et al., 2019). Possible 

interpretations for the dynamic coding are that WM content is coded in a way that is 

optimized for subsequent behavioral demands (Panichello & Buschman, 2020; Myers 

et al., 2017), or transformed into a subspace to resist distractions from new inputs 
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(Libby & Buschman, 2019; Murray et al., 2017). In contrast, the ordinal structure 

displays a stable representation over memory course, in line with previous findings 

(Kalm & Norris, 2017; Luyckx et al., 2019; Walsh, 2003). Stable structure coding 

would be advantageous for memory generalization and formation, i.e., rapid 

implementation of stable structure to dynamic contents.  

Taken together, content (tone frequency) and structure (ordinal position) are the 

two basic formats of information to be maintained in WM. Our findings demonstrate 

that they are encoded and stored in a largely dissociated way and display distinct 

representational characteristics, which echo their varied functions in memory 

formation – detailed and dynamic contents vs. abstract and stable structure.      
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METHODS 

Participants 

Thirty (17 females, mean age 23.4, range 19-27 years) and twenty (8 females, mean 

age 19.7, range 18–25 years) healthy participants with normal or corrected-to-normal 

vision were recruited in Experiment 1 and Experiment 2, respectively, after providing 

written informed consent. Two participants in Experiment 2 were excluded due to low 

behavioral performance. Participants received compensation for participation. The 

experiment was approved by the Departmental Ethical Committee of Peking 

University. 

 

Apparatus and Stimuli 

The experiment stimuli were generated and controlled with MATLAB (MathWorks) 

and Psychophysics Toolbox (Psychtoolbox-3; Brainard, 1997). The visual stimuli 

were presented on a Display ++ LCD screen with a resolution of 1920 by 1080 pixels 

running at a refresh rate of 120 Hz. The distance between the screen and participants 

was fixed at 60 cm. Auditory stimuli were presented with a Sennheiser CX213 

earphone through an RME Babyface pro external sound card. The intensity of all 

auditory stimuli was set at approximately 65 dB (62.1 to 67.3 dB) SPL. A USB 

keyboard was used for response collection. 

 

Experimental procedure 

Experiment 1. Each trial started with the presentation of a cross (0.9° visual angle), 

which stayed in the center of the screen throughout the entire trial except during the 

retrocue’s presentation (Figure 1A). Participants were instructed to fixate at the 

central cross during the entire trial. After 700 ms, three memory tones with different 

frequencies that are pseudo randomly selected from a uniform distribution of 6 

frequencies (381 Hz, 538 Hz, 762 Hz, 1077 Hz, 1524 Hz and 2155 Hz) were 

presented sequentially. The duration of each memory tone was 200 ms, with inter-

stimulus interval of 700 ms. 2000 ms after the offset of the third tone, a 200-ms visual 
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retrocue (1.9° visual angle), a visual character (‘1’, ‘2’ or ‘3’), was presented in the 

center of the screen, indicating which of the three memory tones would be tested later, 

with 100% validity. A 100-ms white-noise auditory impulse was then presented 2000 

ms after the retrocue. Finally, after another 1500-ms interval, a 200-ms target auditory 

tone was presented. Participants made a judgement on whether the frequency of the 

target tone was higher or lower than the frequency of the cued memory tone, by 

pressing keys on the keyboard, without time limitation. The frequency of the target 

tone was either 21/3 higher or lower, with equal probability, than the frequency of the 

cued memory tone. Next trial started with a 1500 - 2000 ms delay after participant 

made their responses. There were 1080 trials in total, which were separated into two 

sessions that were completed in two separate days, for each participant. Each session 

lasted approximately 3 hours.  

Experiment 2. Experiment 2 was the same as Experiment 1, except that participants 

were instructed to additionally report the ordinal position of the cued tone during 

recalling (see Figure S4A). Furthermore, to control the temporal length of the 

experiment, there were other timing parameter adjustments, i.e., the interval between 

the 3rd auditory tone and the retrocue was set to 1500 ms, the interval between the 

retrocue and white noise to 1700 ms, and the interval between white noise and target 

tone to 1000 ms. Moreover, in order to prevent motor preparation during the 

maintaining period, the correspondence between particular ordinal positions and 

reaction keys are randomly set from six combinations in each trail. Same as 

Experiment 1, there were 1080 trials in total, which were separated into two sessions 

being completed in two separate days, for each participant. Each session lasted 

approximately 3 hours. 

 

EEG acquisition and pre-processing 

The EEG signals were acquired using a 64-channel actiCAP (Brain Products) and two 

BrainAmp amplifiers (Brain Products). The data was recorded through BrainVision 

Recorder software (Brain Products) at 500 Hz. Vertical electrooculogram was 
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recorded by one additional electrode below the right eye. The impedances of all 

electrodes were kept below 10 kΩ. The EEG data was referenced to the average 

value across all channels, down-sampled to 100 Hz, and bandpass filtered between 1 

and 30 Hz. Independent component analysis was performed to remove eye-movement 

and other artifactual components. Data were epoched - 500 ms before each trial’s 

onset to 700 ms after target tone’s offset. Epochs with extremely high noises by visual 

inspection were manually excluded from the following analyses. 

 

Time-resolved multivariate decoding 

Note that only the correct trials in each participant were used for further analysis, 

except the behavioral correlates analyses (Figure 3, Figure 4) during which the same 

number of correct and wrong trials in each participant were analyzed and compared 

(see details in later Methods).  

First, a time-resolved representational similarity analysis (RSA) was performed 

on the EEG data to evaluate the neural representation of frequency and ordinal 

position independently throughout the encoding and maintaining phases, at each time 

point for each participant. To remove the possible interference of slow trend, we first 

calculated the mean activity for each channel across all trials, and then the trial mean 

was smoothed by a 150-ms moving window and subtracted from the original data trial 

wisely (i.e., demean; Grootswagers et al., 2017). In addition, as the three pure tones 

were presented successively during encoding period, the difference of global field 

power (GFP) of these three tones might contribute to the ordinal position decoding 

analysis. To remove the possible confounding effects, we employed a cross-validated 

confound regression method proposed by Snoek et al. (2019) to remove the variance 

that could be explained by the GFP levels from the encoding responses. All the 

subsequent decoding analysis were conducted on the corrected data.  

The RSA analysis is based on both spatial and temporal information to achieve 

high signal-to-noise ratio (Grootswagers et al., 2017). Specifically, for RSA-based 

decoding at time point t, the values of all channels at the current time point t as well 
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as those at previous time point t-1 were all included as features (64*2 = 128 in total) 

for a further 8-fold cross-validation decoding approach. The Mahalanabis distance 

(Mahalanobis, 1936) in the neural spatiotemporal activities (i.e., 128 features) 

between each left-out test trial and the averaged, condition-specific activities over 

train-trials was computed, with the covariance matrix estimated from all the train-

trials using a shrinkage estimator (Ledoit & Wolf, 2004). If the neural activities 

indeed contain information about certain feature (e.g., tone frequency, ordinal 

position), the more similar the two features are (less physical dissimilarity), the less 

Mahalanobis distance their associated neural activities would have (less neural 

representational dissimilarity). To further quantify their relationships, the physical 

differences were linearly regressed against the corresponding neural representational 

dissimilarity values, for each test-trial. The mean beta value of the regression across 

all test-trials was then used to represent the decoding accuracy. This process was 

repeated 50 times with each containing a new random partition of data into 8 folds. 

The resulted decoding performance, smoothed with a Gaussian-weighted window 

(window length = 40 ms), were then averaged across the 50 partitions as the final 

decoding accuracy, at each time point and for each participant. Note that the RSA 

analysis was performed for frequency and ordinal position, independently, using the 

same EEG data but with different feature dimensions.  

Notably, the ordinal position decoding results would contain the low-level 

sensory information carried by the retrocue stimuli (i.e., ‘1’, ‘2’, ‘3’). To remove the 

confounding influences, we ran a control experiment during which participants were 

instructed to passively view the same retrocue stimuli (‘1’, ‘2’, ‘3’) and their EEG 

responses were recorded. We then conducted a leave-one-participant-out decoding 

analysis on our main experiment data. Specifically, in each run, the response of one 

participant in the main experiment was used as test data, with the remaining 

participants’ responses in the main experiment as train dataset 1 and those in the 

control experiment as train dataset 2. The neural response representational 

dissimilarity between the test data and train dataset 1 (containing both structural and 
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sensory representations), and that between the test data and train dataset 2 (containing 

only sensory representations) were then calculated, respectively. Finally, the neural 

dissimilarity between the test data and train dataset 1 (containing both structural and 

sensory representations) was regressed according to two predictors – the ordinal 

positional dissimilarity (structure information) and the sensory neural dissimilarity 

(calculated between test data and train dataset 2) – with the former referring to the 

sensory-removed representational strength (dotted line in Figure 1C, right).  

For correct and wrong trial decoding analyses, the right trials were k-folded, 

where k was determined by the closest integer to the quotient of the total correct trial 

numbers and wrong trial numbers. For each partition, the (k-1)-folds correct trials 

were used as training data, and the left 1-fold correct trials and all wrong trials were 

used as testing data, respectively. This manipulation will ensure the same trial 

numbers for correct and wrong trials during testing. The above k-fold decoding 

procedure was further conducted 50 times, and averaged to obtain the final decoding 

time courses. 

 

Cross-temporal generalization analysis 

A cross-temporal generalization analysis was conducted to investigate whether the 

neural representations of frequency or ordinal position were similar for encoding and 

maintaining periods. We first selected the temporal range during the encoding period 

to serve as that for training data, based on their corresponding decoding performance 

during encoding (i.e., 90 - 130 ms and 140 - 180 ms after the onset of memory tone, 

for frequency and ordinal position, respectively). Note that as shown in Figure 1CD, 

the neural representations of frequency and ordinal position only appeared after the 

white-noise stimulus and retrocue, respectively, during the delay period. Therefore, 

the cross-temporal generalization was performed only on the corresponding time 

ranges for these two features, i.e., 0 – 600 ms in reference to the onset of white-noise 

stimulus and retrocue, for frequency and ordinal position, respectively.  

We employed two types of multivariate decoding methods – RSA and lasso-
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regularized logistic regression model – for the cross-temporal generalization analysis. 

RSA was similar to previous analysis, except that the Mahalanibos distance was 

computed between responses during the encoding period (train data) and that during 

the maintaining period (test data). For lasso-regularized logistic regression model, we 

first trained classifier k (k =
1

1+𝑒−𝑥∗𝛽+𝛼), with 𝑥 as 128 decoding features (64 

channels over 2 time points) derived from EEG responses, vector 𝛽 representing  

weights for each feature and 𝛼 as the intercept coefficient, to differentiate either 

ordinal positions or frequencies using the encoding-phase responses. The obtained 

classifiers were then applied on the maintaining-phase data. The output was next 

transformed to d-prime values, which represent the cross-temporal generalization 

decoding performance.  

For both methods, the decoding results were further baseline corrected (0 to 50 

ms), repeated for 50 times, and then averaged. Finally, to remove possible influences 

from random effects, a control analysis was performed by shuffling test data labels 

and redoing the same cross-temporal generalization analysis for 50 times. The 

resulted shuffling results were then subtracted from the original results to get the final 

cross-temporal generalization results.   

 

Statistical significance testing 

Non-parametric sign-permutation test (Maris & Oostenveld, 2007; customized 

analysis codes) was used for statistical test. Specifically, the sign of the decoding 

value of each participant at each time point was randomly flipped 100,000 times to 

obtain the null distribution, from which the p value was derived. Cluster-based 

permutation test was then conducted to correct multiple comparisons over time (p < 

0.05). For clusters failing to pass the multiple comparison, the uncorrected results 

were reported.  
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