Recognition of Z-RNA by ADAR1 limits interferon responses

Qiannan Tang ${ }^{1}$, Rachel E. Rigby ${ }^{1, \dagger}$, George R. Young ${ }^{2, \dagger}$, Astrid Korning-Hvidt ${ }^{1}$, Tiong Kit Tan ${ }^{1}$, Anne Bridgeman ${ }^{1}$, Alain R. Townsend ${ }^{1,3}$, George Kassiotis ${ }^{4,5}$ \& Jan Rehwinkel ${ }^{1, *}$
${ }^{1}$ Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
${ }^{2}$ Retrovirus-Host Interactions, The Francis Crick Institute, London, UK.
${ }^{3}$ Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
${ }^{4}$ Retroviral Immunology, The Francis Crick Institute, London, UK.
${ }^{5}$ Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
*correspondence: jan.rehwinkel@imm.ox.ac.uk
${ }^{\dagger}$ These authors contributed equally.

Keywords

ADAR1, Z α domain, Z-RNA, MDA5, MAVS, interferon, influenza A virus

Running Title

Z-RNA recognition by ADAR1

Abstract

Nucleic acids are powerful triggers of innate immunity and can adopt the unusual Z-conformation. The p150 isoform of adenosine deaminase acting on RNA 1 (ADAR1) prevents aberrant interferon (IFN) induction and contains a Znucleic acid binding $(Z \alpha)$ domain. We report that knock-in mice bearing two point mutations in the $Z \alpha$ domain of ADAR1, which abolish binding to Z-form nucleic acids, spontaneously induced type I IFNs and IFN-stimulated genes (ISGs) in multiple organs. This included the lung where both stromal and haematopoietic cells displayed ISG induction in Adar1mZ ${ }^{m / m Z \alpha}$ mice. Concomitantly, Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice showed improved control of influenza A virus. The spontaneous IFN response in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice required MAVS, implicating cytosolic RNA sensing. Finally, analysis of A-to-I changes revealed a specific requirement of ADAR1's $Z \alpha$ domain in editing of a subset of RNAs. In summary, our results reveal that endogenous RNAs in Z-conformation have immunostimulatory potential that is curtailed by ADAR1.

Introduction

The innate immune system monitors the intra- and extracellular environments for unusual nucleic acids (Bartok and Hartmann, 2020). This process, known as 'nucleic acid sensing', detects pathogen invasion and disturbances to homeostasis. It involves a large number of germline encoded nucleic acid sensors. Upon engagement by immunostimulatory DNA or RNA, these sensors signal to initiate a large spectrum of responses, including transcription of the genes encoding type I interferons (IFNs). Type I IFNs secreted cytokines that act in paracrine and autocrine manner - induce expression of hundreds of IFN-stimulated genes (ISGs). The proteins encoded by ISGs mediate a plethora of functions and include antiviral effectors (Schoggins, 2019). Sustained type I IFN responses can have detrimental effects and cause a range of diseases including the neuroinflammatory AicardiGoutières Syndrome (AGS) (Uggenti et al., 2019). It is therefore important to understand the molecular mechanisms that prevent activation of nucleic acid sensors by 'normal' DNA and RNA present in healthy cells (Bartok and Hartmann, 2020).

We and others proposed that double-stranded (ds) nucleic acids adopting an unusual conformation known as Z-DNA/RNA activate innate immunity (Maelfait et al., 2017; Sridharan et al., 2017; Zhang et al., 2020b). Z-DNA was initially described by Alexander Rich (Wang et al., 1979). Unlike canonical BDNA, a right-handed double helix, Z-DNA is a left-handed double helix with a zig-zag-shaped phosphodiester back bone (Wang et al., 1979). dsRNA can also adopt the Z-conformation (Davis et al., 1986; Hall et al., 1984). Biological functions of Z nucleic acids, in particular those of Z-RNA, are incompletely understood (Herbert, 2019). A small number of proteins, all involved in innate immunity, contain Z-DNA/RNA binding domains known as $\mathrm{Z} \alpha$ domains (Athanasiadis, 2012). These domains specifically bind to and stabilise Z-

DNA/RNA, or induce the Z-conformation (Athanasiadis, 2012; Brown et al., 2000; Kim et al., 2018; Schwartz et al., 1999).

There are two mammalian proteins with $Z \alpha$ domains: Z-DNA binding protein 1 (ZBP1) and adenosine deaminase acting on RNA 1 (ADAR1, also known as DRADA1). ZBP1 contains two $Z \alpha$ domains that have been suggested to recognise viral and endogenous Z-RNAs (Devos et al., 2020; Jiao et al., 2020; Maelfait et al., 2017; Sridharan et al., 2017; Wang et al., 2020; Zhang et al., 2020b). Binding to Z-RNA activates ZBP1 and results in the induction of necroptosis, an inflammatory form of cell death (Maelfait et al., 2020).

ADAR1 has two splice isoforms: ADAR1-p110, which is constitutively expressed and localised in the cell nucleus, and ADAR1-p150 that is IFNinducible and present in the nucleus and cytosol. Both isoforms contain a Cterminal deaminase domain that converts adenosine to inosine in dsRNA, a process known as A-to-I RNA editing. Conversion of adenosine to inosine in protein-coding sequences can lead to incorporation of non-synonymous amino acids during translation due to base pairing of inosine with cytosine. However, the vast majority of A-to-I editing events occur in non-coding RNAs (Eisenberg and Levanon, 2018; Reich and Bass, 2019). This includes transcripts from repetitive elements (REs), particularly Alu elements and short interspersed nuclear elements (SINEs) in human and mouse, respectively. Both ADAR1 isoforms further contain three dsRNA binding domains (dsRBDs) and a socalled $Z \beta$ domain. $Z \beta$ adopts a fold similar to $Z \alpha$ domains but does not bind Z form nucleic acids due to substitutions of key amino acids (Athanasiadis et al., 2005; Kim et al., 2003). ADAR1-p150 has an extended N-terminus harbouring a $Z \alpha$ domain (Heraud-Farlow and Walkley, 2020).

ADAR1 deficiency results in profound inflammatory phenotypes. In human, germline ADAR1 mutations cause AGS (Rice et al., 2012). These mutations predominantly map to the deaminase domain; however, one mutation encoding
p.Pro193Ala is found in the $Z \alpha$ domain. Pro193 contributes to Z-form nucleic acid binding (Schwartz et al., 1999) and changing it to Ala reduces RNA editing in a reporter assay (Mannion et al., 2014). Adar1-1 mice, editing-deficient Adar1E861A/E861A knock-in animals and Adar1p150-/p150- mice, which only lack ADAR1-p150, all die in utero (Hartner et al., 2004; Liddicoat et al., 2015; Wang et al., 2004; Ward et al., 2011). Akin to spontaneous type I IFN induction in AGS patients with ADAR1 mutation, Adar1-/ and Adar1 ${ }^{\text {E861A/E861A }}$ embryos display profound type I IFN responses prior to death (Hartner et al., 2009; Liddicoat et al., 2015). Multiple nucleic acid sensors mediate the anti-proliferative, cell death and type I IFN phenotypes observed in ADAR1-deficient settings: the oligoadenylate synthetase (OAS)-RNase L system (Li et al., 2017), protein kinase R (PKR) (Chung et al., 2018; Li et al., 2010) and melanoma differentiation-associated protein 5 (MDA5) (Liddicoat et al., 2015; Mannion et al., 2014; Pestal et al., 2015). Upon activation by dsRNA, OAS proteins synthesise 2'-5' oligoadenylate, a second messenger that in turn activates RNase L, resulting in widespread RNA degradation. PKR also detects dsRNA and represses protein translation. Both effects have been proposed to explain lethality of ADAR1-deficient cells (Chung et al., 2018; Li et al., 2017). Induction of type I IFNs in ADAR1-deficient mice and human cells is mediated by the RNA sensor MDA5, that signals via its adaptor mitochondrial antiviral-signalling protein (MAVS) (Bajad et al., 2020; Chung et al., 2018; Guallar et al., 2020; Liddicoat et al., 2015; Mannion et al., 2014; Pestal et al., 2015).

These observations suggest a model in which endogenous dsRNAs are stabilised in ADAR1-deficient cells due to the absence of RNA editing and are then recognised by RNA sensors (Dias Junior et al., 2019; Eisenberg and Levanon, 2018) . Indeed, some ADAR1 substrates such as transcripts from Alu elements base-pair to form duplex structures, which are predicted to be destabilised by inosine : uracil mismatches introduced by RNA editing (Ahmad
et al., 2018; Chung et al., 2018; Pfaller et al., 2018; Song et al., 2020). This concept has been tested experimentally in an RNase protection assay: transcripts spanning Alu elements in inverted orientation are protected by recombinant MDA5 protein in RNA samples extracted from ADAR1-deficient cells (Ahmad et al., 2018; Mehdipour et al., 2020).

How the different nucleic acid binding domains in ADAR1 select and recruit RNA substrates for subsequent editing is unknown. In light of (i) emerging roles of Z-form nucleic acids in innate immunity (Kesavardhana and Kanneganti, 2020), (ii) the MAVS-dependent phenotype of Adar1p150-1p150- mice (Pestal et al., 2015), and (iii) natural occurrence of the p.Pro193Ala mutation in AGS patients (Rice et al., 2012), we interrogated Z-form nucleic acid binding by the $Z \alpha$ domain in ADAR1-p150. Here, we report the generation of knock-in mice bearing two missense mutations in the $Z \alpha$ domain, which prevent nucleic acid binding. Although these Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice were developmentally normal and fertile, they displayed spontaneous induction of type I IFNs and ISGs in multiple organs and cell types. This phenotype was dependent on MAVS and conferred partial protection against influenza A virus (IAV) infection. Analysis of sequencing data revealed that $\sim 8 \%$ of RNA editing events in wild-type (WT) cells required a functional ADAR1-p150 $\mathrm{Z} \alpha$ domain. Taken together, our study delineates the function of the $Z \alpha$ domain in ADAR1-p150 in vivo and suggests that recognition of Z-form RNA by ADAR1 contributes to the suppression of IFN responses.

Results

Generation of $Z \alpha$ domain mutated mice

To study the role of Z-form nucleic acid binding to the $Z \alpha$ domain in ADAR1p150 in an in vivo setting, we generated knock-in mice bearing two missense mutations: p.Asn175Ala and p.Tyr179Ala. These residues are conserved and are homologous to Asn173 and Tyr177 in human ADAR1; they were chosen because of their essential role in Z-form nucleic acid binding (Feng et al., 2011; Li et al., 2009; Schade et al., 1999; Schwartz et al., 1999). Given the embryonic lethality of Adar1 ${ }^{\text {p150-/p150- }}$ mice (Ward et al., 2011), we opted for a conditional knock-in strategy (Figure S1A). The $\mathrm{Z} \alpha$ domain is encoded by exon 2 of the Adar1 gene. In brief, we introduced in inverted orientation into the intron between exons 2 and 3 a mutated copy of exon 2 (designated 2^{*}) containing four nucleotide substitutions, changing both Asn175 and Tyr179 to Ala. We flanked exons 2 and 2* with LoxP and Lox2272 sites such that Cre-mediated recombination removes exon 2 and flips exon 2* into forward orientation (Figure S1A). We designated the conditional allele ' f - $m Z \alpha$ ' and the recombined allele expressing mutant Adar1 ' $m Z \alpha$ '. To determine the impact of the $Z \alpha$ domain mutations when present in all cells and tissues, we crossed Adar1 ${ }^{+/ f-m Z \alpha}$ mice with a line expressing Cre recombinase under control of the ubiquitously active Pgk promoter. The resulting Adar1 $1^{+m Z \alpha}$ mice were intercrossed to generate homozygous animals. We validated the presence of the mutations by sequencing and found that $\operatorname{Adar} 1^{m Z \alpha / m Z \alpha}$ animals were born at expected mendelian ratios (Figure S1B and S1C). Furthermore, they developed normally and were fertile. The mutations introduced into the $Z \alpha$ domain did not alter the expression of the two isoforms of ADAR1 in bone marrow-derived myeloid cells (BMMCs) (Figure S1D). Taken together, Z-form nucleic acid binding by ADAR1p150 is not essential for survival at whole organism level.

Mutation of the $\mathrm{Z} \alpha$ domain in ADAR1-p150 triggers a multi-organ type I IFN response

We tested whether Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice display spontaneous activation of type I IFNs as was reported in ADAR1-deficient settings. We collected lung, liver and spleen tissues and extracted RNA for RT-qPCR analysis. Transcript levels of Ifnb1 (encoding IFN β) were elevated in lung RNA samples from Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice (Figure 1A). Moreover, the ISG transcripts Ifit1 and Ifi44 were expressed at higher levels in all three organs from $Z \alpha$ domain mutated animals (Figure 1A). This gene expression signature was type I IFN-specific: tissues from Adar $1^{m Z \alpha / m Z \alpha}$ mice contained comparable mRNA levels of Ifng, Tnfa and II1b (encoding IFN γ, TNF α and pro-IL-1 β), with only a minor increase of Tnfa mRNA in lung (Figure 1A). We validated the ISG signature at protein level by analysing expression of interferon stimulated gene 15 (ISG15) in whole lung lysates. ISG15 is a ubiquitin-like modifier that is induced by IFN and is conjugated to target proteins in a process called ISGylation (Perng and Lenschow, 2018). Western blot showed that lung lysates from Adar1mZ ${ }^{m / m Z \alpha}$ mice contained increased amounts of monomeric ISG15 as well as increased levels of ISGylated proteins, visible as a high-molecular weight smear (Figure 1B).

We next analysed different types of cultured primary cells from WT and Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice. We observed heightened ISG expression in $Z \alpha$ domain mutated lung fibroblasts (Figure 1C). In contrast, comparable levels of ISG transcripts were found in WT and Adar1 ${ }^{m Z \alpha / m Z \alpha}$ BMMCs, as well as in mouse embryonic fibroblasts (MEFs) (Figure 1D, E). This indicates that ISG induction may be cell-type specific.

Among the organs we analysed, lung exhibited the most profound ISG signature, and spontaneous ISG induction was also observed in cultured lung
fibroblasts (Figure 1A, D). We therefore focused on the lung for the next set of experiments. We used RNA extracted from lung for RNA sequencing to obtain a global view of gene expression in Adar $1^{m Z \alpha / m Z \alpha}$ mice. We found that 99 protein coding genes were differentially expressed by at least 2-fold in mutant lungs, including 89 upregulated and 10 downregulated transcripts (Figure 2A). 40\% of the induced mRNAs were encoded by ISGs; this included well-known factors such as Irf7, Cxcl10, Zbp1 and Usp18 (Figure 2A). We used gene ontology (GO) analysis of biological processes to further classify upregulated genes. GO terms related to type I IFNs and anti-viral defence were enriched amongst genes induced in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ lungs (Figure 2B). The most highly enriched GO category, regulation of ribonuclease activity, included many Oas transcripts, which are known to be IFN-inducible (Schoggins, 2019).

We also analysed REs in our RNA sequencing data and found 540 induced and 112 repressed REs (Figure 2C and Table S1). SINEs were underrepresented amongst differentially expressed REs, whilst long terminal repeat (LTR) elements were enriched (Figure 2C). Dysregulation of REs has been reported in settings of inflammation and can be driven by IFNs (Chuong et al., 2016). Taken together, these data show that the lungs of $Z \alpha$ domain mutated animals displayed a type I IFN-driven gene signature.

Stromal and haematopoietic cells contribute to the ISG signature in the lungs of Adar $1^{m Z \alpha / m Z \alpha}$ mice

To identify the type of cell(s) that display the ISG signature in the lungs of Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice, we used magnetic-activated cell sorting (MACS) to isolate haematopoietic cells, marked by CD45 expression, and stromal cells lacking this marker. There was no difference in the proportions of haematopoietic and stromal cells between WT and Adar $1^{m Z \alpha / m Z \alpha}$ lungs (Figure 3A). We confirmed the purity of MACS-enriched haematopoietic and stromal cells to be $>97 \%$
(Figure S2). We then extracted RNA for RT-qPCR analysis of ISGs and found that both lung haematopoietic and stromal cells displayed ISG induction (Figure 3B). For the three ISGs tested, fold inductions in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ samples were similar in CD45+ and CD45- cells (Figure 3B). However, it is noteworthy that baseline ISG levels appeared to be lower in haematopoietic cells compared to stromal cells (Figure 3B).

Next, we analysed ISG expression in different types of lung haematopoietic and stromal cells. Using two staining panels and fluorescence-activated cell sorting (FACS), we obtained eight different populations of CD45+ cells, including B cells, T cells, dendritic cells (DCs), monocytes, macrophages, NK cells, neutrophils and eosinophils (Figure S3). There were no differences between WT and Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice in the proportions of these cell populations, with the exception of DCs, which were less abundant in the mutant lungs (Figure S3A). Ifit1, Ifit2 and Isg15 were significantly induced in neutrophils from the lungs of Adar $1^{m Z \alpha / m Z \alpha}$ mice (Figure 4A, B). However, these ISGs showed no, or limited and statistically insignificant, upregulation in other types of CD45+ cells (Figure 4A, B). In contrast, the ISGs Ifi44 and Oas1a were upregulated in multiple haematopoietic cell types (Figure 4A, B). Transcripts encoding type I IFNs were undetectable by RT-qPCR in all samples analysed (data not shown). Several ISGs, including Ifit1, Ifit2 and Isg15, are not only induced by IFNAR signalling but can also be upregulated by IRF3/7, independent of type I IFNinitiated JAK-STAT activation (Ashley et al., 2019; DeFilippis et al., 2006; Goubau et al., 2009; Grandvaux et al., 2002; Lazear et al., 2013). Induction of this ISG-subset can therefore occur in a cell-autonomous manner, for example when aberrant nucleic acids are sensed by pattern recognition receptors (PRRs) that signal via IRF3/7. Other ISGs, including Ifi44 and Oas1a, are only induced via IFNAR signalling (Lazear et al., 2013). Therefore, our observation that Ifit1, Ifit2 and Isg15 were primarily induced in neutrophils, while Ifi44 and Oas1a were
upregulated more broadly (Figure 4A, B), suggests that Adar1 ${ }^{m Z \alpha / m Z \alpha}$ neutrophils may autonomously activate IRF3. We further speculate that the ISG signature in other haematopoietic cells such as B cells may be due to paracrine type I IFN signalling via IFNAR.

We also analysed the lung stromal compartment and isolated by FACS endothelial and epithelial cells using CD31 and CD326 as markers, respectively (Figure S4). We further isolated CD45-cells lacking these markers; this mixed population likely included fibroblasts and other cell types. We observed induction of Ifit1, Isg15 and Ifi44 in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ cells of all three populations analysed (Figure 4C). It is therefore likely that, in addition to neutrophils, multiple non-haematopoietic cells initiate type I IFN production in the lungs of Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice.

Haematopoietic cells are sufficient to induce ISGs in Adar1mZ ${ }^{m / m Z \alpha}$ mice

To further dissect the cellular requirements for ISG induction in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice, we generated bone marrow (BM) chimeric animals. Lethally irradiated Cd45.1 WT recipients were reconstituted with Cd45.2 BM from WT or Adar $1^{m Z \alpha / m Z \alpha}$ animals (Figure S5A). We found reconstitution levels of the haematopoietic compartment to be about 90% by analysing cell surface levels of CD45.1 and CD45.2 on white blood cells from recipient mice (Figure S5B). Similar levels of reconstitution were observed in the lung (Figure S5C). We first obtained RNA from whole lung tissue for RT-qPCR analysis. The ISGs Ifit1, Oas1a and Zbp1 were upregulated in Adar1 ${ }^{m Z \alpha / m Z \alpha} \rightarrow$ WT chimeras compared to WT \rightarrow WT chimeras (Figure 4D, "Total"). This indicates that Adar1mZ $\alpha / m Z \alpha$ BMderived cells triggered an IFN response in WT animals. We also isolated different cell populations from the lungs of chimeric animals by FACS (see Figure S3 for gating), extracted RNA and performed RT-qPCR. Ifit1 and Ifit2 $m R N A$ levels were significantly induced in neutrophils from Adar1 ${ }^{m Z \alpha / m Z \alpha} \rightarrow W T$
chimeras, but not in B cells and CD45- cells (Figure 4D). In contrast, Oas1a and/or Zbp1 were upregulated in multiple cell populations including CD45- cells, neutrophils and B cells (Figure 4D). These observations are consistent with the results shown in Figure 4A and 4B and indicate that neutrophils may initiate type I IFN production that then results in ISGs induction in other cell types. Taken together, Adar1 ${ }^{m Z \alpha / m Z \alpha}$ haematopoietic cells were sufficient to induce ISGs in the lungs of WT mice.

IAV replication is inhibited in Adar1mZ ${ }^{m / m Z \alpha}$ mice

In light of the spontaneous type I IFN response in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice, we next asked whether these $Z \alpha$ domain mutant mice were protected against viral infection. ISGs upregulated in the lungs of Adar1mZ ${ }^{m / m Z \alpha}$ mice included factors such as Ifit1 and Zbp1 that are known to control IAV (Pichlmair et al., 2011; Zhang et al., 2020b) (Figure 2A). We intranasally infected WT and Adar1mZ ${ }^{m / m Z \alpha}$ mice with the H3N2 strain of recombinant IAV (A-X31; A/HongKong/1/1968) using a dose that caused moderate weight loss. WT animals lost about 10\% body weight from day 3 until day 7 after infection, and subsequently recovered their weight (Figure 5A). In contrast, Adar $1^{m Z \alpha / m Z \alpha}$ mice gained weight until day 4 after infection (Figure 5A). This was followed by weight loss on days 5-7, which slightly exceeded weight loss in WT mice, and recovery from day 8 onwards. These observations suggest that Adar $1^{m Z \alpha / m Z \alpha}$ mice were protected against IAV at an early stage of the infection.

We further characterised early IAV infection in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice at day 3 after inoculation. We calculated a 'lung index’ (lung weight/body weight $\times 100$; Luo et al., 2012) and found this marker of pathology and inflammation to be significantly higher in infected WT mice compared to Adar1 ${ }^{m Z \alpha / m Z \alpha}$ animals (Figure 5B). Next, we analysed viral loads by determining the levels of the viral $N P$ and M transcripts by RT-qPCR. Compared to infected WT lungs, levels of
these viral RNAs were reduced in infected Adar1mZ ${ }^{m / m Z \alpha}$ lungs (Figure 5C). Concomitantly, mRNA levels of Ifnb1, Ifng, II1b, Tnfa and II6, as well as IL6 protein, were strongly induced in infected WT lungs, and these effects were curtailed in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ lungs (Figure 5D, E). In sum, IAV replication and virusinduced inflammation were reduced in Adar $1^{m Z \alpha / m Z \alpha}$ animals.

ISG induction in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice is MAVS-dependent

We next investigated which nucleic acid sensing pathway triggered spontaneous ISG expression in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice. Since ADAR1-deficiency results in activation of the MDA5-MAVS pathway (Liddicoat et al., 2015; Mannion et al., 2014; Pestal et al., 2015), we hypothesised that the ISG signature in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice was driven by MAVS. To test this, we crossed Adar1 mutant mice with MAVS knock-out animals to generate Adar1 ${ }^{m Z \alpha / m Z \alpha}$; Mavs ${ }^{-/}$mice. Loss of MAVS prevented the ISG induction observed in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ lungs, livers and spleens (Figure 6A). Because of the neuropathology observed in patients with AGS, we also analysed brain tissue. Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice showed elevated Ifnb1 expression and a pronounced ISG signature in the brain (Figure 6B). Akin to the situation in other tissues, these effects were fully MAVS-dependent (Figure 6B). Taken together, the Z α domain of ADAR1-p150 was involved in preventing MAVS-mediated IFN induction, implicating a role in limiting activation of MDA5 or RIG-I.

The $\mathrm{Z} \alpha$ domain of ADAR1-p150 is required for editing of a subset of RNAs

Human ADAR1-p150 bearing the p.Pro193Ala mutation shows reduced editing activity in a reporter assay (Mannion et al., 2014). To identify natural RNA substrates edited by ADAR1-p150 in a Z α domain-dependent manner, we analysed our RNA sequencing data from WT and Adar1mZ ${ }^{m / m Z \alpha}$ lungs for $\mathrm{A} \rightarrow \mathrm{G}$ transitions. These are indicative of A-to-I RNA editing as inosine pairs with
cytosine during reverse transcription. The most sensitive and specific method for annotating this mutational profile compares the fit of Dirichlet models of observed base frequencies between test and control samples (Piechotta et al., 2017). We extended this methodology to allow comparisons of biological replicates, to incorporate the orientation of the originating RNA (revealed by our stranded RNAseq protocol), to include fine-grained filtering of potential editing sites, and to add a 'detection' step, whereby observed base frequencies at potential editing sites are additionally compared to a model of the per-base error rate obtained de novo from the dataset.

Considered individually, for each of the three WT and three Adar1 ${ }^{m Z \alpha / m Z \alpha}$ lung samples analysed, we detected $\sim 35,000-40,000$ editing sites (Figure 7A). Considered as biological replicates, increasing statistical robustness, 40,342 and 46,164 sites were identified that were shared amongst all three WT or Adar1 ${ }^{m Z \alpha / m Z \alpha}$ lung samples, respectively. These 'detected' sites had a median editing level of $\sim 10 \%$ in both WT and Adar1 ${ }^{m Z \alpha / m Z \alpha}$ samples (Figure 7B). This shows that there was no global defect in RNA editing in Adar $1^{m Z \alpha / m Z \alpha}$ mice.

We further defined 'differential' sites as those that were 'detected' in the WT samples and showed higher (>2-fold) levels of editing than in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice. 3,249 sites (8% of sites 'detected' in WT) were 'differential' and displayed $\sim 9 \%$ median editing in WT lungs, which was strongly reduced for the majority of sites in Adar ${ }^{m Z \alpha / m Z \alpha}$ mice (Figure 7B). Read depth was equivalent between 'detected' and 'differential' sites (data not shown), excluding the possibility that lack of editing in Adar $1^{m Z \alpha / m Z \alpha}$ samples was simply due to reduced sequence coverage. We then attempted to understand whether these $Z \alpha$ domaindependent sites were characterised by unique properties. First, we annotated editing sites to 5 ' untranslated regions (UTRs), coding sequences (CDSs), 3'UTRs, intronic and intergenic regions (Figure 7C). The majority of editing sites 'detected' in WT samples were found in intronic regions ($\sim 83 \%$). 3'UTRs
accounted for $\sim 11 \%$ of edits and intergenic regions contained $\sim 5 \%$ of sites. Less than 1% of sites mapped to 5 'UTRs and CDSs. The annotation of 'differential' sites was similar with a small increase in intronic sites ($\sim 86 \%$), while 8% of 'differential' edits were found in 3'UTRs.

Given that many A-to-I RNA editing events are known to occur in repetitive elements (REs) (Eisenberg and Levanon, 2018), we analysed the enrichment of editing events in WT samples, by computing observed versus expected numbers, for each RE class (Figure 7D). This analysis showed that editing events were greatly enriched within SINEs (Figure 7D) and further showed that, with the exception of the B4 family, all SINE sub-families exhibited enrichment, albeit to varying degrees (Figure S6A). Furthermore, there were no large-scale differences between the SINEs represented when comparing 'detected' and 'differential' sites (Figure S6B), suggesting that all SINEs had equal potential to contribute sites that were differentially edited between WT and Adar1mZ ${ }^{m / m Z \alpha}$ mice.

We next analysed the genomic distance of edited SINEs to another SINE in inverted orientation. In human, transcripts spanning inverted repeat Alu elements have been suggested to form duplex RNA structures recognised by ADAR1 and MDA5 (Ahmad et al., 2018; Mehdipour et al., 2020). Compared to all SINEs, we found that edited SINEs were closer to another SINE in inverted orientation (Figure 7E), although there was no difference between SINEs containing 'detected' (in WT samples) and 'differential' sites. Taken together, these data demonstrate that a subset consisting of about 8% of editing sites required a functional ADAR1-p150 $\mathrm{Z} \alpha$ domain for efficient A-to-I conversion.

Discussion

Although Z-nucleic acids were discovered ~ 40 years ago, little is known to this date about their biological activities. This is in part due to their thermodynamic properties: the B- and A-conformations of dsDNA and dsRNA, respectively, are energetically favoured compared to the Z-conformation, making Z-DNA and Z-RNA difficult to study (Herbert, 2019). The formation of ZDNA has been proposed to release torsional strain induced by the movement of polymerases (Wittig et al., 1992; Wolfl et al., 1995). Physiological functions of Z-RNA have remained enigmatic until recently. We and others proposed that Z-RNA is recognised by ZBP1 in settings of viral infection and autoinflammation, resulting in the induction of programmed cell death (Devos et al., 2020; Jiao et al., 2020; Maelfait et al., 2017; Sridharan et al., 2017; Wang et al., 2020; Zhang et al., 2020b).

Here, we studied ADAR1-p150 that like ZBP1 contains a $Z \alpha$ domain specialised in binding to Z nucleic acids. We report spontaneous induction of type I IFNs in vivo upon introduction of mutations into the ADAR1-p150 Z α domain that prevent binding to Z-DNA/RNA. This effect was observed in multiple organs and cell types from Adar1mZ ${ }^{m / m Z \alpha}$ mice and required MAVS. These data show that RIG-I-like receptors were activated by endogenously generated Z-RNAs, and that editing of these Z-RNAs by ADAR1-p150 limited the response. We therefore reveal type I IFN induction as a new biological function of Z-RNA.

Our computational analysis mapped $\sim 40,000$ editing sites in lung RNA samples from WT mice. These sites were enriched in SINEs but not in other classes of REs. Furthermore, we found that edited SINEs were more likely to be in proximity to another SINE in inverted orientation. These results agree with previous findings demonstrating that editing sites are enriched in non-coding sequences containing self-complementary regions predicted to form duplex

RNA structures (Eisenberg and Levanon, 2018; Porath et al., 2017; Solomon et al., 2017; Tan et al., 2017).

Importantly, we revealed that $\sim 8 \%$ of editing sites detected in WT samples required a functional ADAR1-p150 $Z \alpha$ domain. This subset of $Z \alpha$-dependent sites mapped to genomic features and REs similarly to all detected sites. To characterise whether the sequences surrounding $Z \alpha$-dependent editing sites have a propensity to form Z-RNA, we analysed sequences 500 nt up- and down-stream of editing sites. We tested GC content, given that GC-repeats have a higher tendency to adopt the Z-conformation (Davis et al., 1986). There was no enrichment of GC dinucleotides, or other motifs, around differentially edited sites compared to all detected sites (data not shown). We also used the Z-hunt algorithm (Champ et al., 2004; Ho et al., 1986) to predict the likelihood of sequences around editing sites to form the Z-conformation. In parallel, we calculated the distance of editing sites to genomic regions predicted by SIBZ to form the Z-conformation (Zhabinskaya and Benham, 2011). Neither computational approach revealed differences between 'detected' and 'differential' sites. It is noteworthy that both algorithms were developed for dsDNA and may be unsuitable for predicting the Z-conformation in RNA. Future studies will be required to dissect the properties the $Z \alpha$-dependent RNA editing sites.

We also found diminished editing in WT samples at $\sim 14 \%$ of the sites detected as edited in Adar ${ }^{m Z \alpha / m Z \alpha}$ mice (data not shown). ADAR1-p150 is encoded by an ISG and Adar1 transcript levels increased by 1.6-fold in Adar $1^{m Z \alpha / m Z \alpha}$ lungs (data not shown). Thus, it is likely that type I IFN-induced expression of ADAR1-p150 in mutant mice and recruitment of A-form dsRNAs via the dsRBDs explains editing at these sites.

ADAR1 mutations in human cause AGS and include the missense p.Pro193Ala mutation in the $\mathrm{Z} \alpha$ domain. Interestingly, this ADAR1 allele is
common with frequencies of up to $\sim 1 / 160$ (www.ensembl.org) (Mannion et al., 2014). In AGS patients, homozygous p.Pro193Ala mutation has not been observed; instead, this mutation occurs together with other ADAR1 mutations (Rice et al., 2012). It is therefore likely that ADAR1 p.Pro193Ala is hypomorphic and does not cause disease when present homozygously. Consistent with this notion, we found that Adar $1^{m Z \alpha / m Z \alpha}$ mice did not have any gross abnormalities and were fertile. These mice nonetheless displayed type I IFN and ISG induction in multiple organs. This included the lung and bestowed protection against IAV infection at early stages. It is therefore conceivable that the ADAR1 p.Pro193Ala variant has been maintained in humans by providing a selective advantage during viral infections due to elevated expression of antiviral factors at baseline.

It is noteworthy in this context that anti- and pro-viral functions of ADAR1 have been reported. ADAR1 limits or controls replication of several viruses, including measles virus, members of Paramyxoviridae family, IAV, HIV-1, vesicular stomatitis virus and Hepatitis delta virus (Casey, 2012; Li et al., 2010; Vogel et al., 2020; Ward et al., 2011; Weiden et al., 2014). However, for other viruses such as Zika and KSHV, ADAR1 has been shown to facilitate replication (Zhang et al., 2020a; Zhou et al., 2019). It will be interesting for future studies to determine the role of the ADAR1 variants unable to bind Z nucleic acids in these viral infections.

ADAR1 has recently emerged as a promising target for cancer treatment. If expressed by transformed cells in vitro or by tumours in vivo, ADAR1 protects against both cell death and anti-cancer immune responses (Gannon et al., 2018; Ishizuka et al., 2019; Liu et al., 2019). Loss of ADAR1 in cancer cells results in death or reduced growth and sensitises to immunotherapy. Interestingly, the protective effects appear to depend on ADAR1-p150 (Gannon et al., 2018; Ishizuka et al., 2019). It is therefore possible that endogenous Z-RNAs induce
anti-cancer effects upon ADAR1 loss. Future studies should test this, for example by reconstitution of ADAR1-p150 mutants unable to bind Z-RNA. Furthermore, development of inhibitors that target the $Z \alpha$ domain of ADAR1, the $Z \alpha-Z-R N A$ interaction or Z-RNA formation should be considered. Compared to deaminase inhibitors, such 'Z-inhibitors' would have the advantage of specifically targeting the p150 isoform, avoiding possible detrimental consequences of targeting ADAR1-p110 (Pestal et al., 2015).

In addition to the activation of MDA5, loss of ADAR1 also results in activation of the OAS-RNaseL system and PKR. The latter may be particularly important in cancer settings (Gannon et al., 2018; Ishizuka et al., 2019; Liu et al., 2019). Although PKR activation results in a global shutdown of translation, some proteins are selectively made and mediate the integrated stress response (Pakos-Zebrucka et al., 2016). These include the transcription factor ATF4 that induces stress-response genes. We observed moderate induction of some ATF4-dependent genes (Harding et al., 2003) including Asns (1.3-fold), Slc7a5 (1.3-fold), S/c7a11 (1.9-fold) and Mthfd2 (1.7-fold) (data not shown). It is therefore possible that editing of Z-RNA by ADAR1-p150 limits not only type I IFN induction but also PKR-dependent stress responses.

In conclusion, we discovered MAVS-dependent type I IFN induction as a biological function of Z-RNA that is curtailed by ADAR1-p150. These insights are not only of fundamental value but also have important implications for understanding and modulating detrimental and beneficial type I IFN responses in autoinflammation and cancer.

Materials and Methods

Mice

Adar1 $1^{+f l-m Z \alpha}$ mice were generated by Cyagen. In brief, genomic fragments containing homology arms were amplified from a BAC and were sequentially assembled into a targeting vector together with recombination sites and selection markers as shown in Figure S1A. Successful assembly of the targeting vector was verified by restriction digest and sequencing. The linearised vector was subsequently delivered to ES cells (C57BL/6) via electroporation, followed by drug selection, PCR screening and sequencing. After confirming correctly targeted ES clones via Southern blotting, we selected clones for blastocyst microinjection, followed by chimera production. Founders were confirmed as germline-transmitted via crossbreeding with WT animals. The Neo cassette was flanked by Rox sites and contained a Dre recombinase controlled by a promoter active in the germline, resulting in deletion of the Neo cassette in F1 animals (Figure S1A). These Adar1 ${ }^{+f f-m Z \alpha}$ mice were further crossed with Pgk-Cre mice provided by Samira Lakhal-Littleton to produce Adar1 $1^{+/ m Z \alpha}$ animals (Figure S1A). The following PCR primers were used for genotyping:

F, 5'-TGACGAGAGACTTGTTTTCCTAGCATG-3',

R1, 5'-TGCCTCAATGAGACCTCCAACTTAACTC-3',
R2 ${ }^{\mathrm{WT}}$, 5'-CAGGGAGTACAAAATACGATT-3', and
R2 ${ }^{\text {MUT }}, 5$ '-CAGGGAGGCCAAAATACGAGC-3'.
PCR with primers F and R1 yielded a product of 357 bp for the WT Adar1 allele and a 421 bp product for both ' $f l-m Z \alpha$ ' and ' $m Z \alpha$ ' alleles. PCR with primers F and R2 ${ }^{\text {WT }}$ resulted in 1095 and 1158 bp products for the WT and ' $f 1-m Z \alpha$ ' alleles, respectively, and no product for the ' $m Z \alpha^{\prime}$ allele. Finally, PCR with primers F and R2 ${ }^{\text {MUT }}$ resulted in a 1158 bp product for the ' $m Z \alpha$ ' allele only.

Mavs ${ }^{-1}$ mice were a gift from C. Reis e Sousa and were originally from J . Tschopp (Michallet et al., 2008). All mice were on the C57BL/6 background. This work was performed in accordance with the UK Animal (Scientific Procedures) Act 1986 and institutional guidelines for animal care. This work was approved by project licenses granted by the UK Home Office (PPL numbers PC041D0AB, PBA43A2E4 and P79A4C5BA) and was also approved by the Institutional Animal Ethics Committee Review Board at the University of Oxford.

Cell culture

Lung fibroblasts and MEFs were grown in DMEM and BMMCs in RPMI, as described previously (Li et al., 2013; Maelfait et al., 2017). Media were supplemented with 10% heat-inactivated FCS and 2 mM L-glutamine; for BMMCs, 200 U/ml recombinant mouse GM-CSF (Peprotech) was added. MEFs were cultured at 3% oxygen.

RNA extraction and RT-qPCR

Organs collected from freshly killed mice ($8-10$ weeks of age) were snap frozen in liquid nitrogen immediately after dissection and stored at $-80^{\circ} \mathrm{C}$ until further processing. Organs were homogenised with glass beads (425-600 $\mu \mathrm{m}$, Sigma-Aldrich) in TRIzol (Thermo Fisher Scientific) using a FastPrep F120 instrument (Thermo Savant). RNA was extracted following the manufacturer's instructions and further purified using RNeasy Plus columns (Qiagen) including a gDNA eliminator column step. cDNA synthesis was performed with SuperScript II reverse transcriptase (Thermo Fisher Scientific) with random hexamer (Qiagen) or oligo (dT) 12-18 (Thermo Fisher Scientific) as primers. qPCR was done using Taqman Universal PCR Mix (Thermo Fisher Scientific) and Taqman probes (Applied Biosystems). Alternatively, qPCR was performed
using EXPRSS SYBR GreenER qPCR Supermix (Thermo Fisher Scientific) and DNA oligonucleotides (Sigma Aldrich). qPCR was performed on a QuantStudio 7 Flex real-time PCR system (Applied Biosystem). The qPCR probes and primers used in this study are listed in Table S2.

In vivo infection

WT and Adar $1^{m Z \alpha / m Z \alpha}$ mice were used at $8-10$ weeks of age. Mice were intranasally inoculated with $50 \mu \mathrm{l}$ X31 (0.04 haemagglutination units (HAU)) diluted in viral growth medium (VGM; DMEM with 1\% bovine serum albumin (Sigma-Aldrich A0336), 10 mM HEPES buffer, penicillin ($100 \mathrm{U} / \mathrm{ml}$) and streptomycin ($100 \mu \mathrm{~g} / \mathrm{ml}$)) or mock infected with $50 \mu \mathrm{l}$ VGM under light isoflurane anaesthesia. Animals were assessed daily for weight loss and signs of disease. Mice reaching 20% weight loss were euthanised.

Western Blot

Cells were lysed in RIPA buffer (50 mM Tris.HCl, pH7.4; $150 \mathrm{mM} \mathrm{NaCl} ; 1 \%$ NP-40 (Sigma-Aldrich), 0.5\% Deoxycholate, 0.1\% SDS and Complete protease inhibitor (Roche)) at $4^{\circ} \mathrm{C}$ for 10 minutes. Protein lysates were then cleared by centrifugation at 13000 rpm for 10 minutes. Samples were mixed with NuPAGE SDS-PAGE sample loading buffer (ThermoFisher) containing 10\% 2mercaptoethanol. A primary antibody against ADAR1 was purchased from Santa Cruz (sc-73408). The antibody recognising ISG15 was a gift from KlausPeter Knobeloch. HRP-coupled secondary antibodies were from GE Healthcare.

Flow cytometry

Lungs from 8-10 week old mice were dissected and mechanically disrupted using scissors before incubation in RPMI containing $1 \mu \mathrm{~g} / \mathrm{ml}$ type II collagenase
(Worthington Biochemical Corporation) and $40 \mathrm{U} / \mathrm{ml}$ DNase I (Sigma Aldrich) at $37^{\circ} \mathrm{C}$ for 60 minutes, with resuspension after 30 minutes to facilitate tissue dissociation. Cells were filtered through a $70 \mu \mathrm{~m}$ cell strainer (BD Falcon), rinsed with RPMI and pelleted at $400 \times \mathrm{g}$ for 5 minutes. The cell pellet was resuspended in 5 ml RBC lysis buffer (Qiagen), incubated at room temperature for 5 minutes and then washed twice with 45 ml RPMI. Cells were resuspended in $500 \mu \mathrm{l}$ FACS buffer (PBS containing 10\% (v/v) FCS and 2 mM EDTA) and passed through a $70 \mu \mathrm{~m}$ cell strainer. Viable cells were counted using a haemocytometer. Cells were washed with PBS before incubation with LIVE/DEAD Fixable Aqua Dead Cell Stain (Invitrogen) diluted 1:200 in PBS for 30 minutes at room temperature. Cells were washed once with FACS buffer and then stained with surface antibodies diluted 1:200 in Brilliant buffer (BD Biosciences) for 30 minutes. Cells were sorted directly into TRIzol-LS Reagent (Thermo Fisher Scientific) on BD FACSAria II and III machines (BD Biosciences). Alternatively, 1.5×10^{6} cells were stained and analysed using an Attune NxT Flow Cytometer (Thermo Fisher Scientific). Data were analysed using FlowJo (v10.6.2).

Magnetic cell fraction

Cells from lungs were prepared as described above. 10^{7} cells were resuspended in $90 \mu \mathrm{l}$ of MACS buffer (PBS containing 0.5% BSA and 2 mM EDTA) and then incubated with 10μ of CD45 microbeads (Miltenyi) for 15 minutes. The mixture was then washed with MACS buffer and resuspend in $500 \mu \mathrm{l}$ MACS buffer for magnetic separation on MACS LS columns (Miltenyi) according to the manufacturer's instructions. Cells were recovered from the flow-through (CD45-) and column (CD45+). 10\% of cells were stained and analysed by FACS to confirm purity. The remaining cells were pelleted, resuspend in TRIzol (ThermoFisher) and processed for RT-qPCR.

Bone marrow chimera

B6.SJL-CD45.1 mice were used as bone marrow recipients and were lethally irradiated twice (4.5 Gy for 300 seconds, separated by a ~ 3 hour rest). Mice were then injected intravenously with bone marrow from either WT (CD45.2) or Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice. Recipient mice received antibiotics (0.16 $\mathrm{mg} / \mathrm{mL}$, Enrofloxacin (Baytril), Bayer Corporation) in drinking water for four weeks following irradiation and were rested for >8 weeks before tissue collection.

RNA-seq and data processing

Stranded Illumina sequencing libraries were prepared with the RNA-Seq Ribozero kit from isolated RNAs and submitted for PE150 sequencing using an Illumina NovaSeq6000 machine, yielding $\sim 100 \mathrm{M}$ reads per sample. Sequencing data was processed using a Nextflow v20.07 (Di Tommaso et al., 2017) pipeline automating quality control using FastQC v0.11.8 (bioinformatics.babraham.ac.uk/projects/fastqc/), quality and adapter trimming using cutadapt v1.18 (Martin, 2011), contaminant detection using screen.sh (within BBMap v36.20, sourceforge.net/projects/bbmap/), strand-aware alignment using HISAT2 v2.1.0 (Kim et al., 2019) and STAR v2.7.1a (Dobin et al., 2013), post-alignment quality-assurance using 'gene body coverage', 'transcript integrity', and 'inner distance' metrics from RSeQC v2.6.4 (Wang et al., 2012), and strand-specific counting of uniquely-mapping reads using featureCounts (within Subread v1.6.4, (Liao et al., 2014)) against Ensembl GRCm38.100 annotations. Additional, unstranded counts were obtained with featureCounts against a database of repetitive elements previously prepared for GRCm38 (Attig et al., 2017) using reads unassigned to features during the previous step.

Differential expression analysis

Downstream differential expression analysis was conducted using counts obtained for STAR read mappings using DESeq2 (Love et al., 2014) (v1.22.1) within $R(v 4.0 .2)$. Gene ontology analysis was performed using goseq (Young et al., 2010) (1.34.1). Heatmaps were generated using the pheatmap package (v1.0.12).

Detection of A-to-I editing

A Python 3.8 program, edlted (github.com/A-N-Other/pedestal), was produced to identify editing sites. edlted performs stranded assessments of RNA editing from samtools mpileup (Li, 2011) data, building on the Dirichletbased models implemented in ACCUSA2 and JACUSA (Piechotta and Dieterich, 2013; Piechotta et al., 2017). When run with test data alone, edlted runs in 'detect' mode, finding base modifications by comparing the goodness of fit of Dirchlet models of the base error (derived from the Phred quality data in the mpileup input) and the background sequencing error to the base frequencies recorded at a specific position. With an additional control dataset, edlted runs in 'differential' mode, performing the above analysis to determine significantly edited sites before additionally testing for differential editing by comparing the goodness of fit of Dirichlet models of the base error from the test and control datasets to their own and each other's base frequencies. When biological replicates are provided, edlted adjusts the reported Z scores to reflect the proportion of test dataset samples displaying editing. edlted was run in both modes with samtools mpileup files (supplemented with TS tag metadata) separately for HISAT2 and STAR alignments of the data with the flags '-min_depth 5 --min_alt_depth 2 --min_edited 0.01 --max_edited 0.9 --z_score 2.58'. For differential analyses the '--min_fold 2' flag was used and, where
considering biological replicates the '--reps 3' flag, such that editing is required in all three samples. All analyses were conducted supplying BED files of ENCODE blacklisted regions (Amemiya et al., 2019) and known splice sites (regions set to splice site +/- 2 nts) to the '--blacklist' flag. Sites that were found in common between the HISAT2- and STAR-mapped data were retained for further analysis.

Analysis of A-to-I editing sites

Sites obtained from edlted were assigned to genomic features using annotatr v1.16 within R (Cavalcante and Sartor, 2017). Assessments of editing enrichment within repetitive elements were conducted using regioneR v1.22 within R (Gel et al., 2016) using randomization-based permutation tests with 100 bootstraps. Assessment of distance to neighbouring inverted SINE superfamily (B1, B2, B3, B4) members was conducted with bedtools $v 2.29 .2$ closest (Quinlan and Hall, 2010) using the '-io -S' flags. Outputs and the detailed statistics were produced with GraphPad Prism v8.

ELISA

Mouse IL-6 was quantified by uncoated ELISA Kit (ThermoFisher) according to manufacturer's instruction.

Author contributions (using the CRediT taxonomy)
Conceptualisation: Q.T. and J.R.; Methodology: Q.T., R.E.R. and G.Y.; Software: R.E.R. and G.Y.; Validation: Q.T. and J.R.; Formal analysis: Q.T., R.E.R., G.Y. and J.R.; Investigation: Q.T., R.E.R., G.Y., A.K.H., T.K.T. and A.B.; Resources: A.T. and G.K.; Data curation: Q.T., R.E.R. and G.Y.; Writing - Original Draft: Q.T., G.Y. and J.R.; Writing - Review \& Editing: all authors; Visualisation: Q.T., R.E.R., G.Y. and J.R.; Supervision: J.R., A.T., and G.K.; Project administration: Q.T.; Funding acquisition: J.R.

Acknowledgments

The authors thank P. Shing Ho and Craig Benham for providing access to the Z-hunt and SIBZ codes, respectively. We further thank Daniel Stetson, Andrew Oberst, Jonathan Maelfait, Caetano Reis e Sousa, David Ron, Annemarthe van Der Veen and members of the Rehwinkel lab for discussion. The authors thank Ziqi Long and Oliver Bannard for their help with generating BM chimeras. This work was funded by the UK Medical Research Council [MRC core funding of the MRC Human Immunology Unit; J.R.], the Wellcome Trust [grant number 100954; J.R.], the Lister Institute [J.R.] and the Francis Crick Institute [G.K.], which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust. T.K.T. was funded by the Townsend-Jeantet Charitable Trust (charity number 1011770) and the EPA Cephalosporin Early Career Researcher Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Declaration of interests

The authors have declared that no conflict of interest exits.

References

Ahmad, S., Mu, X., Yang, F., Greenwald, E., Park, J.W., Jacob, E., Zhang, C.Z., and Hur, S. (2018). Breaching Self-Tolerance to Alu Duplex RNA Underlies MDA5-Mediated Inflammation. Cell 172, 797-810 e713.

Amemiya, H.M., Kundaje, A., and Boyle, A.P. (2019). The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Sci Rep 9, 9354.

Ashley, C.L., Abendroth, A., McSharry, B.P., and Slobedman, B. (2019). Interferon-Independent Upregulation of Interferon-Stimulated Genes during Human Cytomegalovirus Infection is Dependent on IRF3 Expression. Viruses 11.

Athanasiadis, A. (2012). Zalpha-domains: at the intersection between RNA editing and innate immunity. Seminars in cell \& developmental biology 23, 275280.

Athanasiadis, A., Placido, D., Maas, S., Brown, B.A., 2nd, Lowenhaupt, K., and Rich, A. (2005). The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. Journal of molecular biology 351, 496-507.

Attig, J., Young, G.R., Stoye, J.P., and Kassiotis, G. (2017). Physiological and Pathological Transcriptional Activation of Endogenous Retroelements Assessed by RNA-Sequencing of B Lymphocytes. Frontiers in microbiology 8, 2489.

Bajad, P., Ebner, F., Amman, F., Szabo, B., Kapoor, U., Manjali, G., Hildebrandt, A., Janisiw, M.P., and Jantsch, M.F. (2020). An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype. Nucleic acids research 48, 3286-3303.

Bartok, E., and Hartmann, G. (2020). Immune Sensing Mechanisms that Discriminate Self from Altered Self and Foreign Nucleic Acids. Immunity 53, 5477.

Brown, B.A., 2nd, Lowenhaupt, K., Wilbert, C.M., Hanlon, E.B., and Rich, A. (2000). The zalpha domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proceedings of the National Academy of Sciences of the United States of America 97, 13532-13536.

Casey, J.L. (2012). Control of ADAR1 editing of hepatitis delta virus RNAs. Curr Top Microbiol Immunol 353, 123-143.

Cavalcante, R.G., and Sartor, M.A. (2017). annotatr: genomic regions in context.

Bioinformatics 33, 2381-2383.
Champ, P.C., Maurice, S., Vargason, J.M., Camp, T., and Ho, P.S. (2004). Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. Nucleic acids research 32, 6501-6510.

Chung, H., Calis, J.J.A., Wu, X., Sun, T., Yu, Y., Sarbanes, S.L., Dao Thi, V.L., Shilvock, A.R., Hoffmann, H.H., Rosenberg, B.R., and Rice, C.M. (2018). Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell 172, 811-824 e814.

Chuong, E.B., Elde, N.C., and Feschotte, C. (2016). Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083-1087.

Davis, P.W., Hall, K., Cruz, P., Tinoco, I., Jr., and Neilson, T. (1986). The tetraribonucleotide rCpGpCpG forms a left-handed Z-RNA double-helix. Nucleic Acids Res 14, 1279-1291.

DeFilippis, V.R., Robinson, B., Keck, T.M., Hansen, S.G., Nelson, J.A., and Fruh, K.J. (2006). Interferon regulatory factor 3 is necessary for induction of antiviral genes during human cytomegalovirus infection. Journal of virology 80, 1032-1037.

Devos, M., Tanghe, G., Gilbert, B., Dierick, E., Verheirstraeten, M., Nemegeer, J., de Reuver, R., Lefebvre, S., De Munck, J., Rehwinkel, J., et al. (2020). Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation. The Journal of experimental medicine 217.

Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E., and Notredame, C. (2017). Nextflow enables reproducible computational workflows. Nat Biotechnol 35, 316-319.

Dias Junior, A.G., Sampaio, N.G., and Rehwinkel, J. (2019). A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends in microbiology 27, 75-85.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNAseq aligner. Bioinformatics 29, 15-21.

Eisenberg, E., and Levanon, E.Y. (2018). A-to-I RNA editing - immune protector and transcriptome diversifier. Nature reviews. Genetics 19, 473-490.

Feng, S., Li, H., Zhao, J., Pervushin, K., Lowenhaupt, K., Schwartz, T.U., and

Droge, P. (2011). Alternate rRNA secondary structures as regulators of translation. Nature structural \& molecular biology 18, 169-176.

Gannon, H.S., Zou, T., Kiessling, M.K., Gao, G.F., Cai, D., Choi, P.S., Ivan, A.P., Buchumenski, I., Berger, A.C., Goldstein, J.T., et al. (2018). Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nature communications 9, 5450.

Gel, B., Diez-Villanueva, A., Serra, E., Buschbeck, M., Peinado, M.A., and Malinverni, R. (2016). regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests. Bioinformatics 32, 289-291.

Goubau, D., Romieu-Mourez, R., Solis, M., Hernandez, E., Mesplede, T., Lin, R., Leaman, D., and Hiscott, J. (2009). Transcriptional re-programming of primary macrophages reveals distinct apoptotic and anti-tumoral functions of IRF-3 and IRF-7. Eur J Immunol 39, 527-540.

Grandvaux, N., Servant, M.J., tenOever, B., Sen, G.C., Balachandran, S., Barber, G.N., Lin, R., and Hiscott, J. (2002). Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. Journal of virology 76, 5532-5539.

Guallar, D., Fuentes-Iglesias, A., Souto, Y., Ameneiro, C., Freire-Agulleiro, O., Pardavila, J.A., Escudero, A., Garcia-Outeiral, V., Moreira, T., Saenz, C., et al. (2020). ADAR1-Dependent RNA Editing Promotes MET and iPSC Reprogramming by Alleviating ER Stress. Cell stem cell 27, 300-314 e311.

Hall, K., Cruz, P., Tinoco, I., Jr., Jovin, T.M., and van de Sande, J.H. (1984). 'Z-RNA'--a left-handed RNA double helix. Nature 311, 584-586.

Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular cell 11, 619-633.

Hartner, J.C., Schmittwolf, C., Kispert, A., Muller, A.M., Higuchi, M., and Seeburg, P.H. (2004). Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279, 4894-4902.

Hartner, J.C., Walkley, C.R., Lu, J., and Orkin, S.H. (2009). ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nature immunology 10, 109-115.

Heraud-Farlow, J.E., and Walkley, C.R. (2020). What do editors do?

Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs. Open Biol 10, 200085.

Herbert, A. (2019). Z-DNA and Z-RNA in human disease. Commun Biol 2, 7.
Ho, P.S., Ellison, M.J., Quigley, G.J., and Rich, A. (1986). A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. The EMBO journal 5, 2737-2744.

Ishizuka, J.J., Manguso, R.T., Cheruiyot, C.K., Bi, K., Panda, A., Iracheta-Vellve, A., Miller, B.C., Du, P.P., Yates, K.B., Dubrot, J., et al. (2019). Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43-48.

Jiao, H., Wachsmuth, L., Kumari, S., Schwarzer, R., Lin, J., Eren, R.O., Fisher, A., Lane, R., Young, G.R., Kassiotis, G., et al. (2020). Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580, 391-395.

Kesavardhana, S., and Kanneganti, T.D. (2020). ZBP1: A STARGTE to decode the biology of Z-nucleic acids in disease. The Journal of experimental medicine 217.

Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graphbased genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37, 907-915.

Kim, S.H., Lim, S.H., Lee, A.R., Kwon, D.H., Song, H.K., Lee, J.H., Cho, M., Johner, A., Lee, N.K., and Hong, S.C. (2018). Unveiling the pathway to Z-DNA in the protein-induced B-Z transition. Nucleic acids research 46, 4129-4137.

Kim, Y.G., Muralinath, M., Brandt, T., Pearcy, M., Hauns, K., Lowenhaupt, K., Jacobs, B.L., and Rich, A. (2003). A role for Z-DNA binding in vaccinia virus pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 100, 6974-6979.

Lazear, H.M., Lancaster, A., Wilkins, C., Suthar, M.S., Huang, A., Vick, S.C., Clepper, L., Thackray, L., Brassil, M.M., Virgin, H.W., et al. (2013). IRF-3, IRF5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling. PLoS Pathog 9, e1003118.

Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993.

Li, H., Xiao, J., Li, J., Lu, L., Feng, S., and Droge, P. (2009). Human genomic

Z-DNA segments probed by the Z alpha domain of ADAR1. Nucleic acids research 37, 2737-2746.

Li, X.D., Wu, J., Gao, D., Wang, H., Sun, L., and Chen, Z.J. (2013). Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390-1394.

Li, Y., Banerjee, S., Goldstein, S.A., Dong, B., Gaughan, C., Rath, S., Donovan, J., Korennykh, A., Silverman, R.H., and Weiss, S.R. (2017). Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. Elife 6.

Li, Z., Wolff, K.C., and Samuel, C.E. (2010). RNA adenosine deaminase ADAR1 deficiency leads to increased activation of protein kinase PKR and reduced vesicular stomatitis virus growth following interferon treatment. Virology 396, 316-322.

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930.

Liddicoat, B.J., Piskol, R., Chalk, A.M., Ramaswami, G., Higuchi, M., Hartner, J.C., Li, J.B., Seeburg, P.H., and Walkley, C.R. (2015). RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 11151120.

Liu, H., Golji, J., Brodeur, L.K., Chung, F.S., Chen, J.T., deBeaumont, R.S., Bullock, C.P., Jones, M.D., Kerr, G., Li, L., et al. (2019). Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nature medicine 25, 95-102.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

Luo, H., Wang, D., Che, H.L., Zhao, Y., and Jin, H. (2012). Pathological observations of lung inflammation after administration of IP-10 in influenza virus- and respiratory syncytial virus-infected mice. Exp Ther Med 3, 76-79.

Maelfait, J., Liverpool, L., Bridgeman, A., Ragan, K.B., Upton, J.W., and Rehwinkel, J. (2017). Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. The EMBO journal 36, 2529-2543.

Maelfait, J., Liverpool, L., and Rehwinkel, J. (2020). Nucleic Acid Sensors and Programmed Cell Death. Journal of molecular biology 432, 552-568.

Mannion, N.M., Greenwood, S.M., Young, R., Cox, S., Brindle, J., Read, D., Nellaker, C., Vesely, C., Ponting, C.P., McLaughlin, P.J., et al. (2014). The RNAediting enzyme ADAR1 controls innate immune responses to RNA. Cell reports 9, 1482-1494.

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 17, 3.

Mehdipour, P., Marhon, S.A., Ettayebi, I., Chakravarthy, A., Hosseini, A., Wang, Y., de Castro, F.A., Loo Yau, H., Ishak, C., Abelson, S., et al. (2020). Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588, 169-173.

Michallet, M.C., Meylan, E., Ermolaeva, M.A., Vazquez, J., Rebsamen, M., Curran, J., Poeck, H., Bscheider, M., Hartmann, G., Konig, M., et al. (2008). TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651-661.

Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., and Gorman, A.M. (2016). The integrated stress response. EMBO reports 17, 1374-1395.

Perng, Y.C., and Lenschow, D.J. (2018). ISG15 in antiviral immunity and beyond. Nature reviews. Microbiology 16, 423-439.

Pestal, K., Funk, C.C., Snyder, J.M., Price, N.D., Treuting, P.M., and Stetson, D.B. (2015). Isoforms of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ Development. Immunity 43, 933-944.

Pfaller, C.K., Donohue, R.C., Nersisyan, S., Brodsky, L., and Cattaneo, R. (2018). Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol 16, e2006577.

Pichlmair, A., Lassnig, C., Eberle, C.A., Gorna, M.W., Baumann, C.L., Burkard, T.R., Burckstummer, T., Stefanovic, A., Krieger, S., Bennett, K.L., et al. (2011). IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nature immunology 12, 624-630.

Piechotta, M., and Dieterich, C. (2013). ACCUSA2: multi-purpose SNV calling enhanced by probabilistic integration of quality scores. Bioinformatics 29, 18091810.

Piechotta, M., Wyler, E., Ohler, U., Landthaler, M., and Dieterich, C. (2017). JACUSA: site-specific identification of RNA editing events from replicate
sequencing data. BMC Bioinformatics 18, 7 .
Porath, H.T., Knisbacher, B.A., Eisenberg, E., and Levanon, E.Y. (2017). Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol 18, 185.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.

Reich, D.P., and Bass, B.L. (2019). Mapping the dsRNA World. Cold Spring Harb Perspect Biol 11.

Rice, G.I., Kasher, P.R., Forte, G.M., Mannion, N.M., Greenwood, S.M., Szynkiewicz, M., Dickerson, J.E., Bhaskar, S.S., Zampini, M., Briggs, T.A., et al. (2012). Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nature genetics 44, 1243-1248.

Schade, M., Turner, C.J., Lowenhaupt, K., Rich, A., and Herbert, A. (1999). Structure-function analysis of the Z-DNA-binding domain Zalpha of dsRNA adenosine deaminase type I reveals similarity to the (alpha + beta) family of helix-turn-helix proteins. The EMBO journal 18, 470-479.

Schoggins, J.W. (2019). Interferon-Stimulated Genes: What Do They All Do? Annu Rev Virol 6, 567-584.

Schwartz, T., Rould, M.A., Lowenhaupt, K., Herbert, A., and Rich, A. (1999). Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284, 1841-1845.

Solomon, O., Di Segni, A., Cesarkas, K., Porath, H.T., Marcu-Malina, V., Mizrahi, O., Stern-Ginossar, N., Kol, N., Farage-Barhom, S., Glick-Saar, E., et al. (2017). RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nature communications 8, 1440.

Song, Y., Yang, W., Fu, Q., Wu, L., Zhao, X., Zhang, Y., and Zhang, R. (2020). irCLASH reveals RNA substrates recognized by human ADARs. Nature structural \& molecular biology 27, 351-362.

Sridharan, H., Ragan, K.B., Guo, H., Gilley, R.P., Landsteiner, V.J., Kaiser, W.J., and Upton, J.W. (2017). Murine cytomegalovirus IE3-dependent transcription is required for DAI/ZBP1-mediated necroptosis. EMBO reports 18, 1429-1441.

Tan, M.H., Li, Q., Shanmugam, R., Piskol, R., Kohler, J., Young, A.N., Liu, K.I., Zhang, R., Ramaswami, G., Ariyoshi, K., et al. (2017). Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249-254.

Uggenti, C., Lepelley, A., and Crow, Y.J. (2019). Self-Awareness: Nucleic AcidDriven Inflammation and the Type I Interferonopathies. Annual review of immunology 37, 247-267.

Vogel, O.A., Han, J., Liang, C.Y., Manicassamy, S., Perez, J.T., and Manicassamy, B. (2020). The p150 Isoform of ADAR1 Blocks Sustained RLR signaling and Apoptosis during Influenza Virus Infection. PLoS Pathog 16, e1008842.

Wang, A.H., Quigley, G.J., Kolpak, F.J., Crawford, J.L., van Boom, J.H., van der Marel, G., and Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680-686.

Wang, L., Wang, S., and Li, W. (2012). RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184-2185.

Wang, Q., Miyakoda, M., Yang, W., Khillan, J., Stachura, D.L., Weiss, M.J., and Nishikura, K. (2004). Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279, 4952-4961.

Wang, R., Li, H., Wu, J., Cai, Z.Y., Li, B., Ni, H., Qiu, X., Chen, H., Liu, W., Yang, Z.H., et al. (2020). Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature 580, 386-390.

Ward, S.V., George, C.X., Welch, M.J., Liou, L.Y., Hahm, B., Lewicki, H., de la Torre, J.C., Samuel, C.E., and Oldstone, M.B. (2011). RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 108, 331-336.

Weiden, M.D., Hoshino, S., Levy, D.N., Li, Y., Kumar, R., Burke, S.A., Dawson, R., Hioe, C.E., Borkowsky, W., Rom, W.N., and Hoshino, Y. (2014). Adenosine deaminase acting on RNA-1 (ADAR1) inhibits HIV-1 replication in human alveolar macrophages. PloS one 9, e108476.

Wittig, B., Wolfl, S., Dorbic, T., Vahrson, W., and Rich, A. (1992). Transcription of human c-myc in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene. The EMBO journal 11, 4653-4663.

Wolfl, S., Wittig, B., and Rich, A. (1995). Identification of transcriptionally induced Z-DNA segments in the human c-myc gene. Biochim Biophys Acta 1264, 294-302.

Young, M.D., Wakefield, M.J., Smyth, G.K., and Oshlack, A. (2010). Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11,

R14.

Zhabinskaya, D., and Benham, C.J. (2011). Theoretical analysis of the stress induced B-Z transition in superhelical DNA. PLoS Comput Biol 7, e1001051.

Zhang, H., Ni, G., and Damania, B. (2020a). ADAR1 Facilitates KSHV Lytic Reactivation by Modulating the RLR-Dependent Signaling Pathway. Cell reports 31, 107564.

Zhang, T., Yin, C., Boyd, D.F., Quarato, G., Ingram, J.P., Shubina, M., Ragan, K.B., Ishizuka, T., Crawford, J.C., Tummers, B., et al. (2020b). Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell 180, 1115-1129 e1113.

Zhou, S., Yang, C., Zhao, F., Huang, Y., Lin, Y., Huang, C., Ma, X., Du, J., Wang, Y., Long, G., et al. (2019). Double-stranded RNA deaminase ADAR1 promotes the Zika virus replication by inhibiting the activation of protein kinase PKR. J Biol Chem 294, 18168-18180.

Figures and figure legends

Figure 1.

B

C

E

Figure 1. Mutation of ADAR1-p150's $\mathrm{Z} \alpha$ domain triggers spontaneous type I IFN responses in multiple organs.
A. Levels of the indicated mRNAs were analysed by RT-qPCR in RNA samples extracted from tissues of WT and Adar $1^{m Z \alpha / m Z \alpha}$ animals and are shown relative to Gapdh. Each dot represents an individual mouse. N.D, not detectable.
B. Protein extracts from whole lungs from animals of the indicated genotypes were used for western blot with an α-ISG15 antibody. β-Actin served as a loading control. Each lane represents a sample from an individual mouse.

C-E. mRNA levels of the indicated ISGs were analysed by RT-qPCR from cultured lung fibroblasts (C), BMMCs (D), and MEFs (E) of the indicated genotypes and are shown relative to Gapdh. Each dot represents cells derived from an individual mouse.

Pooled data from biological replicates are shown with mean (A, D, E) or mean \pm SD (C) and were analysed by unpaired t test (${ }^{* * * *} p<0.0001$, ${ }^{* *} p<0.01$, * $\mathrm{p}<0.05$). See also Figure S1.

Figure $\mathbf{S 1}$.
A

D

Figure S1, related to Figure1. Generation of Adar1 $1^{m Z \alpha / m Z \alpha}$ animals.
A. Schematic representation of the Adar1 WT allele, targeting vector, targeted allele, Adar1 $1^{f-m Z \alpha}$ allele and the two-step Cre-mediated recombination process that resulted in the Adar1 ${ }^{m Z \alpha}$ allele. Please see text for details. CKI, conditional knock-in.
B. Genomic DNA was prepared from WT and Adar1 ${ }^{m Z \alpha / m Z \alpha}$ animals and the mutated region in exon 2 was sequenced.
C. Adar1 $1^{+f l-m Z \alpha}$ mice were bred with the Pgk-Cre line. Adar ${ }^{+/ m Z \alpha}$ offspring were then mated to generate Adar1 ${ }^{m Z \alpha / m Z \alpha}$ animals. The numbers and percentages of animals obtained with the indicated genotypes are shown.
D. BMMCs were grown from bone marrow from five mice of the indicated genotypes. Protein extracts were used for western blot with α-ADAR1 antibody. β-Actin served as a loading control. *, non-specific band

Figure 2.

Figure 2. Adar1 ${ }^{m Z \alpha / m Z \alpha}$ lungs display a type I IFN gene signature.
1047 Total RNA was extracted from lungs of three WT and three Adar1mZ ${ }^{m / m Z \alpha}$ mice.
Ribosomal RNAs were depleted before random-primed library preparation and RNA sequencing. About 100 million reads were obtained per sample.
A. Differentially expressed genes were defined as displaying a fold change of ≥ 2 with an adjusted p-value <0.01. The 89 upregulated and 10 downregulated
genes were ordered by decreasing fold change and the data were clustered by sample. ISGs are indicated in bold.
B. GO analysis of up-regulated genes. The top 20 GO terms (biological processes), ranked and ordered by p-value, are shown. Diameters indicate the number of induced genes assigned to the GO term and colours show the pvalue.
C. Detected and differentially expressed REs were assigned to the indicated classes and are shown as pie charts. Differentially expressed REs were identified as having a minimum fold change of 2 and an adjusted p value of less than 0.01.

See also Table S1.

Figure 3.
A

B

Figure 3. Stromal and haematopoietic cells upregulate ISGs in Adar1mZ ${ }^{m} / m Z_{\alpha}$

 lungs.A. The proportion of haematopoietic (CD45+) and stromal (CD45-) cells in WT and Adar1 ${ }^{m Z \alpha / m Z \alpha}$ lungs is shown.
B. mRNA levels of the indicated ISGs were analysed by RT-qPCR using RNA extracted from whole lung, or from CD45+ or CD45- cells, and are shown relative to Actb. Fold increases relative to WT samples were calculated.

Data points represent individual animals. In (A), data from a representative experiment are shown with mean \pm SD. In (B), pooled data from two independent experiments including a total of six animals are shown with mean and were analysed by unpaired t test (${ }^{* * * *} \mathrm{p}<0.0001$, ${ }^{* * *} \mathrm{p}<0.001$, ${ }^{* *} \mathrm{p}<0.01$). See also Figure S2.

Figure S2.

Figure S2, related to Figure 3. MACS separation of lung cells.
A. Cell surface levels of CD45 were analysed by flow cytometry in single cell suspensions obtained from lung tissue before MACS (left) and in CD45- and CD45+ cell fractions obtained after MACS (middle and right). Data are from a representative WT animal.
B. The percentage of CD45-expressing cells is shown for CD45+ and CD45MACS fractions. Data points represent individual animals ($n=4$) from a representative experiment and bars indicate the mean.

Figure 4.

> - Adar1 ${ }^{\text {+/+ }}$
> - Adar1mZ ${ }^{m} / m Z_{\alpha}$
> B
C Ifit1

Isg15

- Adar1+/+
- Adar1mZ ${ }^{-} / m Z_{\alpha}$

- $W T \rightarrow W T$

○ Adar ${ }^{m z / m Z^{\alpha}} \rightarrow W T$

Figure 4. Multiple haematopoietic and non-haematopoietic cell types display ISGs upregulation in Adar1 $1^{m Z \alpha / m Z \alpha}$ lungs. A-C. mRNA levels of the indicated ISGs were analysed by RT-qPCR using RNA extracted from cell populations sorted from lungs of WT and Adar $1^{m Z \alpha / m Z \alpha}$ mice and are shown relative to Actb. B, B cells; T, T cells; DC, dendritic cells; Mono, monocytes; Mph, macrophages; NK, natural killer cells; Neut, neutrophils; Eos, eosinophils; Total, whole lung.
D. ISG mRNA levels were analysed as in (A-C) in cell populations sorted from lungs of BM chimeric mice and are shown relative to Gapdh. Each data point represents an individual mouse. Due to the small number of epithelial cells recovered, samples were pooled from multiple mice before RNA extraction (C). Pooled data from two (A, B) or three (D) independent experiments are shown with mean (${ }^{* * * * p<0.0001, ~}{ }^{* * *} \mathrm{p}<0.001$, ${ }^{* *} \mathrm{p}<0.01$, ${ }^{*} \mathrm{p}<0.05$, unpaired t test). See also Figures S3, S4 and S5.

Figure $\mathbf{S 3}$.
A
CD45.2-AF488; CD11c-APC; CD11b-BV785 MHCII-AF700; CD24-BV605; CD64-PE

 Figure S3, related to Figure 4A and 4B. Gating strategy for sorting of haematopoietic lung cells. Two staining panels were used to identify and isolate haematopoietic cell populations by FACS. Panel (A) is related to Figure 4A and panel (B) to Figure 4B. Antibodies and conjugated fluorophores are shown in boxes. Gating strategies are shown for a representative WT (A) and $\operatorname{Adar} 1^{m Z \alpha / m Z \alpha}(B)$ animal. Bar graphs show the proportion of each cell population as a percentage of CD45+ cells. Each dot represents an individual mouse and data from two independent experiments were pooled (**p<0.01, unpaired t test).

Figure $\mathbf{S 4}$.

1117 shown in the box. The gating strategy is shown for a representative WT animal.
1118 The bar graph shows the proportion of each cell population as a percentage of
Figure S4, related to Figure 4C. Gating strategy for sorting of stromal lung cells. The staining panel used to identify and isolate non-haematopoietic cell populations by FACS is shown. Antibodies and conjugated fluorophores are CD45- cells. Each dot represents an individual mouse.

Figure S5.

B blood

Chimera

B6.SJL-CD45. 1

B6.SJL-

C lung

A. Schematic representation of the generation of BM chimeric animals.
B. White blood cells from BM chimeric mice and, as control, from an untreated B6.SJL-CD45.1 animal, were analysed by FACS. Cells were gated on single, live cells. Representative FACS plots from a WT \rightarrow WT animal (left) and pooled data from two independent experiments involving a total seven $\mathrm{WT} \rightarrow \mathrm{WT}$ and eight Adar1 ${ }^{m Z \alpha / m Z \alpha} \rightarrow$ WT BM chimeric animals (right) are shown. Bars show the mean and error bars represent SD.
C. Lung cells from BM chimeric mice were analysed by FACS. Data from a representative WT $\rightarrow \mathrm{WT}$ animal are shown.

Figure 5.

Figure 5. Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice are protected from early IAV infection.
A. WT or Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice were infected intranasally with 0.04 HAU of IAV strain $A / X 31$. Body weight was monitored daily and is shown as a percentage of starting body weight.

B-E. WT or Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice were infected as in (A) or mock infected using viral growth medium. On day 3 post infection, lungs and sera were collected.
B. A 'lung index' was calculated (lung weight/body weight $x 100$).
C. Levels of the viral $N P$ and M transcripts were analysed by RT-qPCR in RNA samples extracted from total lung. Data are shown relative to Actb (NP) or Gapdh (M).
D. Levels of the indicated mRNAs were determined as in (C).
E. Serum IL-6 concentrations were analysed by ELISA. In (A), data from three independent experiments including a total of 15 mice per genotype were pooled (mean +SD ; ${ }^{* * * * p<0.0001, ~}{ }^{* * *} p<0.001$, ${ }^{* *} p<0.01$, * $\mathrm{p}<0.05$, mixed-effects analysis). In (B-E), pooled data from two independent experiments (mock infected: $n=4$ mice per genotype; X31-infected: $n=16$ WT and $\mathrm{n}=13$ Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice) are shown. Each dot represents an individual mouse and the mean is indicated (****p < 0.0001, ${ }^{* * *} p<0.001$, ${ }^{* *} p<0.01$, unpaired t test).

Figure 6.

Figure 6. ISG induction in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ mice is MAVS-dependent.
Levels of the indicated mRNAs were analysed by RT-qPCR in RNA samples extracted from tissues of WT and Adar $1^{m Z \alpha / m Z \alpha}$ animals that were either MAVSsufficient or -deficient. Data are shown relative to Gapdh.

Each dot represents an individual mouse. Pooled data from biological replicates are shown (${ }^{* * * *} p<0.0001,{ }^{* * *} p<0.001,{ }^{* *} p<0.01,{ }^{*} p<0.05$, unpaired test).

Figure 7.

Figure 7. ADAR1-p150's $\mathrm{Z} \alpha$ domain is required for editing of a subset of RNAs.
A. Editing sites were mapped in RNA sequencing reads from three WT and three Adar1 ${ }^{m Z \alpha / m Z \alpha}$ lung samples ($Z>2.58$). The numbers of edited sites were scaled to the total number of reads per sample. Each data point corresponds to an animal and the mean is shown (ns, not significant; unpaired t test).
B. Editing frequencies for sites detectable in all three WT or Adar1mZ ${ }^{m / m Z \alpha}$ samples (left; $Z>2.58$) and for differentially edited sites (right; $Z>2.58$, >2-fold) are shown as violin plots. Solid horizontal lines show the median and dotted lines indicate quartiles. C. Editing sites detected in WT samples and differentially edited sites were matched to annotated genomic features. The percentage of sites is shown for each category.
D. The number of expected and observed editing sites in WT samples are shown for families of REs for which either value exceeded 500 . Please see text for details.
E. The distances of SINEs to their nearest inverted super-family member were determined for all SINEs and for SINEs harbouring an editing site in WT samples (Detected) or containing a differentially edited site. Results are shown as proportions of SINEs with the maximum count set to 100.

See also Figure S6.

Figure $\mathbf{S 6}$.
 numbers of edits for SINE sub-families using editing events detected in WT

Table S1. Differentially expressed REs.

REs differentially expressed in Adar1 ${ }^{m Z \alpha / m Z \alpha}$ lungs are shown with their log2 fold change and adjusted p-value. The RE class, family and chromosomal location are indicated. REs were sorted by adjusted p-value. The cut-offs used were: $\log 2$ fold-change >1 or <-1, and adjusted p-value <0.01.

Class\|Family	Chr	Start	Stop	log2 fold change	padj	
Satellite\|GSAT_MM	JH584304.1	60177	60876	3.3	0	
LTR/ERVL-MaLR\|MTDJJH584304.1	61136	61478	3.3	6.80E-259		
LTR/ERVL-MaLR\|MTD	JH584304.1	25102	25465	3.0	$4.93 \mathrm{E}-157$	
LTR/ERVL-MaLR\|MTD-int	5	120880478	120881813	3.3	$1.00 \mathrm{E}-100$	
LTR/ERVK\|ETnERV2-int	18	60283765	60287191	2.1	4.51E-93	
LINE/L1\|L1MdA_VIII	18	60302236	60308420	1.9	4.12E-82	
LTR/ERVL-MaLR\|MTD-int	5	120900459	120901797	2.3	9.73E-59	
LINE/L1\|L1M5	5	120744115	120744500	2.8	5.45E-56	
LINE/L1\|Lx8b	18	60290416	60292037	1.9	1.30E-51	
LTR/ERVK\|ERVB4_1-I_MM~RLTR50B	18	60288796	60289913	2.1	1.67E-46	
LTR/ERVK\|	APEY3_LTR~IAPEy-int	1	173572498	173580638	1.1	6.52E-44
LINE/L1\|Lx7	3	151733082	151735087	2.7	1.69E-42	
SINE/B4\|B4A	5	120879672	120879973	3.9	$2.34 \mathrm{E}-38$	
SINE/B4\|B4A	5	120743868	120744091	2.5	6.13E-38	
LINE/L1\|L1MdTf_III	7	104475378	104477900	1.6	1.40E-37	
SINE/B2\|B3	JH584304.1	61870	61954	2.8	7.81E-37	
SINE/B2\|B2_Mm2	5	120744880	120745045	2.8	5.86E-36	
LTR/ERVK\|ERVB2_1-I_MM~RLTR13D2	1	173566173	173572495	1.0	3.47E-35	
LTR/ERVK\|RLTR33	12	103438085	103438897	1.7	9.56E-35	
LINE/L1\|L1MdN_I	18	60219113	60220489	1.7	1.00E-33	
LTR/ERV1\|RLTR6-int	12	103440882	103441504	1.9	2.23E-32	
SINE/B4\|RSINE1	5	120744507	120744635	3.5	7.38E-32	
LINE/L1\|Lx8	5	114904191	114904607	1.9	1.11E-26	
SINE/B2\|B3	5	120744692	120744879	2.9	3.76E-26	
LINE/L1\|L1MdA_I	7	104502396	104504479	1.5	$4.46 \mathrm{E}-25$	
LTR/ERVK\|RMER12B	18	60308716	60309841	1.7	4.59E-25	
LTR/ERVK\|ETnERV2-int	18	60287718	60288163	2.1	5.34E-25	
SINE/B4\|B4A	5	120899645	120899943	2.3	$9.68 \mathrm{E}-25$	
LTR/ERV1\|RLTR1A2_MM	18	60287192	60287717	2.2	3.30E-24	
LINE/L1\|L1MdF_I	7	104489329	104493378	1.6	5.47E-24	
LTR/ERVL-MaLR\|MTD~MTD-int	5	120867256	120868952	2.7	2.72E-23	
LINE/L1\|Lx8b	18	60292356	60292908	2.1	7.39E-23	
LINE/L1\|Lx3_Mus	1	173476327	173479976	1.8	3.80E-22	
LINE/L1\|L1MdF_III	7	104412877	104415655	1.0	8.14E-22	
LINE/L1\|Lx7	3	151735621	151736718	2.5	1.26E-21	
LINE/L1\|L1MdF_IV	18	60258255	60262863	1.8	$4.41 \mathrm{E}-21$	
LTR/ERVK\|RLTR10-int	7	104417226	104418855	1.0	5.22E-21	
LTR/ERVL-MaLR\|MTA_Mm	5	114907656	114908049	2.1	$5.94 \mathrm{E}-21$	
LTR/ERVK\|RMER19B	11	119395887	119396564	1.3	7.35E-21	
LTR/ERVK\|MurERV4-int	11	119398983	119400690	1.1	4.62E-20	
LTR/ERVK\|RLTR13B1	5	120894364	120895346	2.3	1.73E-19	
SINE/B4\|B4A	5	120732706	120732910	2.6	2.17E-19	
SINE/ID\|ID2	5	114901484	114901562	1.8	7.16E-19	
SINE/B2\|B2_Mm2	5	114910369	114910572	2.2	1.60E-18	
LINE/L1\|L1MdF_III	7	104456010	104461764	1.4	6.23E-18	
LINE/L1\|L1MdF_IV	8	62028789	62032657	1.4	6.98E-18	
LTR/ERVK\|RLTR11A2	15	77730371	77730874	2.9	8.25E-18	
LTR/ERVK\|RLTR10~RLTR10-int	7	104415825	104417145	1.1	1.24E-17	
LINE/L1\|L1MdA_III	18	60218363	60219112	1.5	3.04E-17	
LINE/L1\|Lx8	11	48893355	48894122	2.5	$4.36 \mathrm{E}-17$	
LINE/L1\|Lx5	18	60255846	60257256	1.8	$5.14 \mathrm{E}-17$	
LINE/L1\|Lx9	11	48988698	48990056	1.6	8.90E-17	
LTR/ERV1\|LTR72_RN	18	60217070	60217447	1.6	$1.33 \mathrm{E}-16$	

| LINE/L1\|L1MC5|3|151741122|151741823 | 2.9 | 1.94E-16 |
| :---: | :---: | :---: |
| LTR/ERVKJERVB2 1A-I MM~RLTR13D5\|18|60282851|60283792 | 1.9 | 3.57E-16 |
| LTR/ERVK\|RLTR17D_Mm|18|60255056|60255845 | 2.1 | $4.71 \mathrm{E}-16$ |
| LINE/L1\|L1MdF_I|1|85299575|85304519 | 2.8 | $5.46 \mathrm{E}-16$ |
| SINE/B2\|B3|18|60247949|60248146 | 1.9 | 1.13E-15 |
| LINE/L1\|L1MEc|16|97458642|97459049 | 3.0 | 2.18E-15 |
| LTR/ERVL-MaLR\|ORR1C2|5|120748110|120748423 | 2.8 | 5.32E-15 |
| LINE/L1\|L1MdTf_III|6|57628358|57634538 | 1.1 | 6.33E-15 |
| LINE/L1\|Lx6|2|173195005|173200024 | 1.8 | 7.37E-15 |
| LTR/ERVL-MaLR\|ORR1A2|18|60292038|60292355 | 2.4 | 7.76E-15 |
| LINE/L1\|L1MdV_III|5|120882900|120884828 | 4.1 | $9.71 \mathrm{E}-15$ |
| SINE/B4\|B4A|55120737450|120737698 | 2.8 | $1.24 \mathrm{E}-14$ |
| LTR/ERVL-MaLR\|MTD|X|112371164|112371262 | 2.3 | $1.28 \mathrm{E}-14$ |
| LTR/ERVL-MaLR\|MTD|11|72304177|72304543 | 1.2 | 1.44E-14 |
| SINE/Alu\|B1_Mur2|5|120731990|120732119 | 3.1 | $2.38 \mathrm{E}-14$ |
| LTR/ERVL-MaLR\|MTD~MTD-int|5|120817871|120818905 | 1.4 | 2.75E-14 |
| LINE/L1\|L1M5|6|3341749|3341957 | 1.1 | 3.15E-14 |
| LTR/ERVL-MaLR\|MTEb|19|34585573|34585953 | 2.0 | 4.45E-14 |
| LINE/L1\|L1MdV_III|7|104493403|104495643 | 1.5 | $4.59 \mathrm{E}-14$ |
| SINE/B2\|B3|5|120745046|120745085 | 2.7 | 1.17E-13 |
| LINE/L1\|L1MdN_I|7|104477902|104478732 | 1.3 | $1.60 \mathrm{E}-13$ |
| LINE/L1\|Lx8|18|60212692|60213382 | 1.6 | $1.71 \mathrm{E}-13$ |
| LINE/L1\|L1MdTf_III|18|60236091|60238578 | 1.6 | $2.06 \mathrm{E}-13$ |
| LTR/ERVK\|ERVB5_1-I_MM|11|83007973|83009733 | 1.7 | $3.34 \mathrm{E}-13$ |
| LINE/L1\|L1_Mur3|8|61931617|61933065 | 1.3 | 4.13E-13 |
| LINE/L1\|L1MdF_IV|18|60231803|60232768 | 1.7 | 5.15E-13 |
| LTR/ERV1\|MLTR14|7|104421879|104422356 | 1.2 | 5.39E-13 |
| LTR/ERVL-MaLR\|MTC|16|97454326|97454700 | 2.7 | 6.93E-13 |
| LTR/ERVL-MaLR\|MTB_Mm-int|17|78862042|78863246 | 1.0 | $7.35 \mathrm{E}-13$ |
| DNA/hAT-Charlie\|MER58A|5|120899366|120899528 | 2.4 | $1.55 \mathrm{E}-12$ |
| LTR/ERVL\|RMER15-int|18|60388388|60389084 | 1.4 | $2.49 \mathrm{E}-12$ |
| LINE/L1\|L1MdF_III|1|52127797|52128672 | 1.2 | $3.84 \mathrm{E}-12$ |
| LTR/ERVL-MaLR\|ORR1E|11|72305310|72305625 | 1.2 | $3.84 \mathrm{E}-12$ |
| LTR/ERVK\|RMER19C|5|120739285|120739711 | 3.8 | 3.85E-12 |
| LINE/L1\|L1MdV_III|7|104450903|104454061 | 1.4 | 4.92E-12 |
| SINE/Alu\|PB1D9|19|34586260|34586378 | 2.0 | 5.01E-12 |
| LINE/L1\|Lx5|8|61953216|61953896 | 1.6 | 5.84E-12 |
| LINE/L1\|L1MdA_III|7|104497785|104499051 | 1.6 | 6.75E-12 |
| LTR/ERVK\|RLTR10F|5|120745593|120745641 | 2.3 | 9.12E-12 |
| LTR/ERVL\|MT2C_Mm|12|103431337|103431828 | 3.1 | $1.01 \mathrm{E}-11$ |
| LINE/L1\|L1MdF_IV|18|60263356|60264933 | 2.1 | $1.21 \mathrm{E}-11$ |
| SINE/Alu\|B1_Mus1|5|114898644|114898789 | 2.0 | $1.28 \mathrm{E}-11$ |
| LINE/L1\|Lx8|5|114904021|114904128 | 2.4 | $1.34 \mathrm{E}-11$ |
| LTR/ERVL-MaLR\|ORR1C1~ORR1C1-int|8|62019273|62020492 | 1.8 | 1.82E-11 |
| LTR/ERVL-MaLR\|MTD|16|97459784|97460166 | 2.5 | 2.57E-11 |
| LTR/ERV1\|MER65-int|18|60215493|60215799 | 1.7 | 2.61E-11 |
| LINE/L1\|Lx7|8|61930625|61931615 | 1.5 | 2.77E-11 |
| LINE/L1\|L1MdV_I|7|104473898|104475381 | 1.4 | $3.00 \mathrm{E}-11$ |
| LTR/ERVL-MaLR\|ORR1A4~ORR1A4-int|8|61959410|61960410 | 1.7 | 3.12E-11 |
| LTR/ERVL-MaLR\|ORR1E|16|97455751|97456075 | 3.0 | 3.63E-11 |
| LTR/ERVL-MaLR\|MTC|3|151744695|151745110 | 2.6 | 4.72E-11 |
| DNA/TcMar-Tigger\|Tigger13a|19|28642966|28643654 | 9.3 | $5.06 \mathrm{E}-11$ |
| LINE/L1\|L1MEc|16|97460167|97460362 | 3.3 | 7.07E-11 |
| LTR/ERVK\|RMER19B|17|78878705|78879529 | 1.2 | $8.11 \mathrm{E}-11$ |
| SINE/Alu\|B1F2|5|114899111|114899246 | 2.1 | 8.42E-11 |
| LINE/L1\|Lx8|8|61978737|61979085 | 1.7 | 8.42E-11 |
| LTR/ERVK\|RLTR17D_Mm|18|60228369|60229159 | 1.5 | $1.01 \mathrm{E}-10$ |
| LINE/CR1\|X6A_LINE|6|127449631|127450147 | 1.7 | $1.08 \mathrm{E}-10$ |
| SINE/B4\|B4|11|119418705|119418955 | 1.3 | $1.62 \mathrm{E}-10$ |
| LTR/ERVL\|RMER10B|12|103434622|103435041 | 1.8 | $2.64 \mathrm{E}-10$ |
| LINE/L1\|Lx4A|7|104462257|104463184 | 1.7 | $2.88 \mathrm{E}-10$ |
| SINE/Alu\|B1_Mur1|11|119424502|119424651 | 1.2 | $2.88 \mathrm{E}-10$ |
| LTR/ERVL-MaLR\|ORR1A4-int|8|61961707|61963155 | 1.3 | 3.22E-10 |

LTR/ERV1\|RLTR1B	16	97457671	97458166	2.2	3.52E-10	
SINE/B2\|B3A	11	119404723	119404878	1.3	3.77E-10	
LTR/ERVL-MaLR\|MTC	18	60381338	60381622	1.7	3.77E-10	
LINE/L1\|L1MdV_I	5	105283637	105285975	1.6	$3.97 \mathrm{E}-10$	
LTR/ERVK\|RLTR25B	19	34650691	34651330	1.4	$4.78 \mathrm{E}-10$	
SINE/B2\|B3	5	114899419	114899545	2.0	6.53E-10	
LTR/ERVL\|RMER15	19	28639198	28639693	8.9	$6.63 \mathrm{E}-10$	
LINE/L1\|L1_Mur3	16	97548067	97549012	1.7	7.03E-10	
LINE/L1\|L1MEi	19	28631069	28632121	8.8	8.12E-10	
LTR/ERVK\|RLTR25A	8	61972997	61973607	1.4	8.16E-10	
LINE/L1\|L1MdA_VII	18	60288431	60288795	1.8	1.45E-09	
LINE/L1\|L1LX_III	3	151742481	151742961	2.4	1.67E-09	
LTR/ERVK\|MurERV4-int	11	119401805	119402501	1.3	$1.86 \mathrm{E}-09$	
SINE/B2\|B3	X	112370657	112370771	2.0	2.38E-09	
LTR/ERVK\|MurERV4-int	11	119400881	119401263	1.3	2.38E-09	
LINE/L1\|Lx9	JH584304.1	46386	46861	1.1	2.46E-09	
LTR/ERVK\|RMER17B	5	120869622	120870528	2.9	2.74E-09	
LTR/ERVL-MaLR\|MTB_Mm	15	77733815	77734092	3.4	3.12E-09	
LTR/ERVK\|ERVB2_1-I_MM	1	173580639	173582295	1.1	3.35E-09	
LTR/ERVL-MaLR\|ORR1B2	5	114908516	114908882	1.5	4.45E-09	
LTR/ERVK\|MYSERV-int	6	57638599	57641256	1.0	6.35E-09	
SINE/B4\|B4	11	119446380	119446625	1.0	7.11E-09	
LTR/ERVK\|ERVB4_1-I_MM	18	60288165	60288430	1.8	9.39E-09	
LTR/ERVL-MaLR\|MLT1A	18	60223904	60224219	1.5	1.15E-08	
SINE/B2\|B2_Mm2	19	34584659	34584843	2.2	1.27E-08	
LTR/ERVL-MaLR\|MTE2b	8	61970047	61970414	1.6	$1.28 \mathrm{E}-08$	
LTR/ERVK\|ERVB5_1-I_MM	11	83010068	83011537	1.5	$1.51 \mathrm{E}-08$	
LTR/ERV1\|MLTR14	7	104480250	104480718	1.3	$1.59 \mathrm{E}-08$	
LTR/ERVL-MaLR\|MTE2b	1	52136423	52136770	1.1	$1.59 \mathrm{E}-08$	
SINE/B4\|B4A	5	120741648	120741943	2.5	$1.60 \mathrm{E}-08$	
LINE/L1\|Lx8	19	28632845	28633192	8.4	$1.81 \mathrm{E}-08$	
LINE/L1\|Lx2A1	18	60277986	60280175	2.3	1.82E-08	
LINE/L1\|Lx3_Mus	18	60295395	60298143	1.8	$1.91 \mathrm{E}-08$	
LINE/L1\|L1MEc	16	97459476	97459783	2.7	2.30E-08	
LTR/ERVL-MaLR\|MTD	5	120900388	120900472	3.2	2.76E-08	
LINE/L1\|L1M4	16	97553934	97554356	2.3	$2.81 \mathrm{E}-08$	
LTR/ERVK\|	APLTR2_Mm	3	151740656	151741121	2.1	3.42E-08
LINE/L1\|L1MdV_III	7	104488452	104489331	1.6	$3.71 \mathrm{E}-08$	
LTR/ERVK\|MERVK26-int RLTR26_Mus	7	104448877	104450693	1.2	4.13E-08	
SINE/Alu\|B1_Mus2	18	60251725	60251812	2.6	4.69E-08	
LTR/ERVL-MaLR\|ORR1B1	11	119404156	119404499	1.0	6.92E-08	
SINE/B2\|B2_Mm1t	5	114909495	114909661	2.2	7.44E-08	
SINE/B4\|RSINE1	11	119425189	119425383	1.2	7.93E-08	
SINE/B2\|B3A	18	60380840	60381056	1.7	8.13E-08	
SINE/B4\|B4	19	28629227	28629484	8.2	9.75E-08	
LTR/ERVK\|RLTR42-int	17	36238528	36239128	4.8	$1.06 \mathrm{E}-07$	
LTR/ERVL-MaLR\|MTC	18	60382046	60382401	1.4	1.18E-07	
SINE/B4\|ID_B1	11	119407311	119407556	1.0	$1.18 \mathrm{E}-07$	
DNA/hAT-Charlie\|Charlie16a	1	52132936	52133086	1.3	1.23E-07	
LTR/ERVL-MaLR\|MTB	16	97458167	97458530	2.0	1.37E-07	
LINE/L1\|L1MC5	18	60271813	60272228	2.2	1.40E-07	
SINE/B4\|RSINE1	5	120877997	120878148	3.8	$1.42 \mathrm{E}-07$	
LINE/L1\|Lx3_Mus	1	173583337	173589127	1.4	1.42E-07	
LINE/L1\|L1M2	18	60252957	60253392	2.0	1.47E-07	
LTR/ERV1\|LTRIS4A	5	114905222	114905693	2.1	$1.84 \mathrm{E}-07$	
LINE/L1\|Lx8	8	61926037	61926661	2.5	1.95E-07	
SINE/B2\|B3	11	119408463	119408535	1.4	2.06E-07	
SINE/Alu\|PB1D11	5	114900810	114900897	2.0	2.39E-07	
LINE/L1\|Lx5	1	85293799	85295584	3.7	2.48E-07	
LTR/ERVK\|RLTR13D3	18	60232779	60233438	1.8	$2.54 \mathrm{E}-07$	
LTR/ERVL-MaLR\|MTD	5	120737214	120737449	3.1	2.65E-07	
LTR/ERVL-MaLR\|MTEb	16	97450859	97451049	3.4	2.73E-07	
SINE/B4\|B4A	18	60257733	60257992	1.7	2.89E-07	

| LTR/ERVK\|MLTR25A|8|61960825|61961601 | 1.7 | 2.89E-07 |
| :---: | :---: | :---: |
| LTR/ERVK/RLTR20A2B MM\|1/52124850|52125329 | 1.2 | 3.05E-07 |
| SINE/Alu\|B1_Mus 1|17|35395764|35395900 | 1.1 | 3.22E-07 |
| LINE/L1\|L1Lx_IIIT7|104442758|104443886 | 1.4 | 3.32E-07 |
| LTR/ERVL\|RMER15-int|18|60217650|60217971 | 1.2 | 3.36E-07 |
| DNA/hAT-Charlie\|MER20|1|52158511|52158655 | 1.3 | 3.50E-07 |
| LINE/L1\|L1_Mur3|18|60226049|60226282 | 2.1 | 3.64E-07 |
| LTR/ERVK\|RLTR20C1_MM|5|120734599|120734859 | 4.1 | 4.08E-07 |
| LTR/ERVL-MaLR\|MTEb|11|119419503|119419749 | 1.3 | 4.17E-07 |
| DNA/hAT-Charlie\|MER33|19|28641324|28641627 | 7.9 | 4.22E-07 |
| LTR/ERVL-MaLR\|MLT1A|18|60250995|60251268 | 1.7 | 4.23E-07 |
| LINE/L1\|L1MdF_I|11|119397535|119397973 | 1.3 | 4.23E-07 |
| SINE/Alu\|B1_Mur4|5|114900337|114900479 | 1.6 | 4.29E-07 |
| LINE/L1\|L1_Mur2|5|105281882|105283598 | 1.7 | 4.42E-07 |
| Other\|RMER1A|8|61979640|61980291 | 1.5 | $4.58 \mathrm{E}-07$ |
| LTR/ERVK\|ETnERV2-int|8|62007507|62009017 | 1.6 | 4.83E-07 |
| LINE/L1\|L1MC5|3|151743348|151743525 | 2.7 | 5.34E-07 |
| LTR/ERVL-MaLR\|MTD|12|26472066|26472478 | 2.0 | 5.39E-07 |
| LINE/L1\|L1MB1|18|60220588|60220785 | 1.4 | 5.59E-07 |
| SINE/B4\|ID_B1|2|173207281|173207474 | 1.9 | 5.93E-07 |
| SINE/B4\|ID_B1|11|119425805|119425924 | 1.3 | 6.35E-07 |
| LTR/ERVL-MaLR\|ORR1A2|5|120740579|120740914 | 3.0 | $6.88 \mathrm{E}-07$ |
| LINE/L1\|Lx4A|7|104437169|104438548 | 1.4 | $7.31 \mathrm{E}-07$ |
| LTR/ERVK\|ERVB5_1-I_MM|11|83006799|83007974 | 1.4 | 9.02E-07 |
| LINE/L1\|L1M5|1|78402205|78403427 | 1.1 | 1.01E-06 |
| SINE/B2\|B2_Mm2|5|114910612|114910685 | 2.4 | $1.06 \mathrm{E}-06$ |
| SINE/B4\|B4A|1|52129374|52129536 | 1.4 | 1.22E-06 |
| SINE/B2\|B2_Mm2|19|28642281|28642465 | 7.7 | $1.38 \mathrm{E}-06$ |
| SINE/B2\|B3|19|28633498|28633654 | 7.7 | $1.38 \mathrm{E}-06$ |
| LINE/L1\|Lx2B2|11|49062198|49062461 | 1.2 | $1.47 \mathrm{E}-06$ |
| LTR/ERV1\|MER34A|6|57582287|57582506 | 1.1 | $1.49 \mathrm{E}-06$ |
| LINE/L1\|L1MdF_I|GL456221.1|2915|7856 | 2.8 | $1.54 \mathrm{E}-06$ |
| LTR/ERVL\|MLT2D|11|48885340|48885618 | 2.4 | $1.54 \mathrm{E}-06$ |
| LTR/ERVK\|MMERVK9E_I-int|8|62004675|62005632 | 1.5 | 1.72E-06 |
| LINE/L1\|Lx8|18|60239540|60240228 | 1.8 | 1.84E-06 |
| LTR/ERVK\|BGLIII7|104482055|104482477 | 1.4 | 2.15E-06 |
| LTR/ERVK\|RMER6C|2|173214417|173215067 | 2.6 | 2.19E-06 |
| LTR/ERVL-MaLR\|MTEa-int|1|85289885|85291027 | 7.6 | $2.30 \mathrm{E}-06$ |
| LTR/ERVL-MaLR\|ORR1C2|2|131068596|131068990 | 1.1 | 2.40E-06 |
| LTR/ERVL-MaLR\|ORR1F|18|60253720|60254029 | 2.1 | 2.42E-06 |
| LTR/ERVK\|RMER12|5|120762281|120763522 | 3.3 | 2.49E-06 |
| SINE/B4\|RSINE1|4|99841078|99841236 | 7.6 | 2.59E-06 |
| LINE/L1\|Lx4A|7|104504433|104505979 | 1.4 | 2.59E-06 |
| LTR/ERVL-MaLR\|MTD-int|5|120819453|120820125 | 1.2 | 2.78E-06 |
| LINE/L1\|L1MC|11|58190640|58190990 | 1.4 | 3.05E-06 |
| LINE/L1\|L1MdFanc_I|8|62027358|62028774 | 1.4 | 3.18E-06 |
| LINE/L1\|L1MdF_V|6|57656263|57657234 | 1.6 | 3.19E-06 |
| SINE/B4\|B4A|11|119428315|119428565 | 1.8 | 3.55E-06 |
| LTR/ERVK\|RLTR31B2|11|48886943|48887241 | 2.0 | 3.61E-06 |
| LINE/L1\|L1MEg|14|22926181|22927055 | 1.2 | 3.61E-06 |
| LTR/ERVL-MaLR\|MLT1A|18|60248622|60248960 | 1.5 | 3.84E-06 |
| LTR/ERVL-MaLR\|MLT1E1A|8|61928913|61929235 | 1.9 | 4.17E-06 |
| LINE/L1\|Lx8|18|60383318|60384031 | 1.1 | 4.25E-06 |
| LTR/ERVL-MaLR\|MTA_Mm~MTA_Mm-int|19|56257034|56258929 | 1.3 | 4.57E-06 |
| LINE/L1\|L1MCc|1|173466324|173466705 | 2.3 | 4.62E-06 |
| LINE/L1\|L1Lx_IV|11|82998919|83000309 | 1.6 | $4.81 \mathrm{E}-06$ |
| SINE/B4\|B4A|5|120741975|120742193 | 2.7 | 4.96E-06 |
| SINE/B4\|B4A|19|28635419|28635576 | 7.6 | 4.96E-06 |
| SINE/B4\|ID_B1|11|119403020|119403132 | 1.2 | 5.58E-06 |
| LINE/L1\|L1M5|18|60226313|60226492 | 2.0 | 5.89E-06 |
| LTR/ERVL-MaLR\|ORR1A3|11|119407950|119408239 | 1.1 | 6.40E-06 |
| LINE/L1\|L1MC|11|58189736|58190050 | 1.3 | 7.01E-06 |
| SINE/B2\|B3A|8|61987073|61987211 | 1.7 | 7.39E-06 |

| LTR/ERVK\|RMER20B|3|151742296|151742480 | 2.7 | 8.09E-06 |
| :---: | :---: | :---: |
| SINE/B4\|RSINE1|16|97453740|97453952 | 2.7 | 8.54E-06 |
| LTR/ERVL-MaLR\|ORR1G|18|60226675|60226792 | 2.8 | 8.94E-06 |
| LTR/ERV1\|LTR72_RN|18|60387696|60387959 | 1.2 | 9.12E-06 |
| SINE/B4\|ID_B1|12|26447776|26447975 | 4.2 | $1.01 \mathrm{E}-05$ |
| LTR/ERVL-MaLR\|ORR1B1-int|7|104412596|104412775 | 1.4 | 1.03E-05 |
| SINE/Alu\|PB1D10|5|114903889|114904001 | 2.0 | 1.07E-05 |
| DNA/hAT-Charlie\|MER20|5|120732243|120732442 | 2.4 | 1.21E-05 |
| LTR/ERVK\|MLTR18D_MM|19|34642526|34643041 | 1.5 | 1.27E-05 |
| LTR/ERVL-MaLR\|ORR1F|16|97539474|97539795 | 2.5 | 1.37E-05 |
| LTR/ERVL-MaLR\|MTE2a|18|60222383|60222695 | 1.5 | $1.38 \mathrm{E}-05$ |
| LTR/ERVK\|MLTR25A|8|61972378|61972814 | 1.4 | $1.49 \mathrm{E}-05$ |
| LTR/ERVL-MaLR\|MTD~MTD-int|11|119438208|119439017 | 1.3 | $1.60 \mathrm{E}-05$ |
| LINE/L1\|Lx8b|7|104422425|104422813 | 1.0 | $1.60 \mathrm{E}-05$ |
| SINE/Alu\|B1_Mur2|11|58189251|58189397 | 1.2 | $1.60 \mathrm{E}-05$ |
| SINE/B2\|B2_Mm2|5|114900909|114901081 | 1.9 | $1.64 \mathrm{E}-05$ |
| LTR/ERVK\|RMER6D|8|61937912|61938757 | 1.4 | $1.74 \mathrm{E}-05$ |
| LINE/L1\|L1MdF_IV|14|59239026|59244038 | 1.0 | 1.75E-05 |
| LTR/ERVL-MaLR\|MTB_Mm|15|77406091|77406368 | 4.2 | 1.89E-05 |
| SINE/Alu\|B1_Mus1|18|60224405|60224548 | 2.0 | 1.89E-05 |
| SINE/Alu\|B1_Mur3|11|119403373|119403524 | 1.5 | 1.89E-05 |
| LTR/ERVK\|RMER17D|18|60376370|60377162 | 1.3 | 2.06E-05 |
| LINE/L1\|L1MdGf_III8|61952074|61952803 | 1.6 | 2.07E-05 |
| SINE/B2\|B3A|5|120736482|120736718 | 2.9 | 2.09E-05 |
| LTR/ERVK\|RMER20B|3|151742962|151743316 | 1.9 | 2.12E-05 |
| SINE/B4\|RSINE1|4|99840780|99840864 | 7.3 | 2.22E-05 |
| LTR/ERVK\|RLTR10|7|104415656|104415786 | 1.3 | 2.23E-05 |
| LTR/ERVL-MaLR\|MTD|6|121255828|121256203 | 1.2 | 2.24E-05 |
| LTR/ERVK\|RMER6C|8|62032655|62033307 | 2.1 | 2.33E-05 |
| LINE/L1\|L1MdFanc_II|11|48895925|48896912 | 2.5 | 2.39E-05 |
| LTR/ERVL-MaLR\|MTD|1|52138546|52138957 | 1.1 | $2.40 \mathrm{E}-05$ |
| LINE/L1\|Lx2B2|11|48990324|48990587 | 1.8 | $2.56 \mathrm{E}-05$ |
| SINE/B4\|B4A|11|72310037|72310328 | 1.2 | $2.56 \mathrm{E}-05$ |
| LINE/L1\|Lx8b|18|60275235|60275895 | 3.0 | 2.59E-05 |
| LTR/ERVK\|MMERVK9E_I-int|8|62005696|62006980 | 1.4 | 2.65E-05 |
| LINE/L1\|Lx8b|6|57648031|57648834 | 1.0 | 2.83E-05 |
| SINE/B2\|B3A|5|120906530|120906727 | 2.1 | 2.97E-05 |
| LINE/L1\|L1M2|6|121257693|121258500 | 1.2 | 3.22E-05 |
| LINE/L1\|L1MdF_V|7|105888905|105891419 | 1.0 | 3.33E-05 |
| SINE/B4\|B4A|18|60222757|60223022 | 1.4 | 3.54E-05 |
| LINE/L1\|L1MdMus_I|7|105905000|105906394 | 1.1 | 3.88E-05 |
| SINE/B2\|B3|18|60223226|60223431 | 1.4 | 3.95E-05 |
| LINE/L1\|L1MEc|16|97540878|97541130 | 2.8 | 3.98E-05 |
| LTR/ERVL-MaLR\|ORR1B1|10|128274867|128275232 | 1.1 | 3.98E-05 |
| SINE/B2\|B2_Mm2|5|120736758|120736943 | 3.2 | 4.16E-05 |
| LTR/ERVK\|RMER6A|8|61944108|61944875 | 2.1 | 4.30E-05 |
| SINE/B2\|B2_Mm2|17|78880852|78881043 | 1.4 | 4.30E-05 |
| LINE/L1\|L1M5|8|61946379|61947158 | 1.8 | 4.69E-05 |
| SINE/Alu\|B1_Mus1|5|114909326|114909471 | 1.9 | 4.70E-05 |
| LINE/L1\|Lx5|11|48881306|48882584 | 2.4 | 4.97E-05 |
| LINE/L1\|Lx8|11|78973853|78974577 | 1.0 | 5.04E-05 |
| SINE/B2\|B2_Mm2|19|28632419|28632602 | 7.2 | 5.25E-05 |
| LTR/ERVK\|ERVB4_1C-LTR_Mm|1|52125995|52126510 | 1.1 | 5.62E-05 |
| LTR/ERVL-MaLR\|MTC|14|59357742|59357949 | 1.4 | 5.66E-05 |
| LTR/ERVK\|ERVB5_1-I_MM~ERVB5_2-LTR_MM|11|83005040|83006189 | 1.7 | 6.18E-05 |
| SINE/B4\|RSINE1|18|60213658|60213808 | 1.6 | $6.18 \mathrm{E}-05$ |
| LINE/L1\|L1MdF_II|6|57667427|57673682 | 1.1 | $6.18 \mathrm{E}-05$ |
| LTR/ERVK\|RLTR20A3_MM|7|104463189|104463682 | 1.4 | $6.53 \mathrm{E}-05$ |
| SINE/Alu\|PB1D7|5|120876099|120876194 | 4.1 | 6.65E-05 |
| LTR/ERVL-MaLR\|MTD|19|34649682|34650059 | 1.8 | 6.96E-05 |
| SINE/Alu\|B1_Mus2|11|119397366|119397508 | 1.5 | 7.02E-05 |
| LTR/ERVL\|MT2B1|18|60266284|60266703 | 2.0 | 7.08E-05 |
| LTR/ERVL\|MT2B2|16|23610543|23610701 | 1.8 | 7.08E-05 |

LINE/L1\|L1M5	8	62026273	62026678	1.9	7.22E-05	
SINE/B2\|B3	11	119431991	119432188	1.5	8.27E-05	
LINE/L1\|L1MA9	18	60389514	60389752	1.2	8.52E-05	
LTR/ERVK\|RMER16B2	19	34643495	34643896	1.6	9.10E-05	
SINE/B2\|B3	11	48885122	48885339	2.9	$9.26 \mathrm{E}-05$	
LTR/ERVK\|RLTR31D_MM	8	61934369	61934756	1.5	$9.26 \mathrm{E}-05$	
SINE/B4\|B4A	1	52121302	52121516	1.5	$9.44 \mathrm{E}-05$	
LINE/L1\|Lx6	2	173200965	173202050	2.1	9.82E-05	
LINE/L1\|L1MC3	5	100554042	100554239	1.8	0.000109224	
LTR/ERVK\|ERVB4_1-I_MM~RLTR43C	8	62002691	62003827	1.4	0.000109224	
LINE/L1\|L1_Rod	6	57584670	57585726	1.1	0.000110408	
LTR/ERVK\|RLTR33	7	104482478	104483095	1.1	0.000112452	
LINE/L1\|Lx2A1	18	60275890	60277983	1.7	0.000114821	
LTR/ERVL-MaLR\|MTC	18	60235502	60235795	1.8	0.000116123	
LINE/L1\|Lx8	18	60380013	60380364	1.5	0.000116123	
LTR/ERVL-MaLR\|ORR1F	5	120760326	120760690	2.6	0.00012678	
LTR/ERV1\|MER65-int	18	60386130	60386423	1.1	0.000133868	
LTR/ERVL-MaLR\|ORR1A2	1	173467096	173467424	1.9	0.00013703	
LINE/L1\|Lx8	8	94438097	94440818	1.0	0.000152871	
SINE/B2\|B3	11	119448108	119448296	1.1	0.000154092	
SINE/Alu\|PB1	11	119422838	119422954	1.2	0.000158146	
LINE/L1\|L1ME3A	1	85672489	85672941	1.0	0.000158146	
SINE/B2\|B2_Mm1t	11	78980069	78980247	1.7	0.000159374	
LINE/L1\|L1MdFanc_I	8	62026867	62027358	1.8	0.000168661	
LTR/ERVL-MaLR\|ORR1D1	8	61993767	61994083	1.9	0.000168999	
LINE/L1\|L1MdF_III	5	109141850	109144085	1.7	0.00017257	
LTR/ERVK\|RLTR50B	18	60281383	60281838	1.7	0.000172929	
LINE/L1\|L1MB3	16	97449241	97449562	2.5	0.000177	
SINE/Alu\|B1_Mur3	16	35844933	35845040	1.2	0.000177668	
LTR/ERVK\|RLTR17	1	173482685	173483219	2.2	0.000179126	
SINE/B2\|B3	GL456211.1	227084	227304	3.2	0.000182121	
LINE/L1\|Lx8	8	61988622	61989015	1.6	0.000186362	
LTR/ERVK\|RMER17A2	11	48885977	48886924	1.6	0.000186858	
LTR/ERVL-MaLR\|ORR1D1	8	62016352	62016678	1.9	0.000207871	
DNA/TcMar-Tigger\|Tigger17a	1	52148302	52148747	1.1	0.000209188	
SINE/B4\|RSINE1	11	119421171	119421274	1.8	0.000217129	
SINE/B4\|B4A	5	120866302	120866579	3.2	0.000219053	
SINE/B2\|B2_Mm1t	11	58190313	58190486	1.4	0.000220304	
SINE/B2\|B3	14	59352375	59352576	1.4	0.000223123	
SINE/Alu\|B1_Mus1	18	60249131	60249275	1.6	0.00023365	
SINE/B4\|	ID_B1	1	78411074	78411271	1.5	0.00023459
LTR/ERVK\|ERVB4_1-I_MM	18	60282151	60282841	1.8	0.000240016	
LINE/L1\|Lx7	11	49092819	49093419	1.2	0.000244381	
LINE/L1\|L1MA9	6	57597772	57598304	1.1	0.000249114	
SINE/Alu\|B1_Mus 1	12	103436139	103436281	1.9	0.00027349	
LINE/L1\|L1MdA_III	16	36223021	36229214	1.2	0.000274576	
SINE/B4\|RSINE1	5	120872117	120872273	3.3	0.000287785	
LTR/ERVL-MaLR\|MTD	11	72309643	72309975	1.1	0.000289508	
SINE/B4\|B4A	1	173484993	173485286	2.2	0.000290371	
SINE/B4\|B4A	18	60231038	60231308	1.5	0.000327918	
LTR/ERVL-MaLR\|MTA_Mm	16	97552450	97552832	1.9	0.000331455	
LINE/L1\|L1MdV_I	11	119469230	119469675	1.0	0.000339371	
SINE/B2\|B3A	8	61937106	61937279	1.7	0.000348467	
SINE/B2\|B3A	17	6453751	6453921	2.1	0.000353282	
LTR/ERVL-MaLR\|ORR1A2	7	104497343	104497650	1.6	0.00035773	
LTR/ERVL-MaLR\|ORR1D2-int	7	105893142	105893563	1.0	0.00035773	
LINE/L1\|Lx8	8	61959169	61959373	1.9	0.000360775	
LINE/L1\|Lx8	19	12528103	12528695	1.8	0.000365486	
LINE/L1\|L1MdF_IIII7	104454974	104455697	1.4	0.000367396		
LINE/L1\|L1MdA IV	11	118381899	118388191	1.3	0.000368207	
SINE/Alu\|PB1	16	35845564	35845645	1.0	0.000374836	
LINE/L1\|L1MdA_III	18	60406432	60412549	1.2	0.00038205	
LTR/ERVL\|RMER10B	16	23611518	23611704	1.8	0.00040784	

LINE/L1\|Lx7	1	173470250	173470764	1.9	0.000408506	
LTR/ERVK\|RLTR25A	8	61960411	61960742	2.2	0.000410879	
LINE/L1\|Lx6	7	104440983	104441613	1.3	0.000418042	
SINE/Alu\|PB1D10	11	119403173	119403281	1.2	0.000428833	
LTR/ERVL-MaLR\|ORR1A2	5	120893806	120893895	3.5	0.000439001	
LTR/ERVL-MaLR\|MLT1A0	3	151744445	151744691	2.5	0.000451551	
LTR/ERV1\|RLTR23	5	120818906	120819376	1.1	0.000453883	
LINE/L1\|L1MC5	3	151740389	151740655	2.6	0.000462351	
LINE/L1\|Lx2B	8	61987536	61987650	2.2	0.000462351	
SINE/Alu\|B1_Mur3	11	72309443	72309576	1.8	0.000466519	
SINE/B2\|B3A	5	120886654	120886852	2.8	0.000474244	
LTR/ERVL-MaLR\|ORR1B2-int	18	60308447	60308715	1.8	0.000476449	
LINE/L1\|L1Lx_IV	11	83024253	83025643	1.3	0.000478685	
SINE/Alu\|B1_Mur4	18	60388241	60388387	1.5	0.000504818	
LINE/L1\|L1MEg	14	22924975	22925754	1.1	0.000521911	
LINE/L1\|L1MC3	19	12525661	12526010	2.0	0.000523155	
SINE/B2\|B3	11	119396967	119397132	1.2	0.000532394	
LINE/L1\|L1MdV_I	6	57655972	57656262	1.8	0.00058615	
LTR/ERV1\|MER65-int	18	60242375	60242677	2.0	0.000593172	
LINE/L1\|L1Lx_IV	7	104447255	104447947	1.2	0.000595394	
LTR/ERVL\|RMER15-int	18	60388050	60388240	1.2	0.000595471	
SINE/Alu\|B1_Mus 1	11	119422309	119422456	1.3	0.000597017	
LINE/L1\|Lx8	14	59362138	59362787	1.3	0.000608974	
LINE/L1\|L1MEc	16	97542889	97543268	2.3	0.000613872	
LINE/L1\|L1Lx_I	8	61950817	61951123	1.7	0.000627706	
LINE/L1\|Lx3B	18	60271246	60271457	2.0	0.000635352	
LTR/ERVK\|RLTR33	7	104481788	104482054	1.2	0.000639421	
LINE/L1\|L1MdA IV	15	75013194	75019358	1.0	0.000654485	
LTR/ERVK\|MMERVK10D3_I-int	19	12537134	12538136	1.6	0.00066349	
SINE/B4\|RSINE1	18	60384304	60384453	1.2	0.000669838	
LINE/L1\|L1MdA_II	Y	90726495	90727209	6.2	0.000676413	
LTR/ERVK\|RMER17C2	11	119394660	119395025	1.1	0.000679554	
LINE/L1\|L1ME2	19	34584395	34584639	1.8	0.000701496	
LTR/ERVL\|MT2B2	5	114912527	114913101	1.5	0.000762304	
LTR/ERVL-MaLR\|ORR1C2	11	118395751	118396103	1.6	0.000762944	
LTR/ERV1\|MMVL30-int	18	60249553	60250002	1.4	0.000823898	
SINE/B4\|B4	1	173475932	173476222	1.8	0.000849572	
SINE/B4\|B4A	1	52133585	52133834	1.1	0.000870689	
LINE/L1\|L1_Mur2	7	104496617	104497342	1.3	0.00094743	
SINE/B2\|B3A	1	85660064	85660261	1.1	0.000971813	
LTR/ERVK\|RMER19B	1	85214688	85215577	3.1	0.000987718	
SINE/B2\|B3A	11	58190051	58190291	1.6	0.001005606	
LINE/L2\|L2	4	128922527	128922668	2.6	0.001051836	
LINE/L1\|Lx8b	18	60375408	60375552	2.8	0.001063904	
SINE/Alu\|B1_Mur1	11	72310329	72310474	1.5	0.00107883	
LTR/ERV1\|MER34	8	61991169	61991412	1.3	0.001089669	
SINE/Alu\|B1_Mus 1	18	60251484	60251628	2.4	0.00110542	
LINE/L1\|L1_Rod	16	97549085	97549369	1.8	0.001150467	
SINE/B4\|B4A	5	120742594	120742675	2.3	0.001173077	
SINE/B4\|	ID_B1	5	120736246	120736457	2.4	0.001203452
LINE/L1\|L1MdGf_I	4	96209256	96210247	5.5	0.001205117	
LINE/L1\|Lx7	11	48898552	48898950	3.0	0.001264124	
SINE/B4\|B4A	8	61938958	61939194	1.9	0.001273237	
SINE/B4\|B4A	12	26455259	26455616	3.1	0.001297065	
SINE/B4\|RSINE1	3	151741825	151741992	2.3	0.001354579	
LINE/L2\|L2c	17	78881711	78882045	1.3	0.001408036	
SINE/Alu\|B1_Mur3	11	119427174	119427277	1.3	0.001415298	
LINE/L1\|L1M5	6	57664127	57664870	1.4	0.001441351	
LTR/ERVL\|RMER10A	11	58191702	58192067	1.4	0.001493181	
SINE/B2\|B3	1	78405712	78405917	1.4	0.001633648	
LINE/L1\|L1M2	18	60245064	60245319	1.7	0.001694221	
SINE/Alu\|PB1D10	11	119474405	119474499	1.6	0.001812519	
LLINE/L1\|L1M1	1	78410131	78410363	1.3	0.001823318	

LTR/ERVL\|LTR53-int	8	61923911	61924391	2.0	0.001837723	
DNA/TcMar-Tc1\|EutTc1-N2	7	104499725	104499945	1.4	0.001884216	
SINE/B2\|B3A	8	61970949	61971157	1.6	0.001896582	
LINE/L1\|L1MC4	6	121243607	121243843	2.9	0.001905609	
LTR/ERVL\|RMER15-int	18	60243994	60244664	1.5	0.001914539	
LINE/L1\|L1MdF_I	GL456221.1	185129	190073	2.1	0.00193405	
LINE/L1\|L1MdGf_III7	104461765	104462256	1.8	0.001965446		
SINE/B2\|B2_Mm1t	5	120742377	120742561	2.4	0.001970116	
SINE/B2\|B3A	18	60234288	60234503	1.9	0.001990529	
Unknown\|YREP_Mm	18	60224643	60224761	1.7	0.002034878	
LTR/ERV1\|RodERV21-int	5	38628522	38629464	2.3	0.002074407	
LTR/ERVL-MaLR\|ORR1G	18	60227122	60227332	1.4	0.002074407	
LTR/ERVK\|ERVB5_2-LTR_MM	11	83011538	83011994	1.7	0.002105801	
LINE/L1\|L1MC5a	5	120729622	120729973	3.3	0.002120947	
LINE/L1\|L1MdA_VII	14	22550685	22551432	1.3	0.002120947	
SINE/B2\|B3A	8	61929572	61929765	1.8	0.002135782	
SINE/B4\|RSINE1	1	52121688	52121837	1.5	0.002244338	
SINE/B2\|B3	18	60250421	60250516	1.8	0.00227286	
SINE/Alu\|B1_Mus 1	5	120737774	120737916	2.2	0.002313263	
LINE/L1\|L1MdV_III	1	173472409	173472805	2.1	0.002313263	
LINE/L1\|L1MdTf_I	11	11287224	11294492	1.4	0.002358409	
SINE/B4\|B4A	5	120869392	120869621	3.0	0.002427648	
LINE/L1\|L1MD2	1	78415831	78416284	1.1	0.002580399	
DNA/hAT-Charlie\|URR1A	8	61989152	61989341	1.8	0.002588266	
SINE/B4\|B4A	10	128280206	128280475	1.1	0.002608665	
SINE/B4\|ID_B1	6	121257175	121257271	2.3	0.0026213	
SINE/B2\|B2_Mm2	11	58205520	58205716	1.8	0.002654082	
LINE/L1\|L1M3	7	104480884	104481245	1.2	0.002675589	
SINE/B2\|B2_Mm2	4	128922392	128922528	2.7	0.002693458	
LTR/ERVL-MaLR\|MLT1A0	16	97552073	97552408	1.8	0.002912433	
LINE/L1\|L1M3	18	60225894	60226042	2.4	0.002922993	
SINE/Alu\|B1_Mur4	11	119432213	119432355	1.4	0.002957208	
SINE/B4\|B4A	11	119454023	119454233	1.1	0.003132828	
LTR/ERVK\|RLTR25A	1	85292929	85293798	2.8	0.003188085	
SINE/B4\|RSINE1	5	120734442	120734572	3.4	0.003210838	
SINE/B2\|B3A	8	62017361	62017545	2.3	0.003228318	
SINE/B4\|B4	5	120814775	120815080	1.3	0.003330175	
SINE/B2\|B3	2	122154363	122154562	1.0	0.003385239	
SINE/B4\|B4A	12	103430589	103430874	2.6	0.003428791	
DNA/hAT-Charlie\|URR1B	6	57634600	57634757	1.5	0.003486983	
LINE/L1\|Lx5c	3	151730142	151730853	2.7	0.003555802	
LTR/ERVK\|MMERVK10D3_I-int~RLTR10D2	4	156157848	156161930	1.2	0.003555802	
SINE/B2\|B3	11	119403552	119403719	1.1	0.003661118	
SINE/B2\|B2_Mm2	11	119474900	119475066	1.4	0.003666262	
SINE/Alu\|B1_Mur1	11	119426938	119427074	1.2	0.003667705	
LTR/ERVK\|RMER17C2	11	48891203	48891735	2.0	0.003754317	
LINE/L1\|L1MdA VII	18	60412548	60416252	1.5	0.003804298	
SINE/Alu\|PB1	11	119415833	119415919	1.3	0.00384182	
LTR/ERVK\|RMER4A	1	52145655	52146094	1.1	0.003931657	
SINE/B4\|	ID_B1	1	78408347	78408481	1.3	0.004223362
LTR/ERVK\|RLTR53_Mm	3	7605461	7605702	1.2	0.004487373	
SINE/B2\|B3A	14	59352033	59352172	1.1	0.004525402	
LTR/ERVL\|LTR33	8	61980345	61980747	1.4	0.004585898	
LINE/L1\|Lx8	11	48897140	48897506	2.9	0.00469754	
SINE/MIR\|MIR	11	78984217	78984391	1.2	0.004703329	
SINE/Alu\|B1_Mur4	1	85678728	85678875	1.1	0.004703329	
SINE/B2\|B3	1	85699200	85699407	1.1	0.004748338	
SINE/B2\|B3A	11	119453072	119453230	1.1	0.004748338	
LTR/ERV1\|LTR72 RN	18	60243439	60243666	1.9	0.004758321	
SINE/Alu\|B1_Mm	JH584304.1	45633	45776	1.0	0.004811999	
SINE/Alu\|B1F	19	34589599	34589737	1.8	0.004941696	
LTR/ERVK\|MurERV4-int~RMER4B	5	38640610	38642621	1.8	0.005052178	
SINE/Alu\|B1F	17	36016700	36016833	1.0	0.005108486	

| LTR/ERVK\|RLTR11A2|14|74841714|74841956 | 1.5 | 0.005149262 |
| :---: | :---: | :---: |
| LINE/L1\|L1M3|5|105287249|105287488 | 2.1 | 0.005207743 |
| LINE/L1\|L1ME2|19|34608766|34609012 | 1.6 | 0.005229814 |
| LTR/ERVL-MaLR\|ORR1B1|1|85206513|85206871 | 2.0 | 0.00524806 |
| SINE/B2\|B3|12|103430943|103431152 | 2.7 | 0.005295518 |
| SINE/B2\|B3|5|120742194|120742376 | 2.2 | 0.005295518 |
| LTR/ERVK\|MLTR11B|8|61922797|61923291 | 2.5 | 0.005350656 |
| SINE/B4\|B4A|3|151732580|151732796 | 2.2 | 0.005350656 |
| LTR/ERVK\|RMER17A2|11|83025644|83026552 | 1.4 | 0.005414877 |
| SINE/Alu\|B1_Mur1|5|120741326|120741462 | 2.2 | 0.005446161 |
| LINE/L1\|Lx9|8|61996144|61997073 | 1.4 | 0.005583858 |
| LTR/ERVK\|RLTR12BD_Mm|11|119413650|119414012 | 1.4 | 0.005603168 |
| LINE/L1\|Lx7|5|81690438|81691087 | 1.2 | 0.00570399 |
| LINE/L1\|Lx5b|16|97541515|97541575 | 3.7 | 0.00581336 |
| LTR/ERVL-MaLR\|MTC|18|60234785|60235077 | 1.8 | 0.005929058 |
| LINE/L1\|L1MC4|1|105984514|105984997 | 1.5 | 0.006181554 |
| LINE/L1\|Lx6|3|151725975|151728003 | 2.7 | 0.006490343 |
| LTR/ERV1\|MLTR14|11|119393861|119393938 | 1.2 | 0.006490343 |
| LINE/L1\|L1MdFanc_I|8|61966298|61966923 | 1.6 | 0.006798172 |
| Unknown\|MurSatRep1|8|61986589|61986618 | 2.1 | 0.006944851 |
| LTR/ERVK\|RMER6C|1|173466744|173467049 | 1.9 | 0.007173117 |
| LTR/ERVL\|RMER15|16|97552833|97553254 | 1.7 | 0.007459961 |
| SINE/Alu\|B1F1|10|128273839|128273957 | 1.2 | 0.007468964 |
| LINE/L1\|L1MdA_V|1|147487927|147488645 | 1.1 | 0.007581135 |
| SINE/Alu\|B1_Mur2|11|119422475|119422589 | 1.1 | 0.007632876 |
| SINE/B2\|B3|1|52161968|52162165 | 1.3 | 0.007756351 |
| SINE/B2\|B3|14|59244430|59244631 | 2.6 | 0.00778006 |
| SINE/B4\|RSINE1|16|35862636|35862773 | 1.1 | 0.007852115 |
| LTR/ERVL-MaLR\|ORR1D1|11|78966330|78966666 | 1.1 | 0.007852374 |
| SINE/Alu\|PB1D10|1|52157797|52157904 | 1.1 | 0.00786182 |
| LTR/ERVL-MaLR\|ORR1E|16|97545892|97546219 | 1.6 | 0.007932381 |
| LTR/ERVK\|RLTR10D2|11|83014754|83015108 | 1.8 | 0.00795139 |
| LINE/L1\|Lx4B|18|60254283|60254608 | 1.4 | 0.008019575 |
| SINE/Alu\|PB1|JH584304.1|46147|46243 | 1.3 | 0.008096681 |
| SINE/B4\|RSINE1|11|119454707|119454839 | 1.2 | 0.008275749 |
| SINE/B2\|B2_Mm2|11|48892662|48892842 | 2.2 | 0.008551993 |
| SINE/B4\|ID_B1|10|128280630|128280828 | 1.1 | 0.008555514 |
| LTR/ERVL-MaLR\|MTC|5|114931510|114931937 | 4.4 | 0.008616601 |
| LTR/ERVL\|RMER15-int|5|38610880|38612957 | 1.6 | 0.008698384 |
| LINE/L1\|Lx3_Mus|5|109113342|109113831 | 2.3 | 0.008784429 |
| LINE/L1\|L1_Mus3|16|35876707|35879416 | 2.1 | 0.008815001 |
| LINE/L1\|L1MdMus_III5|109131054|109134304 | 1.3 | 0.009424916 |
| SINE/B2\|B3A|11|119419727|119419826 | 1.1 | 0.009454442 |
| SINE/B2\|B3A|16|35855574|35855739 | 1.0 | 0.009590665 |
| LTR/ERVL-MaLR\|ORR1B1|11|119397240|119397294 | 1.5 | 0.009627717 |
| LINE/L1\|Lx4B|18|60227587|60227901 | 1.5 | 0.009650305 |
| | | |
| SINE/Alu\|B1_Mur2|4|42698174|42698309 | -1.2 | 0.006343316 |
| SINE/Alu\|B1_Mus2|14|52188546|52188712 | -1.3 | 0.006282691 |
| SINE/Alu\|B1_Mur4|4|42702271|42702324 | -1.0 | 0.00577895 |
| LTR/ERVK\|ERVB7_1-LTR_MM~ETnERV-int|7|133528843|133536216 | -4.1 | 0.005738875 |
| LINE/L1\|Lx6|5|109930987|109932960 | -1.1 | 0.004709914 |
| LTR/ERVL-MaLR\|ORR1A2|4|42198416|42198743 | -1.8 | 0.003795357 |
| LTR/ERVL-MaLR\|MTC|4|41860499|41860704 | -1.2 | 0.002380466 |
| LTR/ERVL-MaLR\|ORR1D1|5|81438765|81439074 | -1.3 | 0.001738738 |
| LINE/L1\|Lx8|5|81442017|81442485 | -1.1 | 0.001387036 |
| SINE/Alu\|B1_Mus1|4|42701837|42701939 | -1.3 | 0.001332738 |
| LINE/L1\|L1MB4|GL456350.1|213136|214351 | -1.3 | 0.001244243 |
| LINE/L1\|Lx3B|1|38194814|38195586 | -1.1 | 0.001203452 |
| SINE/Alu\|B1_Mus 1|4|42211905|42212047 | -3.1 | 0.000987718 |
| LINE/L1\|L1Lx_III|14|22888262|22889657 | -1.3 | 0.00085488 |
| LTR/ERVL-MaLR\|MTD|4|42470347|42470605 | -1.4 | 0.000541809 |
| LTR/ERVL-MaLR\|MTD|4|42206462|42206627 | -1.2 | 0.000526551 |

| LTR/ERV1\|LTRIS2|4|41882251|41882738 | -1.9 | 0.000395352 |
| :---: | :---: | :---: |
| SINE/B2\|B3|4|42006940|42007096 | -1.6 | 0.000368207 |
| LTR/ERVL-MaLR\|MTC|4|41859834|41859870 | -5.7 | 0.000364103 |
| LTR/ERVK\|RMER17B2|4|42199930|42200852 | -1.6 | 0.000331455 |
| LINE/L1\|Lx9|2|106407857|106408375 | -1.2 | 0.000292512 |
| LINE/L1\|L1M4b|4|42207136|42207346 | -5.0 | 0.00029125 |
| SINE/Alu\|B1_Mus1|14|52189113|52189250 | -1.3 | 0.000225471 |
| LINE/L1\|L1MB4|GL456350.1|215333|215759 | -1.7 | 0.000179446 |
| LTR/ERVK\|ERVB7_1-LTR_MM~ETnERV-int|3|78552311|78559462 | -2.2 | 0.000126775 |
| LTR/ERVL-MaLR\|MTC|4|42209075|42209111 | -7.0 | $8.34 \mathrm{E}-05$ |
| SINE/B4\|B4A|4|42205385|42205658 | -1.3 | $7.74 \mathrm{E}-05$ |
| SINE/Alu\|B1_Mur4|4|42005473|42005619 | -1.2 | $7.08 \mathrm{E}-05$ |
| SINE/Alu\|B1_Mus2|4|42202263|42202409 | -1.5 | $6.34 \mathrm{E}-05$ |
| LTR/ERVL-MaLR\|ORR1A3|4|42201549|42201891 | -1.4 | $5.86 \mathrm{E}-05$ |
| DNA/hAT-Tip100\|Arthur2|4|41855107|41855330 | -1.1 | $4.99 \mathrm{E}-05$ |
| LTR/ERVK\|MMERVK10C-int~RLTR10B2|8|3945964|3951863 | -1.1 | $4.34 \mathrm{E}-05$ |
| LTR/ERVK\|RMER17B2|4|41944961|41945909 | -1.2 | $3.08 \mathrm{E}-05$ |
| SINE/B2\|B3|4|41846277|41846489 | -1.1 | 2.22E-05 |
| LTR/ERVK\|ERVB7_1-LTR_MM~ETnERV-int|3|8383520|8390993 | -3.2 | 1.63E-05 |
| SINE/Alu\|B1_Mus2|4|42699410|42699556 | -1.1 | 5.87E-06 |
| SINE/Alu\|B1_Mur1|4|42699613|42699730 | -1.1 | $4.11 \mathrm{E}-06$ |
| scRNA\|BC1_Mm|JH584293.1|158471|158531 | -7.4 | $2.78 \mathrm{E}-06$ |
| LINE/L2\|L2|18|78192885|78194073 | -3.5 | $1.06 \mathrm{E}-06$ |
| LTR/ERVL-MaLR\|ORR1B2|4|42210920|42211264 | -3.1 | $9.23 \mathrm{E}-07$ |
| SINE/Alu\|B1_Mur3|4|41845780|41845916 | -1.2 | $2.66 \mathrm{E}-07$ |
| LTR/ERVL-MaLR\|ORR1E|4|42488823|42489144 | -1.6 | $2.57 \mathrm{E}-07$ |
| SINE/ID\|ID4|4|42689431|42689510 | -1.2 | $2.13 \mathrm{E}-07$ |
| SINE/Alu\|B1_Mur2|4|42006829|42006920 | -1.4 | $2.08 \mathrm{E}-07$ |
| SINE/Alu\|B1_Mur4|4|42693249|42693395 | -1.3 | $1.76 \mathrm{E}-07$ |
| SINE/B4\|RSINE1|4|42698000|42698095 | -1.3 | 8.46E-08 |
| LTR/ERVL-MaLR\|ORR1A3|4|42698696|42699038 | -1.6 | $4.88 \mathrm{E}-08$ |
| LINE/L1\|Lx5|4|42692601|42692763 | -1.2 | $2.87 \mathrm{E}-08$ |
| SINE/B2\|B3|4|42677410|42677598 | -1.3 | $1.91 \mathrm{E}-08$ |
| LINE/L1\|L1MdTf_I|10|106206469|106213575 | -2.0 | $1.75 \mathrm{E}-08$ |
| LINE/L1\|L1MdF_I|4|42699736|42700028 | -1.3 | $1.60 \mathrm{E}-08$ |
| LTR/ERVL-MaLR\|ORR1A3|4|42010910|42011252 | -1.1 | $1.44 \mathrm{E}-08$ |
| SINE/B2\|B3|4|42694716|42694872 | -1.1 | $1.35 \mathrm{E}-08$ |
| SINE/Alu\|B1_Mur2|4|42690321|42690460 | -1.1 | 8.84E-09 |
| LTR/ERVL-MaLR\|MTC|4|42208669|42208881 | -3.3 | 5.97E-09 |
| LTR/ERV1\|MERV1_I-int~RLTR41|4|41997400|42000692 | -1.1 | 5.26E-09 |
| Unknown\|YREP_Mm|4|42698157|42698308 | -1.5 | 3.92E-09 |
| LTR/ERVL-MaLR\|MTD|4|42212252|42212563 | -3.6 | $2.84 \mathrm{E}-09$ |
| LTR/ERVL-MaLR\|MTD|4|42211419|42211544 | -3.1 | $1.45 \mathrm{E}-09$ |
| LTR/ERVL-MaLR\|ORR1E|4|42693396|42693452 | -1.4 | $1.39 \mathrm{E}-09$ |
| LTR/ERVL-MaLR\|MTD|4|42703609|42703774 | -1.2 | $1.26 \mathrm{E}-09$ |
| LINE/L1\|L1M4b|JH584293.1|158632|158842 | -6.4 | $1.20 \mathrm{E}-09$ |
| SINE/B2\|B2_Mm2|4|21873292|21873426 | -1.4 | $9.41 \mathrm{E}-10$ |
| SINE/B2\|B2_Mm1t|4|42487831|42488007 | -1.5 | $7.00 \mathrm{E}-11$ |
| SINE/B2\|B3|4|42206861|42207067 | -2.8 | 7.19E-12 |
| LTR/ERVL-MaLR\|ORR1E|4|42005151|42005472 | -1.3 | $3.84 \mathrm{E}-12$ |
| SINE/B2\|B3|4|42692346|42692558 | -1.2 | 1.67E-12 |
| SINE/B2\|B2_Mm1t|4|41859871|41860047 | -5.8 | 8.98E-13 |
| LTR/ERV1\|LTR72_RN|4|41863323|41863472 | -2.5 | 8.63E-13 |
| SINE/B4\|B4A|4|42696105|42696301 | -1.5 | $1.93 \mathrm{E}-13$ |
| LTR/ERVL-MaLR\|ORR1D2|4|41866797|41866870 | -6.0 | 3.33E-14 |
| LTR/ERV1\|MERV1_I-int~RLTR41|4|42493603|42496895 | -1.4 | $2.28 \mathrm{E}-14$ |
| LTR/ERVL-MaLR\|ORR1E|4|42692927|42693248 | -1.3 | $1.71 \mathrm{E}-14$ |
| LTR/ERV1\|RLTR1B-int|4|41881485|41882110 | -1.4 | $4.25 \mathrm{E}-15$ |
| LTR/ERVK\|IAPEz-int~IAPLTR1_Mm|2|154354263|154359592 | -1.0 | $3.35 \mathrm{E}-15$ |
| LTR/ERVK\|ETnERV-int|4|41882740|41882895 | -2.4 | $2.39 \mathrm{E}-15$ |
| LTR/ERVL-MaLR\|MTD|4|42703056|42703249 | -1.3 | $1.37 \mathrm{E}-15$ |
| LINE/L1\|L1M5|4|42688781|42688992 | -1.3 | $6.88 \mathrm{E}-16$ |
| SINE/Alu\|B1_Mur2|4|21872875|21873007 | -1.9 | $9.59 \mathrm{E}-17$ |

| SINE/B2\|B3A|4|42688563|42688744 | -1.2 | 6.68E-17 |
| :---: | :---: | :---: |
| DNA/hAT-Tip100\|Arthur2|4|42701104|42701325 | -1.3 | $2.80 \mathrm{E}-17$ |
| SINE/B2\|B2_Mm1t|4|42006288|42006464 | -1.5 | 1.95E-17 |
| LINE/L1\|Lx9|4|42696517|42697053 | -1.3 | 3.62E-19 |
| SINE/B4\|B4A|4|42702532|42702805 | -1.3 | $2.99 \mathrm{E}-20$ |
| SINE/B4\|B4|4|41861171|41861469 | -1.5 | 2.73E-20 |
| LTR/ERVL-MaLR\|MTD|4|41862178|41862303 | -6.4 | $6.78 \mathrm{E}-21$ |
| SINE/B2\|B2_Mm2|4|42006123|42006221 | -1.5 | 1.95E-21 |
| LINE/L1\|L1MD2|4|42689041|42689329 | -1.3 | 8.59E-22 |
| LTR/ERV1\|LTRIS2|4|41877124|41877612 | -1.8 | 7.03E-22 |
| LTR/ERVL-MaLR\|MTEa|4|42689524|42689847 | -1.1 | $4.80 \mathrm{E}-22$ |
| LTR/ERVL-MaLR\|MTC|4|41859428|41859640 | -7.2 | $2.79 \mathrm{E}-22$ |
| LINE/L1\|L1MD2|4|42689848|42690320 | -1.2 | 6.12E-23 |
| LTR/ERVL-MaLR\|ORR1A2|4|42695575|42695902 | -1.4 | 3.42E-23 |
| LTR/ERVL-MaLR\|ORR1B2|4|41861679|41862023 | -4.9 | $5.00 \mathrm{E}-24$ |
| LINE/L1\|L1MdV_III|4|42682716|42684974 | -1.2 | 4.51E-25 |
| LTR/ERVL-MaLR\|ORR1D2|4|41869118|41869231 | -5.5 | 2.52E-27 |
| LINE/L1\|Lx5|4|41869274|41869392 | -4.0 | 5.24E-28 |
| LINE/L1\|Lx9|4|41864119|41864457 | -3.1 | $1.55 \mathrm{E}-28$ |
| LTR/ERVK\|RMER17B2|4|42697077|42697999 | -1.5 | $1.29 \mathrm{E}-28$ |
| SINE/Alu\|B1_Mus1|4|41862664|41862806 | -6.0 | 6.72E-32 |
| LINE/L1\|Lx5|4|41860065|41860499 | -6.5 | $2.14 \mathrm{E}-32$ |
| LINE/L1\|L1MD2|4|42690461|42691435 | -1.2 | 6.41E-34 |
| LTR/ERVK\|RMER16-int|4|41880620|41881663 | -2.0 | 1.18E-38 |
| LTR/ERVL-MaLR\|MTD|4|41863011|41863322 | -6.8 | 1.33E-40 |
| LTR/ERV1\|MERV1_I-int~RLTR41|4|42685154|42688451 | -1.2 | 8.05E-43 |
| LTR/ERVK\|RLTR40|4|21871708|21872365 | -1.8 | $2.50 \mathrm{E}-45$ |
| LTR/ERVK\|ERVB7_1-LTR_MM~ETnERV-int|4|41870907|41877123 | -3.1 | $2.95 \mathrm{E}-48$ |
| LINE/L1\|L1MEg|4|41866400|41866748 | -5.6 | $2.14 \mathrm{E}-50$ |
| LTR/ERVL-MaLR\|MTD|4|41864735|41864993 | -4.3 | 1.66E-52 |
| SINE/B2\|B3|4|41865957|41866165 | -5.1 | 8.07E-64 |
| LTR/ERVL-MaLR\|ORR1E|4|41868720|41868968 | -4.6 | 1.22E-74 |
| LTR/ERV1\|RLTR1B-int|4|41877612|41880640 | -2.1 | 4.96E-98 |

Table S2. qPCR probes and primers.

Taqman Probes	Assay Probe ID
Ifnb1	Mm00439552_s1
lfng	Mm01168134_m1
Tnfa	Mm00443258_m1
$111 b$	Mm00434228_m1
116	Mm00446191_m1
Ifit1	Mm00515153_m1
Ifit2	Mm00492606_m1
Ifi44	Mm00505670_m1
Isg15	Mm01705338_s1
Isg20	Mm00469585_m1
Zbp1	Mm01247052_m1
Oas1a	Mm00836412_m1
$N P$	Custom probe based on NC_002019.1 Assay ID:AIX02UC
Actin	Mm02619580_g1
Gapdh	Mm99999915_g1 (4352932E)
SYBR Green oligos	Sequence
M	F: 5'-CTTCTAACCGAGGTCGAAACGTA R: 5'-GGTGACAGGATTGGTCTTGTCTTTA from: Shin et al. 2013, Virology Journal 10:303
Gapdh	F: 5'-CATGGCCTTCCGTGTTCCTA R: 5'-CCTGCTTCACCACCTTCTTGAT from: Tsujita et al. 2006, PNAS 103:11946

