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Abstract 26	

The ability to build upon previous knowledge—cumulative cultural evolution (CCE)—is a 27	

hallmark of human societies. While CCE depends on the interaction between social systems, 28	

cognition and the environment, there is increasing evidence that CCE is facilitated by larger and 29	

more structured societies. However, the relative importance of social network architecture as an 30	

additional factor shaping CCE remains unclear. By simulating innovation and diffusion of cultural 31	

traits in populations with stereotyped social structures, we disentangle the relative contributions 32	

of network architecture from those of population size and connectivity. We demonstrate that while 33	

multilevel societies can promote the recombination of cultural traits into high-value products, they 34	

also hinder spread and make products more likely to go extinct. We find that transmission 35	

mechanisms are therefore critical in determining the outcomes of CCE. Our results highlight the 36	

complex interaction between population size, structure and transmission mechanisms, with 37	

important implications for future research. 38	

 39	

Keywords 40	

Cultural evolution | Cultural complexity | Multilevel societies | Small-world networks | Social 41	

structure  42	

 43	

Introduction 44	

 45	

Cumulative cultural evolution—where iterative innovations and social transmission generate 46	

cultural accumulation over time [1-3]—is key to the human’s ecological success and worldwide 47	

distribution [4,5]. While CCE fundamentally depends on the interplay between cognition and 48	

social learning mechanisms [1], it is increasingly clear that demography can modulate the rate of 49	

cultural evolution [6-9]. Large population sizes [10,11], greater population turnover, and more 50	

densely connected societies [3,12] can all provide greater innovative potential, more learning 51	

models, faster diffusion, and reduced extinction risk of useful innovations [7,13-15]. For example, 52	

increasing population density as well as migration of hunter-gatherers during the upper 53	

Paleolithic transition led to the explosion of culture that forms the basis of modern human 54	

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2020. ; https://doi.org/10.1101/2020.12.04.411934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.411934
http://creativecommons.org/licenses/by/4.0/


	

	

3 

	

societies [8,15]. Yet, it remains unclear how variation in the wiring of these social connections 55	

shape the tempo of cumulative cultural evolution. 56	

 57	

Network architecture—here defined as a social structure with a characteristic set of properties—58	

can shape transmission of behaviours, thus setting the tempo of CCE—here defined as the rate of 59	

cultural recombination events. For example, architectures with low network connectivity (i.e. 60	

density; proportion of realised connections), high clustering (tendency of connected individuals to 61	

share the same social neighbours) and high modularity (tendency of the network to contain sets of 62	

individuals more connected to each other than with others) slow down the spread of information 63	

across populations [16-18]. Slower spread can then potentially favour greater cultural diversity by 64	

allowing multiple cultural lineages to arise in populations before any one lineage dominates 65	

[19,20]. While previous work has largely focused on how new behaviours spread through a social 66	

network [16,17] to establish cultures [20,21] and how cultural traits can generate a feedback 67	

shaping network structure [18,22], more recently it has been argued that emergent network 68	

properties could affect CCE [12,14,19] by shaping how new traits are produced, recombined, and 69	

maintained [14]. For example, partial connectivity facilitates the emergence of multiple cultural 70	

lineages in parallel [20], which is required for achieving cultural accumulation, but partially-71	

connected networks suffer from cultural loss if connectivity is too low for new innovations to 72	

spread [14]. By contrast, full connectivity facilitates rapid spread of new innovations, but can 73	

prevent the accumulation of alternative cultural traits [12,14]. However, within a given level of 74	

connectivity, how connections are structured—the social network architecture—could also impact 75	

CCE by influencing how fast and widely information can spread. 76	

 77	

Because network architecture can shape the effect of connectivity on diffusion dynamics [23], those 78	

architectures that balance the ability for cultural accumulation together with the recombination of 79	

different cultural traits should have a selective advantage in facilitating CCE [19]. Multilevel 80	

societies, such as those in modern hunter-gatherers, feature high clustering and nested modularity. 81	

These network properties are expected to favour CCE by allowing coexistence of multiple cultural 82	

traits in different parts of the network, and for different cultural lineages to come into contact to 83	

allow combinations from lineages to produce new traits [19]. Multilevel societies have been 84	
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demonstrated to accelerate CCE when compared to fully connected networks [19]. However, when 85	

considering their potential for facilitating CCE, multilevel and fully-connected networks represent 86	

possible endpoints along a continuum of possible architectures. Here, we ask how a range of social 87	

network architectures can affect the tempo of CCE within a given population size and number, or 88	

density, of social connections within that population. Our approach allows us to explicitly 89	

disentangle the relative contribution of network architecture from those of connectivity and 90	

population size. 91	

 92	

Results 93	

 94	

We generated networks with six different architectures—random, small-world, lattice, modular, 95	

modular lattice, and multilevel—capturing different levels and combinations of clustering and 96	

modularity (Fig. 1A). We expressed these network architectures in populations with different sizes 97	

and densities of connections (average degree), where all individuals in the network had the same 98	

degree. We then used the agent-based model implemented by Migliano et al. [19] (hereafter model 99	

1), inspired by the experiment of Derex & Boyd [12], to explore how network architecture affects 100	

time to cultural recombination (i.e. tempo) and the diversity of cultural traits. Briefly, this model 101	

allows innovations of cultural products to take place along two cultural lineages, with the 102	

knowledge of new products being spread to all social connections (one-to-many diffusion). Once a 103	
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high level of product diversity has been reached in both lineages, agents can recombine each 104	

lineage’s products into one with a final higher payoff product (hereafter ‘recombination’). 105	

 106	

 107	

Figure 1. Social network architectures, and the time to recombination for each architecture across 108	
population sizes and levels of connectivity using model 1. (A) Network architectures vary in 109	
clustering and modularity: Random (unclustered C=0.03, non-modular Q=0.24), small-world (clustered 110	
C=0.52, medium-modular Q=0.63), lattice (clustered C=0.45, medium-modular Q=0.54), modular 111	
(unclustered C=0.23, modular Q=0.82), modular lattices (clustered C=0.41, modular Q=0.81), multilevel 112	
(clustered C=0.42, modular Q=0.83). Each binary network depicts populations with the same number of 113	
individuals (here, N=324 nodes) that have the same number of social connections (here, degree K=12 114	
links per node; density D=0.037) but are wired differently. (B) Cumulative incidence of recombination 115	
events (y-axis) as a stepwise function over time (x-axis, log epochs) for small (N=64), medium (N=144), 116	
and large population sizes (N=324). The line shading represents the amount of network connectivity 117	
(node degree K, where the lighter the shade, the smaller the degree (K∈{8,12} for N=64; K∈{8,12,18,24} 118	
for N=144; K∈{8,12,18,24,30} for N=324). Vertical dashed lines indicate the median of time to 119	
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recombination (S(t)≤0.5) per network connectivity, across architectures. The time to reach recombination 120	
was truncated to 100 epochs for better visualization. Curves were calculated based on 5,000  121	
 122	

Confirming the effects of population size and connectivity on CCE 123	

 124	

When comparing time to recombination, we confirm that partially connected networks 125	

outperform fully connected networks [12,14,19] (Fig. 2A). A generalized linear model indicated 126	

that overall fully connected networks were, on average, 65% slower (GLM, exp(β)=1.652, t=59.208, 127	

p<.001; Table S1) compared to the least structured network architecture of the same size (random, 128	

N=64 taken as the intercept), with similar decreases in performance independent of size. Further, 129	

we also confirm [7] that larger populations take less time (about 40% less) to reach recombination 130	

(GLM, exp(β)=0.618, t=-68.481, p<.001) compared to networks of the same architecture and 131	

connectivity (Figs. 1B,2, Table S2). Larger partially-connected network architectures were less 132	

variable in their time to recombination (Quartile Coefficient of Dispersion: QCD=0.688 for N=64; 133	

QCD=0.444 for N=144; QCD=0.273 for N=324, Fig. 2A). We also found that time to recombination 134	

was optimized at intermediate densities of connections, confirming that intermediate levels of 135	

connectivity can favour CCE [14], and revealing that the optimal level of connectivity varied with 136	

population size (Fig. 1B). In the smallest population (N=64), sparse networks outperformed the 137	

others, but this was reversed in the largest population (N=328) (Fig. 1B). However, differences in 138	

time to recombination were generally small (Fig. 1B, 2A). 139	

simulations.  140	
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 141	

Figure 2. Time to recombination and time from recombination to diffusion across network 142	
architectures with varying sizes but a fixed degree. Comparison of the performance across the range of 143	
network architectures of the same degree (here K=12 link per node) and fully connected networks of the 144	
same size (N=64, N=144, and N=324 nodes, K=63, 143, and 323 respectively). (A) Time to recombination 145	
(log epochs) from 5,000 simulations with model 1 that uses a broadcast (one-to-many) diffusion 146	
dynamic. (B) Time to recombination (log epochs) from 5,000 simulations with model 2 that uses a 147	
dyadic (one-to-one) diffusion dynamic. (C) Difference between the time to recombination and the time 148	
to diffusion, where time to diffusion corresponds to the latency until the majority of the individuals in 149	
the population has information about the final higher-payoff product, from 5,000 simulations using 150	
model 2 (one-to-one diffusion). All ridges were plotted with the same bandwidth (0.18). 151	
  152	
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Architectures favouring CCE under some conditions disfavour CCE under other conditions 153	

 154	

Under the one-to-many diffusion mechanism (model 1), multilevel, modular, and modular lattice 155	

architectures had relatively shorter times to recombination in smaller populations with greater 156	

connectivity and in larger populations with less connectivity (Fig. 3A). However, such network 157	

architectures performed worse than lattice, small world, and random architectures in smaller 158	

populations with less connectivity and in larger populations with greater connectivity (Fig. 3A). 159	

Multilevel, modular, and modular lattice architectures were optimal at lower and higher levels of 160	

connectivity in medium-sized populations (N=144, Fig. 3A), although connectivity generally had a 161	

lesser impact for these architectures relative to random, small-world, and lattice architectures (Fig. 162	

1B). Surprisingly, multilevel performed the worst in seven out of the 11 size and connectivity 163	

combinations (Fig. 3A) despite having the highest clustering and modularity—properties that 164	

have been predicted to favour CCE [19]. The modular lattice architecture (which had similar 165	

modularity and clustering to multilevel architecture) performed best in the other four 166	

combinations (Fig. 3A). Thus, no one network architecture proved optimal, with those favoured 167	

under some conditions being disfavoured under other conditions. 168	

 169	

The large variation in the time to recombination (Fig. 2) within a given combination of network 170	

architecture, population size, and density of connections suggests that the outcomes of a 171	

simulation were predominantly driven by stochastic events. The impact of such stochasticity is 172	

best revealed by the bimodal outcome for partially connected networks, which arises most often in 173	

smaller populations (Fig. 2A). This bimodality occurs because there are fewer independent 174	

innovation events when there are fewer individuals, which increases the chance that cultural 175	

products all emerge from the same lineage and, therefore, that this single lineage spreads to the 176	

whole population before the other lineage is innovated. Tracking the diversity of products over 177	

time (Figs. 4,S1) highlights how the stochasticity in early events can affect cultural diversity, and 178	

therefore the outcomes of CCE, even within the same network architecture. Overall, measuring the 179	

tempo of CCE under one-to-many diffusion (model 1) revealed differences in the best performing 180	

architecture across population sizes and levels of connectivity (Fig. 2A,3A); however, these 181	
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between-architecture differences were small (range = 0.886-1.145; Fig. 3A), compared to the large 182	

variance in the time to recombination within architecture (Fig. 2A).  183	

 184	

Figure 3. Relative performance of network architectures within each of the 11 combinations of 185	
population size and level of connectivity used in the simulations. Each row of each table reports the 186	
coefficient estimate of GLMs of network architecture (column) in function of the time to recombination 187	
while maintaining degree (row) and network size (box) constant. Red colours (higher coefficients) 188	
represent a poorer performance (longer latency to recombination) while blue colours represent 189	
architecture that perform better (shorter latency to recombination) for that combination of population 190	
size and level of connectivity (using random networks as the reference architecture in the GLM 191	
intercept). The relative performance of each architecture is shown for (A) time to recombination under a 192	
one-to-many diffusion mechanism (model 1), (B) time to recombination under a one-to-one diffusion 193	
mechanism (model 2), and (C) total time to diffusion (from simulation start until the majority of the 194	
population has information about the final higher-payoff product) under a one-to-one diffusion 195	
mechanism (model 2). 196	
 197	

Diffusion mechanisms modify the contribution of network architecture, population size and connectivity on 198	

CCE 199	

 200	

To identify the relative contribution of diffusion mechanisms to CCE, we extended model 1 by 201	

implementing a one-to-one diffusion mechanism (hereafter model 2). Whereas model 1 represents 202	
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an extreme scenario where information spreads instantaneously to all the contacts of a focal agent, 203	

model 2 tests another extreme in which information about discoveries spread only to a single 204	

contact at a time. Interestingly, when employing such one-to-one diffusion dynamics, fully 205	

connected networks were only estimated to be 3% slower to recombination compared to networks 206	

of the same population size (GLM, exp(β)=1.033, t=6.808, p<.001; Table. S1). Again, larger 207	

populations had a significantly shorter average time to recombination compared to smaller 208	

networks of the same architecture and degree (GLM, exp(β)=0.595, t=-109.094, p<.001; Fig. 2B, 209	

Table. S2). However, under one-to-one diffusion, the relative times to recombination of different 210	

architectures was generally more consistent than under one-to-many diffusion, both in their 211	

median times to recombination (Fig. 2B) and in their relative performance under a given 212	

population size and level of connectivity (Fig. 3B). Within a given population size, multilevel 213	

architecture typically had the shortest times to recombination when networks had greater 214	

connectivity, but there was almost no difference in performance among architectures when 215	

connectivity was low (Fig. 3B). Thus, in contrast to one-to-many, one-to-one diffusion increased 216	

the tempo for architectures with greater modularity and clustering (modular, modular lattice, 217	

multilevel) relative to the other architectures. 218	

 219	

Model 2 also tracked the time for the recombination product to diffuse to the majority of the 220	

population, something which model 1 was not designed to track. The time from recombination to 221	

diffusion was shortest in fully connected networks, and increased with population size (Fig. 2C). 222	

When evaluating performance from the start of the simulations until the time to diffusion, 223	

population size was the main contributor to differences in outcomes (Fig. S5). In small 224	

populations, the contribution of the final diffusion was relatively small compared to the time to 225	

recombination, meaning that the best performing networks in achieving recombination also 226	

performed best overall (Fig. 3C). By contrast, in larger populations, the performance of modular 227	

and clustered network architectures (modular, modular lattice, and multilevel) all performed 228	

worse: they were the slowest at reaching final diffusion (Fig. 3C) despite typically reaching 229	
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recombination the fastest (Fig. 3B). These differences, however, remain minor relative to the 230	

variance in outcomes within each set of conditions (architecture, population size and connectivity). 231	

 232	

 233	

Figure 4. Cultural product diversity across time in a fully connected network and a highly structured 234	
social network architecture illustrates how early stochasticity shapes cultural outcomes. (A) Time to 235	
recombination (epochs) from 5,000 simulations with one-to-many diffusion dynamics (model 1) in 236	
multilevel and fully-connected networks (with N=64 and K=12). Following panels show cultural 237	
diversity over time from one simulation taken from the (B) from the mode of the fully-connected 238	
network, and the (C) first (*) and (D) second (**) modes of the distribution of results from the multilevel 239	
architecture. Cultural diversity represents the proportion of the population with one of the four possible 240	
products over time, from two independent lineages (light and dark shades): a single inventory item (1st 241	
stage; thin lines), a combination of two items (2nd stage; dotted lines), a valid combination triad of items 242	
(3rd stage; dashed lines), and the final higher payoff product, i.e. a triad recombining products from the 243	
two lineages (recombination; thick full lines).  244	
 245	

Discussion  246	

 247	

We revisit recent empirical and in silico experiments in humans to tease apart the contributions of 248	

different candidate social structures to the tempo of cumulative cultural evolution. Our results 249	

suggest that it is unlikely that one specific social network architecture consistently promotes CCE 250	
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across all population sizes, densities of social connections, or diffusion mechanisms. Rather, the 251	

relationship is nuanced; the broad distribution of outcomes from our two models indicate that the 252	

best performing architecture under some conditions can be the worst performing architecture 253	

under others. Further, the outcome of any diffusion mechanism is as likely to be affected by 254	

stochastic processes as by the architecture of the networks itself. While not at odds with previous 255	

work showing that multilevel societies can accelerate CCE [19], our results suggest that a range of 256	

other partially connected architectures could equally increase the tempo of CCE. 257	

 258	

The fact that alternative architectures can have similar outcomes in terms of CCE has important 259	

consequences for how the social structure of societies and CCE are framed in future discussions, 260	

and where future research is directed. Current thinking is that complex, highly structured 261	

societies, such as multilevel societies, might precede recombinatory CCE in the timeline of human 262	

evolution, or that the benefits accrued from cultural evolution [22] or CCE [19] might co-evolve 263	

with clustered and modular network structures. However, our results suggest that simple patterns 264	

of spatial distribution (e.g. a lattice social network caused by distributed resources) could lead to 265	

largely equivalent effects on CCE. It follows that we might expect to find recombinatory CCE even 266	

before the evolution of complex societies. Indeed, evidence that simple, lattice-like social 267	

structures [24] can provide a substrate for recombinatorial culture might be provided by the 268	

combinatorial, spatially variable song structure of territorial passerine birds [25-29], which several 269	

authors have proposed to be a simple form of CCE [30,31]. 270	

 271	

Population size has been suggested as another major demographic factor affecting rates of CCE 272	

[3,7-9]. Our findings confirm this previous research, with our simulations showing that larger 273	

populations always have a higher rate of cultural accumulation. Population size also interacted 274	

with connectivity (which we modelled as a fixed network degree, i.e. the number of individuals’ 275	

social connections [22]), with changes in connectivity having a more pronounced effect in smaller 276	

populations. This outcome is likely to arise because an increase in one unit of mean degree 277	

corresponds to a greater increase in network connectivity in smaller populations (more rapidly 278	

pushing the network towards becoming fully connected). However, in our simulations we did not 279	

vary the distribution in connectivity among individuals, which has previously been shown to 280	
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impact the properties of information cascades [32] and differences among groups in behaviours 281	

such as cooperation [33]. Skewed degree distributions, where some nodes are much more 282	

connected than others, could allow independent lineages to arise in peripheral nodes and for 283	

highly connected ‘hubs’ to combine the products from these lineages, thereby facilitating CCE. 284	

Thus, variation in how much or how little individuals are connected, independently of other 285	

factors (mean connectivity, population size, and network properties), is an important dimension 286	

for future studies on CCE to consider. 287	

 288	

Fully connected networks have been commonly used to evaluate the performance of a 289	

transmission network with a given set of characteristics [3,19]. Our simulations demonstrate that 290	

the contribution of large differences in connectivity outweighs any effects pertaining to 291	

architecture, at least when information is broadcast (i.e. a one-to-many diffusion mechanism). 292	

Further, for most human societies, a fully-connected social network for a population of any 293	

reasonable size would correspond with an unrealistically high level of connectivity [34], even in 294	

the higher levels of the fractal-like human social networks [35]. Thus, we suggest that fully 295	

connected networks are uninformative null models for testing the influence of social structure on 296	

rates of CCE. Instead, random networks of similar sizes and densities of connections as a given 297	

network of interest would provide a more robust benchmark for comparing the performance of its 298	

architecture. Our results suggest, however, that any effect of network architecture on increased 299	

rate of CCE inferred from noisy field data would likely be indistinguishable from the null 300	

expectancy, as variation within architecture greatly exceeded that between architectures.  301	

 302	

The evolutionary benefits of CCE not only rely on cultural accumulation, but also on the ability for 303	

new cultural traits to spread through populations. When we extended simulations to examine the 304	

time from recombination to the diffusion of the final higher payoff product, our results suggested 305	

that the network architecture hypothesized to improve time to recombination performance 306	

paradoxically inhibited diffusion most. These findings complement and extend the previous study 307	

by Derex et al. [12] demonstrating that populations with partially-connected network structures 308	

can suffer from cultural loss when connectivity becomes too low for new innovations to spread. 309	

Further, the relative performance of architectures can change dramatically when considering 310	
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performance in terms of acquisition of behaviour by the majority of nodes in a network, as 311	

opposed to the time when a single node has reached recombination, especially in larger 312	

populations. For example, while multilevel architecture consistently reached recombination faster 313	

than random networks under one-to-one diffusion, this architecture then restricted the final 314	

spread of higher-value cultural traits. Our results therefore suggest that multiple dimensions of 315	

performance—including every step from innovations to the final acquisition of higher-valued 316	

traits—may need to be considered when studying the role of social structure in shaping CCE and 317	

vice-versa. 318	

 319	

Our work reinforces the need for studies of CCE to explicitly consider how network structure 320	

interacts with transmission mechanisms to form a realised transmission network. We show that a 321	

very restrictive transmission dynamics (one-to-one) mitigates the effect of network connectivity on 322	

CCE by generating a partially connected transmission network within an otherwise fully-323	

connected social network. The consequences of transmission dynamics on CCE were 324	

demonstrated, for instance, by Migliano et al. [19] who found that CCE was faster in simulations 325	

where transmission was limited to kin-based connections (i.e. reduced connectivity). Under one-326	

to-one diffusion, independent lineages can develop in fully-connected networks because new 327	

information is not immediately accessible to all, leading to more comparable performance between 328	

fully and partially connected networks. Thus, when simulating CCE, it is important to match the 329	

transmission dynamics with the time scale of the model. One-to-many diffusion can be realistic 330	

when each epoch represents one generation (e.g. the innovation of a new medicine [19] could take 331	

tens or hundreds of epochs to reach high recombinatory levels), while the one-to-one diffusion 332	

might be more realistic when cultural traits are simpler to recombine. The production and 333	

innovation frequency, as well as transmission biases, may further vary between species, 334	

populations, tasks and contexts. Together with network structure, innovation frequency and 335	

transmission biases may fundamentally alter the transmission dynamics—for example, conformity 336	

overrides pay-off biases [21,36] and homophily reduces social connectivity [18,37]—fuelling 337	

evolutionary feedbacks between network structure and cultural evolution [22]. Both factors will 338	

therefore alter the resulting transmission networks, potentially restricting spread of new cultural 339	

traits and slowing recombinatory CCE. More than highlighting the intricate, yet nuanced, 340	
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interplay between demography and cultural transmission, our work strengthens our emerging 341	

understanding that realised connectivity, rather than network architecture, is important for CCE 342	

[2,3]. 343	

 344	

Materials and Methods 345	

 346	

Networks 347	

 348	

We generated six architectures of binary social networks in which nodes represent individuals 349	

linked by social relationships: (i) small-world networks, using the Watts-Strogatz model [23] with 350	

node degree K links; (ii) random networks, by randomly connecting nodes ensuring all nodes had 351	

the same degree K; (iii) lattices, by placing nodes on a grid and connecting each to its K nearest 352	

neighbours; (iv) modular networks, by assigning nodes into nine modules, randomly connecting 353	

each to K-1 nodes from the same module and one node from another module; (v) modular lattices, 354	

as per modular networks, but where the connections within modules were lattices; and (vi) 355	

multilevel networks, as per modular lattices, but assigning nodes into three sets of three modules, 356	

and connecting each to K-2 nodes within their module, one node from each module from within its 357	

set and one node from a module outside of it. We generated networks with different sizes 358	

(N∈{64,144,324} nodes), and densities of connections (in which K∈{8,12,18,24,30} average links). 359	

We used these population sizes because they allowed us to partition the network into equally-360	

sized clusters composed of equally-sized groups in which all individuals had the same degree, and 361	

in which connectivity was greater within groups and within clusters than between groups and 362	

between clusters.  363	

 364	

Network metrics 365	

 366	

Although all networks had comparable sizes and densities (i.e. the proportion links), the six 367	

architectures varied in levels and combinations of clustering coefficient and modularity. 368	

Clustering, C, informs the tendency of connected nodes to share the same connections with other 369	
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nodes, while modularity, Q, informs the tendency of the nodes to be organized into cohesive 370	

subsets that are more connected to each other than to the rest of the network [38]. 371	

 372	

Simulations 373	

 374	

Our first agent-based model (model 1) followed Migliano et al. [19]. All agents were initialized 375	

with an inventory of three items from each of two lineages. In each simulation round (epoch), each 376	

focal agent was selected once, at random, and a partner randomly chosen from its social network 377	

connections. These agents combined one or two items from their inventory in proportion to their 378	

value into a triad of items. If this triad was a valid product, knowledge of that product was 379	

learned, spread immediately to all their network connections (one-to-many diffusion), and 380	

subsequently became available as an ingredient for making new products. Simulations finished 381	

once a recombination product (a triad that recombines specific products from both lineages) was 382	

first innovated. We ran 5,000 simulations for each of the network architecture types, sizes and 383	

densities of connections, recording time to achieve the recombination product (in epochs) and 384	

diversity of innovations in each epoch. An epoch was one simulation round in which each agent 385	

was selected once as a focal agent in random order. 386	

 387	

Our second agent-based model (model 2) extended the first by changing the transmission 388	

mechanic and altering the set of valid combinations such that the model can run past the first 389	

innovation of either recombination product. Transmission of valid products now occurred 390	

between dyads of agents (one-to-one diffusion) prior to choosing items from their inventory, in 391	

contrast to the broadcast style of diffusion in model 1. Secondly, if a triad contained either 392	

recombination products, the final product was that recombination product. In the case where both 393	

recombination products were present in the triad, one was chosen as the final product at random. 394	

This allowed us to track the diffusion of recombination products beyond their innovation. We also 395	

ran 5,000 simulations for the same parameter space of model 1, recording time to recombination 396	

and time to diffusion to the majority of the network (in epochs). We implemented the agent-based 397	

models in R and Python. The code to generate the social networks, perform the simulations, the 398	

statistical analyses and the figures are available at [39] 399	
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 400	

Data analyses 401	

 402	

To compare the performance of agents organized in different network architectures, we used time-403	

to-event (survival) analyses [40] where time to recombination was a function of architecture and 404	

connectivity. For each population size, we used the Cumulative Incidence Function to estimate the 405	

proportion of simulations in which agents reached the recombination of each cultural lineage’s 406	

products into a final high-payoff product. We used the non-parametric Kaplan-Meier product 407	

limit estimator to represent the time intervals based on observed recombination events from 5,000 408	

simulations from model 1, calculating 95% confidence intervals with the Greenwood estimator. To 409	

measure variance in time to recombination across population sizes, we measured the quartile 410	

coefficient of dispersion (QCD=(Q3-Q1)/(Q3+Q1)), as this variable is not normally distributed and 411	

QCD offers a more robust measure. 412	

 413	

While statistics are not typically performed on data from agent-based models since the posterior is 414	

directly sampled, we wanted to quantify the relative contributions of architecture, size and 415	

connectivity without the cumbersome descriptions of the entire distribution (which can be readily 416	

seen in Fig. 2). For both models 1 and 2, we created three sets of generalized linear models (GLMs) 417	

that predicted logged time to recombination (in epochs). Time to recombination was logged to 418	

account for non-normality of residuals, and to make comparisons more fair by bringing the mean 419	

closer to the median of the distribution. All models used log link function, as the data was non-420	

linear conditional on predictors, even after the log transformation. Also, the log link function 421	

allowed the presentation of exponentiated coefficients, which simplify the comparison to the 422	

reference (here, the random networks at the GLM intercept). The first set of GLMs used a full 423	

interaction structure to partition the relative contributions of architecture, size and connectivity to 424	

average time to recombination (Table S1), excluding fully connected networks. To then compare 425	

fully connected networks to all other networks, we built a GLM using architecture and population 426	

size as predictors in a full interaction structure (Table S2). Connectivity was excluded as a 427	

predictor, as all fully connected networks only have 1 possible degree (K=N-1). Finally, to compare 428	

differences between architectures in Fig. 3 more precisely, we subset data by connectivity and 429	
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population size and performed a GLM with only architecture as a predictor for each subset, again 430	

excluding fully connected networks. We performed all data analyses in R [41], using ‘survival’ [42] 431	

and ‘survminer’ [43] packages. 432	
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Table S1. Generalized linear models (GLMs) for agent-based model 1 (with one-to-many 555	
diffusion mechanism) and model 2 (one-to-one diffusion), in which time to recombination 556	
(time to recombination, measured as log(epoch+1)) is predicted by an interaction between 557	
population size and architecture. Coefficients and standard errors are exponentiated, as these 558	
GLMs used a log link function. Connectivity was not included, as this contains the same 559	
information as population size for fully connected networks. Intercepts represents random 560	
networks of population size N=64. (*p<0.1; **p<0.05; ***p<0.01) 561	
 562	

  model1 model2 

  Estimate 
p-
value Estimate 

p-
value 

Constant 3.425*** -0.003 4.205*** -0.002 
graphsmall_world 0.999*** -0.004 1.003*** -0.002 
graphlattice 1.010*** -0.004 1.013*** -0.002 
graphmodular 0.970*** -0.004 0.994*** -0.002 
graphmodular_lattice 0.972*** -0.004 0.991*** -0.002 
graphmultilevel 0.977*** -0.004 0.982*** -0.002 
graphfull 1.652*** -0.003 1.033*** -0.003 
pop_size144 0.715*** -0.004 0.759*** -0.002 
pop_size324 0.512*** -0.004 0.587*** -0.003 
graphsmall_world:pop_size144 0.999*** -0.005 0.999*** -0.003 
graphlattice:pop_size144 0.996*** -0.005 0.989*** -0.003 
graphmodular:pop_size144 1.013*** -0.005 0.996*** -0.003 
graphmodular_lattice:pop_size144 0.999*** -0.005 1.003*** -0.003 
graphmultilevel:pop_size144 1.024*** -0.005 1.011*** -0.003 
graphfull:pop_size144 1.206*** -0.005 0.994*** -0.005 
graphsmall_world:pop_size324 1.005*** -0.006 0.997*** -0.004 
graphlattice:pop_size324 1.012*** -0.006 0.986*** -0.004 
graphmodular:pop_size324 1.059*** -0.006 1.001*** -0.004 
graphmodular_lattice:pop_size324 1.036*** -0.006 1.006*** -0.004 
graphmultilevel:pop_size324 1.100*** -0.006 1.015*** -0.004 
graphfull:pop_size324 1.406*** -0.006 0.980*** -0.005 
Observations 345,000 345,000 
Log Likelihood -446,718.40 -378,097.40 
Akaike Information Criterion 893,478.70 756,236.80 

  563	
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Table S2. Generalized linear models (GLMs) for agent-based model 1 (with one-to-many 564	
diffusion mechanism) and model 2 (one-to-one diffusion), in which time to recombination 565	
(time to recombination, measured as log(epoch+1)) is predicted by an interaction between 566	
population size, network architecture, and connectivity (i.e. average network degree). 567	
Coefficients and standard errors are exponentiated, as these GLMs used a log link function. 568	
Full networks were excluded. Intercepts represent random networks of population size N=64, 569	
average degree of K=8. (*p<0.1; **p<0.05; ***p<0.01) 570	
 571	

  model1 model2 
  Estimate p-value Estimate p-value 
Constant 3.196*** -0.004 4.168*** -0.002 
graphsmall_world 0.999*** -0.005 1.009*** -0.003 
graphlattice 1.010*** -0.005 1.011*** -0.003 
graphmodular 1.005*** -0.005 1.006*** -0.003 
graphmodular_lattice 1.011*** -0.005 1.004*** -0.003 
graphmultilevel 1.020*** -0.005 0.993*** -0.003 
pop_size144 0.724*** -0.007 0.756*** -0.004 
pop_size324 0.618*** -0.007 0.595*** -0.005 
degree12 1.143*** -0.005 1.018*** -0.003 
degree18 0.847*** -0.01 0.996*** -0.006 
degree24 0.831*** -0.01 0.995*** -0.006 
degree30 0.856*** -0.01 0.992*** -0.006 
graphsmall_world:pop_size144 0.997*** -0.009 0.992*** -0.006 
graphlattice:pop_size144 1.007*** -0.009 0.989*** -0.006 
graphmodular:pop_size144 0.973*** -0.009 0.998*** -0.006 
graphmodular_lattice:pop_size144 0.942*** -0.009 1.008*** -0.006 
graphmultilevel:pop_size144 0.967*** -0.009 1.014*** -0.006 
graphsmall_world:pop_size324 1.004*** -0.01 0.987*** -0.007 
graphlattice:pop_size324 1.021*** -0.01 0.988*** -0.007 
graphmodular:pop_size324 0.930*** -0.011 0.993*** -0.007 
graphmodular_lattice:pop_size324 0.876*** -0.011 0.996*** -0.007 
graphmultilevel:pop_size324 0.955*** -0.01 1.005*** -0.007 
graphsmall_world:degree12 0.999*** -0.007 0.987*** -0.005 
graphlattice:degree12 1.000*** -0.007 1.004*** -0.005 
graphmodular:degree12 0.934*** -0.007 0.976*** -0.005 
graphmodular_lattice:degree12 0.928*** -0.007 0.974*** -0.005 
graphmultilevel:degree12 0.922*** -0.007 0.978*** -0.005 
graphsmall_world:degree18 1.002*** -0.014 1.003*** -0.008 
graphlattice:degree18 0.996*** -0.013 0.997*** -0.008 
graphmodular:degree18 1.131*** -0.014 0.988*** -0.008 
graphmodular_lattice:degree18 1.170*** -0.014 0.996*** -0.008 
graphmultilevel:degree18 1.130*** -0.013 0.998*** -0.008 
graphsmall_world:degree24 1.005*** -0.014 1.002*** -0.008 
graphlattice:degree24 0.992*** -0.014 1.003*** -0.008 
graphmodular:degree24 1.163*** -0.014 0.991*** -0.008 
graphmodular_lattice:degree24 1.231*** -0.014 0.996*** -0.008 
graphmultilevel:degree24 1.172*** -0.013 0.995*** -0.008 
graphsmall_world:degree30 0.999*** -0.014 1.006*** -0.008 
graphlattice:degree30 0.977*** -0.013 1.000*** -0.008 
graphmodular:degree30 1.168*** -0.013 0.996*** -0.008 
graphmodular_lattice:degree30 1.237*** -0.014 0.992*** -0.008 
graphmultilevel:degree30 1.175*** -0.013 0.999*** -0.008 
pop_size144:degree12 0.864*** -0.009 0.992*** -0.006 
pop_size324:degree12 0.796*** -0.011 0.975*** -0.007 
pop_size144:degree18 1.251*** -0.012 1.023*** -0.007 
pop_size144:degree24 1.426*** -0.012 1.030*** -0.007 
graphsmall_world:pop_size144:degree12 1.000*** -0.013 1.014*** -0.008 
graphlattice:pop_size144:degree12 0.989*** -0.013 0.998*** -0.008 
graphmodular:pop_size144:degree12 1.101*** -0.013 1.017*** -0.008 
graphmodular_lattice:pop_size144:degree12 1.134*** -0.013 1.016*** -0.008 
graphmultilevel:pop_size144:degree12 1.133*** -0.013 1.016*** -0.008 
graphsmall_world:pop_size324:degree12 0.999*** -0.015 1.017*** -0.01 
graphlattice:pop_size324:degree12 0.989*** -0.015 0.995*** -0.01 
graphmodular:pop_size324:degree12 1.125*** -0.015 1.027*** -0.01 
graphmodular_lattice:pop_size324:degree12 1.160*** -0.016 1.030*** -0.01 
graphmultilevel:pop_size324:degree12 1.154*** -0.015 1.024*** -0.01 
graphsmall_world:pop_size144:degree18 1.005*** -0.017 1.000*** -0.01 
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graphlattice:pop_size144:degree18 0.999*** -0.017 1.006*** -0.01 
graphmodular:pop_size144:degree18 0.907*** -0.017 0.991*** -0.01 
graphmodular_lattice:pop_size144:degree18 0.902*** -0.017 0.977*** -0.01 
graphmultilevel:pop_size144:degree18 0.921*** -0.017 0.982*** -0.01 
graphsmall_world:pop_size144:degree24 0.994*** -0.017 0.997*** -0.01 
graphlattice:pop_size144:degree24 0.981*** -0.017 0.998*** -0.01 
graphmodular:pop_size144:degree24 0.835*** -0.017 0.981*** -0.01 
graphmodular_lattice:pop_size144:degree24 0.794*** -0.017 0.973*** -0.01 
graphmultilevel:pop_size144:degree24 0.836*** -0.017 0.977*** -0.01 
Observations 330,000 330,000 
Log Likelihood -423,477.80 -359,565.20 
Akaike Information Criterion 847,087.60 719,262.30 
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Figure S1. Cultural trait diversity across social network architectures and proposed null 574	
models. Comparison of the diversity of cultural traits along the network architecture 575	
spectrum, across populations of same size (N=64 nodes) and connectivity (average degree 576	
K=12 links) in relative to a fully connected network of the same size (N=64, K=63). Cultural 577	
innovation diversity across network architectures measured as the proportion of the 578	
population with one of the four possible traits over time: a single inventory item (dotted 579	
lines), a single combination of two items (dashed and dotted lines), a valid combination of 580	
three items (triad; dashed lines), and a recombination product (a triad that recombines 581	
specific products from both lineages; thick lines). The inventory items came from two 582	
independent lineages, represented by lines of the same type. 583	
 584	
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