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Abstract

Background The controlled domain vocabularies provided by ontologies make them an
indispensable tool for text mining. Ontologies also include semantic features in the form of
taxonomy and axioms, which make annotated entities in text corpora useful for semantic analysis.
Extending those semantic features may improve performance for characterisation and analytic tasks.
Ontology learning techniques have previously been explored for novel ontology construction from
text, though most recent approaches have focused on literature, with applications in information
retrieval or human interaction tasks. We hypothesise that extension of existing ontologies using
information mined from clinical narrative text may help to adapt those ontologies such that they
better characterise those texts, and lead to improved classification performance.

Results We develop and present a framework for identifying new classes in text corpora, which
can be integrated into existing ontology hierarchies. To do this, we employ the Stanford Open
Information Extraction algorithm and integrate its implementation into the Komenti semantic text
mining framework. To identify whether our approach leads to better characterisation of text, we
present a case study, using the method to learn an adaptation to the Disease Ontology using text
associated with a sample of 1,000 patient visits from the MIMIC-III critical care database. We use
the adapted ontology to annotate and classify shared first diagnosis on patient visits with semantic
similarity, revealing an improved performance over use of the base Disease Ontology on the set of
visits the ontology was constructed from. Moreover, we show that the adapted ontology also
improved performance for the same task over two additional unseen samples of 1,000 and 2,500
patient visits.

Conclusions We report a promising new method for ontology learning and extension from text.
We demonstrate that we can successfully use the method to adapt an existing ontology to a textual
dataset, improving its ability to characterise the dataset, and leading to improved analytic
performance, even on unseen portions of the dataset.
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Background 1

Biomedical ontologies provide sets of natural language labels and synonyms that constitute controlled 2

domain vocabularies. These vocabularies are a fundamental resource for text mining [1]. However, 3

ontologies also contain a wealth of semantic features, which enables their use in ontology-based 4

analysis [2]. Recent approaches are increasingly bridging the gap between text mining, semantic 5

analysis, and machine learning [3]. While many recent efforts have focused on the best ways to 6

leverage the axioms that exist in ontologies to improve the power of analyses that use them, less 7

attention has been given to whether text mining could be used to create additional classes and 8

relationships in existing ontologies, particularly extending them in ways that could benefit analysis. 9

Ontology learning from text, however, has been an area of interest for many years [4, 5]. Most 10

approaches focus on learning from literature, and their most common methods of validation are 11

manual, or through use of consistency and satisfiability checks performed by automated reasoners [6]. 12

Other evaluations include application integration, information retrieval, human interaction and 13

performance against gold standard question-answer database [5]. However, the role of ontology 14

learning for adaptation and extension of existing ontologies for improvement of classification tasks 15

has not been previously explored, to our knowledge. 16

Previous approaches to ontology learning have used Stanford CoreNLP [7] for pre-processing and 17

part-of-speech tagging [8, 9]. However, CoreNLP also includes an Open Information Extraction 18

(OpenIE) algorithm, which can extract binary relations from text [10]. The relations it produces are 19

derived from the syntax of sentences, often using the verb of the sentence as a predicate between two 20

nouns or noun phrases which form a subject and object [11]. Some previous investigations have built 21

OWL ontologies from literature text using these relations in combination with topic modelling 22

approaches [12,13]. However, these approaches were only applied to literature text, and have only 23

been used to support applications of information retrieval and literature search. Furthermore, they 24

focus on producing novel ontologies for a particular topic, rather than extending existing ontologies. 25

One study of using openIE for knowledge graph construction identified several open problems in 26

the domain [14]: 27

Entity linking Linking named entities in the binary relation to identified entities in a knowledge 28

graph. 29

Entity Selection Selecting the most optimal and relevant entity amongst candidates produced. 30

For example, which substring of “aorta descent consistent with dissection” to use as the entity 31

in the relation. 32

Property linking Similar to the problem of entity linking, linking the predicate in the binary 33

relation to an ontology resource. 34

Representation How to model more expressive binary relations, extrapolating complex relations 35

to several triples. 36

Instead of using the binary relationships extracted from text to construct an ontology, our 37

approach uses an analysis of the components of extracted binary relationships to identify new classes 38

that can be linked to existing ontology classes. This renders our approach relevant and applicable to 39

the entity linking and entity selection problems. By adding new terms to an existing ontology in this 40

fashion, we hypothesise that the ontology can be adapted to a text corpus, leading to its better 41

characterisation through the annotation of more specific concepts. To explore this hypothesis, we 42

developed a novel approach to ontology extension using triples produced by the OpenIE algorithm. 43

We take a fully automated approach, with no manual curation or evaluation of correctness before 44

final use, with the aim of producing an application ontology that is adapted to a particular dataset, 45

and whose success can be measured by its role in improved classification performance. We apply the 46

approach to a text corpus associated with MIMIC-III patient visits and generate an extended version 47

of the Disease Ontology (DO) [15]. We describe the ontology, and then investigate its use for 48

improving the performance of diagnosis extraction and classification from clinical text. 49
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The triple mining and ontology construction modules are available as part of the Komenti 50

semantic text mining framework, which is available under an open source licence at 51

https://github.com/reality/komenti [16]. Files used for the construction of the MIMIC 52

Adapted Disease Ontology (MADO), and for the automated validation are available at 53

https://github.com/reality/mado_tripulate. 54

Results 55

Approach 56

We developed a method of extending existing ontologies with new classes mined from text. The 57

resulting ontology facilitates the identification of more specific concepts expressed in the corpus text, 58

in the context of the existing hierarchy. In order to extend an existing ontology, important entities in 59

the text that are related to, but may extend, classes in the ontology of interest need to be identified. 60

Building a vocabulary of relevant terms from the ontology and using it to identify sentences which 61

contain mentions of ontology classes produces candidate sentences that may concern useful new 62

terms. 63

This leaves the problem that we need to identify modified ontology terms that we can use to 64

produce new classes. Binary relationship extraction algorithms identify relationships between 65

entities in text. In this case, we consider the Open Information Extraction (OpenIE) algorithm, 66

which uses syntactic analysis to identify entities and relationships. Because OpenIE works on this 67

syntactic basis, and is therefore naive to the actual terms in the ontology, it is able to capture noun 68

phrase entities which contain ontology terms, but extend them (make them more specific), allowing 69

us to identify new classes that extend existing ontology classes. Furthermore, by examining only 70

binary relations that contain at least one ontology term in both its subject and object, we can 71

assume that these entities are both important to the text and relevant to the context of the ontology. 72

The subject and object entity strings can then be decomposed into a combination of ontology terms 73

and an optional specifying component. These new terms can then be added to the ontology, making 74

them descendants of the classes they extend. 75

Once this has been done, the extended ontology can be used to annotate those more specific 76

concepts in the text corpus. In this investigation, we do not make use of the binary relations 77

themselves to add additional relationships to the ontology, beyond identifying classes to add to the 78

hierarchy. The employment of binary relationship extraction in this case can be considered as a 79

‘filter,’ identifying important entities in the text to add to the ontology. Figure 1 describes the 80

overall approach. 81

Figure 1. Description of our workflow to extract new classes from a corpus by annotating a text,
and examining binary relations.
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Vocabulary Construction and Annotation 82

For the vocabulary construction and annotation stages, our approach uses Komenti’s existing 83

pipeline for vocabulary construction and text annotation [16]. The vocabulary construction process 84

uses the AberOWL reasoner-based ontology access framework [17] to build a list of labels and 85

synonyms for a given input ontology. The annotation process uses this vocabulary to match 86

mentions of the relevant concepts in text, using the Stanford RegexNER annotator implemented by 87

CoreNLP. This outputs a list of annotated terms and the sentences that contain them. To identify 88

sentences that could contain valid binary relations that pertain to terms in the input ontology, our 89

algorithm then examines the list of annotations, filtering it to contain only sentences which contain 90

at least two ontology terms. 91

Entity Selection and Linking 92

The remaining sentences are then used as input to the Open Information Extraction (OpenIE) 93

algorithm, which extracts binary relationships from input text. OpenIE produces triples, which 94

represent a relationship between two entities in the form of a subject, predicate, and object. Since 95

we are passing it sentences which contain two terms from our ontology, we intend to capture 96

relationships which concern subjects and objects related to our ontology: either equivalent to a term, 97

or containing terms that can be transformed into a new specifying class. 98

To integrate these new entities into our ontology, we need to describe them in terms of existing 99

ontology classes. Subjects and objects are again annotated using the vocabulary that was previously 100

used to identify candidate sentences. Subsequently a representation of the entities are produced by 101

repeatedly identifying the longest annotation corresponding to an ontology term. When these have 102

been exhausted, either the whole string has been consumed, or we are left with an arbitrary 103

specifying string. In this way, we produce a new class, which we assert is a subclass of the existing 104

ontology terms contained in the entity string. The algorithm performing this process is described in 105

Figure 2. 106

For example, an entity label appearing as a subject or object in a triple could be “extreme 107

hypertension.” Using a vocabulary constructed from the Disease Ontology (DO), the first annotation 108

employed by the algorithm would match hypertension (DOID:10763). The algorithm would then 109

recurse, attempting to annotate the remaining unconsumed string, ‘extreme.’ Since this word does 110

not feature in DO, no annotation can be made. Thus, ‘extreme’ is noted as an unmatched concept, 111

and we can produce a new class with the label ‘extreme hypertension,’ as a subclass of hypertension 112

(DOID:10763). New terms can also be composed of multiple ontology classes, such as for the example 113

‘activation of apoptosis cell.’ Using a vocabulary constructed from the Gene Ontology, the algorithm 114

would first identify activation of apoptosis (GO:0006915) as the annotation with the maximal string 115

length. On the second round, it would match cell (GO:0005623), leading to a new ‘activation of 116

apoptosis cell’ class, which would be a subclass of both activation of apoptosis and cell. This can 117

lead to rich hierarchies, as other processed entities may specify further upon these intermediate 118

classes, such as for ‘activation of apoptosis cell of mz-cha-1’ or ‘activation of apoptosis less than 119

control.’ If no ontology term is matched at all, the whole string is returned as an unmatched concept, 120

and is later thrown away by the algorithm, as it cannot be integrated with the ontology hierarchy. 121

Ontology Extension 122

For each triple, after the subject and object have been processed, we add both to the list of new 123

classes to add to the ontology, if we were able to construct an ontology term from both the subject 124

and object. Otherwise, it is discarded. This is to ensure that we extend existing ontology structures 125

and features; we would not be able to construct an ontology class from an entity label that does not 126

contain at least one ontology term. Once all triples have been evaluated, a Komenti module is used 127

to create a new ontology expressed by subclass axioms and labels, asserting the new classes in the 128

context of the target ontology. Once this has been done, an import to the original ontology is added. 129
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Data: label = Given string label
Result: A new ontology class term
def term
while strlen(label) > 0 do

a = annotate(label)
if a then

a = maxlen(label)
newTerm = ontologyClassFromAnnotation(a)
label = strreplace(label, a)

end
else

newTerm = unmatchedOntologyClass()
label = ′′

end
if term then

newTerm.parentTerm = term
end
term = newTerm

end

Figure 2. Algorithm for building hierarchical ontology terms from matched openIE labels by
recursively consuming the label. The annotate function returns a list of ontology terms that were
found in the input string.

MIMIC Adapted Disease Ontology 130

We applied our method to texts associated with 1,000 patient visits sampled from the MIMIC-III 131

critical care database. Our input vocabulary contained terms from the Disease Ontology (DO) and 132

the Phenotypic Trait Ontology (PATO) [18]. The DO terms were restricted to classes that contained 133

cross references to ICD-9, which is the medical terminology used to annotate MIMIC-III patient 134

visits in the structured data. We did this to reduce the running time of the experiment, by 135

restricting our analysis to classes likely to be represented in the structured outcome data. We will 136

refer to this as the ‘Trim DO’ vocabulary, to distinguish it from the ‘Full DO’ vocabulary, which 137

contains all non-obsolete classes in the ontology. This produced the MIMIC Adapted Disease 138

Ontology (MADO). The unmodified DO contains 18.591 classes, while MADO contains 20,818, 139

meaning that the approach produced 2,227 new classes. 140

Diagnosis Classification 141

To evaluate whether MADO could lead to an improved characterisation of the dataset, we compared 142

its performance at classifying shared primary diagnosis over sets of MIMIC patient visits. We used 143

the annotation terms as input to the Resnik semantic similarity algorithm, using the Best Match 144

Average, and using a measure of information content derived from the probability of the annotation 145

appearing in the entire set of annotations. We then evaluated our approach’s performance at 146

identifying a shared primary diagnosis when ranking patient visits by their similarity scores. 147

Our evaluation included several settings, spanning different combinations of vocabularies used as 148

input, and ontologies used to calculate the similarity scores. Since a Trim DO vocabulary (the subset 149

with ICD-9 cross mappings) was used to produce MADO, we also included results for use of the 150

Trim DO vocabulary without extensions to ensure that improved performance did not derive from 151

use of the slimmer vocabulary alone. 152
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Table 1. Performance for matching first diagnosis of MIMIC patients with different combinations of
annotation vocabularies and ontologies used for semantic similarity score calculation.

Setting Vocabulary Ontology MRR MAP Precision p-value (<)

Source-1000
Full DO DO 0.939 0.844 0.937 -
Trim DO DO 0.947 0.88 0.917 0.01466
MADO MADO 0.995 0.916 0.992 6.458e-05

Unseen-1000
Full DO DO 0.931 0.841 0.929 -
Full DO MADO 0.88 0.795 0.876 0.007279
Trim DO DO 0.958 0.885 0.932 0.0001161
Trim DO MADO 0.958 0.887 0.933 0.003315
MADO MADO 0.986 0.92 0.981 0.009601

Unseen-2500
Full DO DO 0.943 0.842 0.941 -
Full DO MADO 0.896 0.798 0.891 2.2e-16
Trim DO DO 0.932 0.865 0.898 0.004658
Trim DO MADO 0.933 0.866 0.899 8.035e-05
MADO MADO 0.986 0.913 0.98 2.2e-16

Discussion 153

Our results show that the developed method was successful in constructing a MIMIC adapted 154

disease ontology. The results of the characterisation evaluation demonstrate that the use of the 155

MADO ontology and vocabulary consistently out-performs two different configurations of DO 156

vocabulary used with DO and MADO for classificaiton of primary diagnosis. Furthermore, not only 157

does our method improve characterisation based on text the ontology that was learned upon, it also 158

improves characterisation from unseen text in the same corpus. This provides evidence that this 159

process of training and extending an ontology on a dataset adapts that ontology to it, increasing its 160

ability to characterise the dataset. 161

One limitation of the study is that it only considers primary diagnosis. Our evaluation could be 162

considered a simplified version of those presented in several other investigations which use various 163

learning methods to assign ICD-9 codes based on MIMIC-III text [19]. Our work only assigns the 164

primary diagnosis, as a method of evaluating improvement between two settings. To make the work 165

more practical, and to further evaluate the approach, we could consider transforming the task to 166

classify several codes. However, this presents several challenges, primarily due to semantic similarity 167

being an unsupervised and unguided approach. However, we believe that the similarity approach 168

should capture this information, e.g. that patients with a secondary diagnosis of ‘pain’ would be 169

more similar to other patients with a pain diagnosis. The challenge is in developing a decision 170

procedure for making that classification, while overlooking other reasons (i.e. a different shared 171

diagnosis) that patients may be highly similar. The advantages of developing this kind of decision 172

procedure would be the ability to use this method for a more complete characterisation of the 173

dataset, as well as the ability to directly compare performance with other approaches using the same 174

evaluation methods. A follow-up investigation could measure how well annotations predicted overall 175

patient diagnosis structure. These methods could also be applied to other benchmark issues that 176

have typically been solved with similarity-based approaches, such as gene enrichment or 177

protein-protein similarity. A future validation could also work to determine whether larger training 178

sets could lead to a greater validation performance, and whether this value could be established as a 179

hyper-parameter set based on size or other information concerning a target corpus. 180

Nevertheless, the evaluation showed that our approach improved the performance of the task of 181

classifying primary diagnosis from text. This has potential applications in the clinical space, 182

including automated diagnosis and classification of patients from text profiles. Previous work 183
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involved the use of semantic similarity over the Human Phenotype Ontology for differential diagnosis 184

of medical conditions [20–22]. However, these phenotypic profiles are usually produced by experts, or 185

by patients themselves. We would like to investigate whether it is possible to construct these profiles 186

from text, particularly aided by methods that can construct and adapt multiple ontologies around 187

particular diseases, datasets, and relevant entities. 188

While our work shows that the approach can adapt an individual ontology to a text corpus for 189

improved classification, this work could potentially have other uses and implications. As well as 190

extending other single ontologies to better characterise other text corpora with application to other 191

classification problems, the approach also has the potential to capture relationships between different 192

domain ontologies. While this investigation only involves DO, PATO, and the classes they include, 193

the algorithm would also work to connect more ontologies that describe different domains. For 194

example, a vocabulary with terms from DO and GO would be capable of producing new classes that 195

combined genetic components and diseases, such as in the case of ‘cancer cell.’ This would 196

potentially allow for the integration of information from different domains contributing to singular 197

tasks. In the case of semantic similarity, involving several ontologies produces an additional level of 198

complexity [23]. 199

Furthermore, while the approach employs the use of binary relation extraction, it does not 200

currently make use of the relationships themselves. Observed relationships from text could be used 201

as ABox axioms, defining observations of instances of ontology classes in text. Semantic similarity 202

approaches do not make use of such information, although recent approaches to machine learning 203

with ontologies, such as OPA2Vec [24] could take these relationships into account. This would 204

potentially further increase the power of cross-ontology and integrated domain analysis, as 205

relationships could be established between classes of different ontologies through observations as well 206

as class composition. 207

Both the construction of the ontology, and thereby analysis performance could be affected by 208

investigating the use of other Komenti features, particularly those for negation detection and 209

synonym expansion [25, 26]. In the former case, the evaluation of negation could prevent incorrect or 210

explicitly negated facts from being used in the produced knowledgebase, while the latter case has 211

been shown to improve overall characterisation of text. 212

Conclusions 213

Our work describes a new approach to extending existing ontologies with new classes through 214

analysis of text corpora. The ontology extensions essentially adapt the ontology to better suit the 215

text corpus, and leads to improved classification performance using the extended set of annotations, 216

even on unseen portions of the dataset. We believe that the approach is promising, and could have 217

further implications, which we intend to explore in future work. 218

Methods 219

The algorithm was developed using the Komenti semantic text mining framework, which is available 220

under an open source licence at http://github.com/reality/Komenti [16]. It makes use of 221

Stanford CoreNLP [7], and particularly the RegexNER annotator for identifying entities in text, and 222

the openIE algorithm for extracting triples from text. 223

Corpus Generation 224

Texts were sourced from the MIMIC-III critical care database [27]. MIMIC is a publicly available 225

dataset describing over 50,000 critical care visits, including natural language text linked with many 226

structured features. We sampled three sets of patient visits from MIMIC: one of 1,000 patient visits 227

for learning the ontology, and test sets of 1,000 and 2,500 patient visits. Patient visits were 228
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associated with their primary diagnosis, the first listed for the record in the ICD9 DIAGNOSES 229

table. These codes are produced by clinical coding specialists, by examining the texts associated 230

with the visit. We then concatenated all text records for each patient visit from the NOTEEVENTS 231

table into one text file, and pre-processed the text to remove newlines, improve sentence delineation, 232

and lemmatise words. 233

We used two base vocabularies for our experiments. The first, referred to as ‘Full DO’ 234

throughout the article, contained all labels and synonyms in the Disease Ontology (DO) [15]. The 235

second was limited to labels and synonyms in 2,118 DO terms that were annotated with a database 236

cross-reference to ICD-9 used in an effort to reduce noise from terms not represented in ICD-9. We 237

obtained the unexpanded and expanded synonyms for these terms on 08/07/2020. Both sets of 238

labels were also lemmatised. 239

Ontology Extension 240

Our ontology extension approach was applied to the pre-selected training set of 1,000 patient visits, 241

using the Trim DO vocabulary. The produced ontology was then merged with DO, by copying all 242

axioms from DO into the new ontology. This merged ontology is referred to as the MIMIC Adapted 243

Disease Ontology (MADO). The ontology constructor also contains an optional flag that outputs a 244

new Komenti-compatible vocabulary with the novel classes and pre-existing ontology classes used as 245

components in the ontology extension. This feature was used to create a new vocabulary, which was 246

concatenated with the Trim DO vocabulary, and used in the experiments that refer to the MADO 247

vocabulary. 248

Evaluation 249

Komenti was used to annotate the text associated with each patient visit. We then used the set of 250

terms associated with it to produce a semantic similarity matrix for patient visits, using the Resnik 251

measure of pairwise similarity for each annotated term [28], normalised into a groupwise measure 252

using the best match average method [29]. Information content was calculated using the probability 253

of the term appearing as an annotation in the totality of the set of annotations [28]. The similarity 254

matrix was computed using the Semantic Measures Library [30]. 255

We evaluated the similarity matrix using mean reciprocal rank, mean average precision, and 256

precision to measure performance in predicting shared primary patient diagnosis. A true case was 257

considered to be whether a pair of patient visits had the same primary diagnosis (as per the 258

MIMIC-III database). For mean average precision, we considered only the 10 most similar patients 259

for each patient, establishing a cut-off to limit the effect of patients who were ranked more similar 260

for reasons of other diagnosis. The p-value was calculated using the built-in wilcox.test function of R 261

version 3.4.4 [31]. 262
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