
Role of periodic forcing on the stochastic dynamics of a biomolecular
clock

Zhanhao Zhang1, Supravat Dey1 and Abhyudai Singh2

Abstract— Biomolecular clocks produce sustained oscilla-
tions in mRNA/protein copy numbers that are subject to
inherent copy-number fluctuations with important implications
for proper cellular timekeeping. These random fluctuations
embedded within periodic variations in copy numbers make
the quantification of noise particularly challenging in stochastic
gene oscillatory systems, unlike other non-oscillatory circuits.
Motivated by diurnal cycles driving circadian clocks, we inves-
tigate the noise properties in the well-known Goodwin oscillator
in the presence and absence of a periodic driving signal. We
use two approaches to compute the noise as a function of time:
(i) solving the moment dynamics derived from the linear noise
approximation (LNA) assuming fluctuations are small relative
to the mean and (ii) analyzing trajectories obtained from exact
stochastic simulations of the Goodwin oscillator. Our results
demonstrate that the LNA can predict the noise behavior quite
accurately when the system shows damped oscillations or in the
presence of external periodic forcing. However, the LNA could
be misleading in the case of sustained oscillations without an
external signal due to the propagation of large noise. Finally,
we study the effect of random bursting of gene products on the
clock stochastic dynamics. Our analysis reveals that the burst of
mRNAs enhances the noise in the copy number regardless of the
presence of external forcing, although the extent of fluctuations
becomes less due to the forcing.

I. INTRODUCTION

Biomolecular clocks are gene regulatory networks in cells
that can produce sustained oscillations in gene products to
keep precise time for the various process such as cell cycle
dynamics, maintenance of daily-cycle in most organisms,
and vertebra formation in mammals [1]–[7]. Behind each
biomolecular clock, there is a nonlinear gene regulatory
network with varying complexity that generate sustained
oscillations [4], [7]–[9]. A common mechanism for sustained
oscillations in various clock such as circadian clocks, seg-
mentation clocks, and cell cycle dynamics is time-delayed
auto-inhibition [7]–[9]. In the case of the circadian clock, be-
sides the autonomous oscillations, there is periodic signaling
due to daily light-dark cycle that couples and synchronizes
the clock with the environment [5], [6]. In the case of
segmentation clocks, adjacent cells are coupled via signaling
molecules to maintain synchrony with neighbors for perfect
vertebra formations [7], [10], [11].

The expression of a gene is subject to fluctuations due
to intrinsic and extrinsic factors [12]–[19]. Inherent stochas-
ticity of biochemical reactions is the source of intrinsic
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noise. Whereas environmental fluctuations and other cell-
specific differences such as cell-cycle stages, cell sizes,
availability of enzymes for mRNA and protein synthesis
are the major sources of extrinsic noise [20]–[23]. Depend-
ing on the contexts, the noise can have consequences that
could be beneficial or detrimental to the cells [24]–[28].
The fluctuations are even present in the case of oscillatory
gene expressions [10], [29], [30]. How biomolecular clocks
keep precise time amid such fluctuations is an intriguing
fundamental question.

Several experimental [10], [31]–[34] and theoretical [7],
[35]–[38] studies in the past have studied the role of intercel-
lular and external coupling on the synchronization the rythms
in the gene expression in various genetic circuits. However,
in the presence of randomness, the role of coupling on the
synchronization is not well understood. In this paper, we
investigate the effect of coupling to the external environment
on the stochastic dynamics of a biomolecular clock. In the
presence of a periodic signal, we study the well known
Goodwin oscillator based on time-delayed autoinhibition
regulatory circuit where the signaling effect is incorporated
in the synthesis rate of the clock gene mRNA. We find that
the periodic forcing can entrain the clock dynamics, and the
entrainment patterns depend on the frequency of amplitude of
the signal. The exact analytical approach for solving noise in
the oscillatory gene expression is challenging as the circuits
consist of nonlinear elements. Here, we first write down the
first- and second-order moment dynamics using the linear
noise approximation (LNA) that linearizes nonlinear propen-
sities, assuming small fluctuations around the mean. Then
numerically solve them to compute the noise. By comparing
the LNA results with the exact stochastic simulations, we
find the prediction of LNA results is quite well when the
system shows damped oscillations or in the presence of
external periodic forcing. However, the LNA results could
be misleading for sustained autonomous oscillations (without
external signal) where large fluctuations also propagate in
time. Finally, we study the effect of bursty production of
mRNA. We observe that mRNA bursts enhances the noises
in the copy numbers, regardless of the presence of external
forcing. Although, the extent of fluctuations become less due
to the forcing.

Notation: We use regular lower case letters to denote de-
terministic variables and bold lowercase letters for stochastic
variables. For example, m(t) represents the level of mRNA at
time t in deterministic analysis, and m(t) represents mRNA
count in stochastic case. For stochastic case, the angular
bracket 〈·〉 is used to represent the ensemble averages of
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a quantity. For example , 〈m(t)〉 and 〈m(t)2〉 are the mean
and second moment of the mRNA count at time t.

II. DETERMINISTIC DYNAMICS OF THE GOODWIN
OSCILLATOR IN THE PRESENCE OF PERIODIC FORCING

To investigate the role of external periodic forcing on
the deterministic and stochastic dynamics of an autonomous
biomolecular clock, we formulate a model using the well
known Goodwin oscillator [39]. Below, we briefly discuss
the deterministic dynamics of the Goodwin oscillator before
proceeding to the incorporation of the periodic external
signal.

A. Dynamics without periodic forcing

The deterministic dynamics of the Goodwin oscillator,
involving three species namely an mRNA M , intermediate
protein E, and a repressor protein P , is given by the
following ordinary differential equations (ODEs) [39], [40],

dm(t)

dt
= kmg(p(t))− γmm(t) (1a)

de(t)

dt
= kem(t)− γee(t) (1b)

dp(t)

dt
= kpe(t)− γpp(t) (1c)

Here, m(t), e(t), and p(t) denote the concentration of the
species M , E, and P at time t. The molecular mechanism
behind the dynamics is as follows (see Fig. 1): the gene
produces mRNA M , mRNA is then translated into interme-
diate protein E, E activates the production of the repressor
protein P , and finally, P represses the mRNA synthesis and
closes the negative feedback loop. The parameter km is the
maximum synthesis rate for M , ke and kp are the synthesis
rates of E and P , and γm, γe, and γp are the degradation
rates. The repression is the Hill-type and given by g(p) as

g(p) =
1

1 + ( p
pcrit

)h
, (2)

where the parameter h is the Hill coefficient and pcrit is
the value of the concentration required for the half maximal
repression.

Here we note that the dynamics of intermediate species
creates a time delay for the repression for the mRNA produc-
tion and essential for the generation of sustained oscillations.
Besides, the repression must be sufficiently strong with the
Hill coefficient h > 8 [40]. For h < 8, the system can show
damped oscillations, not sustained one.

B. Incorporation of periodic forcing

Here, we consider the Goodwin oscillator in the external
periodic signal. The external signal could be dark-light cycle
or temperature cycle as in the case of circadian clocks. We
assume that the external periodic signal only effects the
synthesis rate of clock gene mRNA linearly. Therefore, the

Fig. 1. A schematic of the model. The regulatory network
for the Goodwin oscillator in the presence of external pe-
riodic signal: The network consisting of three species that
create delayed negative feedback for mRNA synthesis. The
mRNA M is produced from a gene and then translated
into the intermediate protein E. The protein E then actives
the production of the repressor protein P , which inhibits
the productions of M and closes the negative loop. The
dynamics of E makes a delay for the repression. Finally,
the autonomous Goodwin oscillator is coupled to a periodic
external signal that modifies the mRNA synthesis rate.

modified mRNA dynamics in the presence of external signal
Φ(t) is given by,

dm(t)

dt
= kmΦ(t)g(p(t))− γmm(t). (3)

The dynamics for the concentration of E and P proteins is
assumed to be unaltered by the signal and follow (1b and
1c). We consider a square waveform for the external signal
with amplitude As and frequency fs. We numerically solve
the above system for a given set of parameters and present
our results below.

C. Entrainment Behavior

The frequency of the autonomous oscillators f0 depends
on the parameter values. The typical sustained oscillations
in the mRNA level in the absence forcing is shown in Fig. 2
(A). In the presence of periodic forcing, the mRNA level
and its frequency adjust themselves to follow the signal
as shown in Fig. 2 (B)-(D). This phenomena is known as
entrainment. We observe the entrainment behavior for wide
ranges of amplitude As and frequency fs variation. Different
entrainment patterns, known as ‘Arnold’s tongue’, emerge
as As and fs are varied. For example, for a small As the
system shows 1:1 entrainment (one clock oscillation peak
for one signal peak) when the fs is close to f0. However,
for a large As, 1:2 is observed (one clock oscillation peak
for two signal peaks). This type entraiment behavior is very
common in gene oscillations circuits [32]–[35].

III. STOCHASTIC DYNAMICS

In the above section, we have studied entrainment for the
deterministic case. However, the copy numbers of mRNAs
and proteins inside genetically identical cells, even under
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Fig. 2. Entrainment due to periodic forcing. Typical
trajectories for mRNA concentration of autonomus Goodwin
oscillator in the presence and absence of forcing. (A) The
sustained oscillations in the absence of external forcing (with
f0 ≈ 0.025). (B and C) For a small signal amplitude
(As=0.2), a 1:1 entrainment is observed when the signal
frequency is close to the autonomous as in B for fs ≈0.9f0
and in C for fs ≈1.2f0. (D) A different entrainment pattern
can be observed when As is large even though f0 and fs are
close. For amplitude As=1 and fs ≈0.9f0, a 2:1 entrainment
is observed. Parameter for Goodwin oscillator: km=20, ke=1,
kp=0.2, γm=γe=γp=0.1, pcrit=100, and h = 12.

the same external environment show large fluctuations (gene
expression noise). These fluctuations are inevitable as they
arise due to biochemical reactions that are inherently stochas-
tic and occur in low molecular copy numbers, regardless of
nonoscillatory [12]–[19] or oscillatory gene expressions [10],
[29], [30]. Here, we investigate entrainment behavior in the
presence of inherent stochasticity.

In our stochastic setting, all the biochemical reactions for
the productions and degradations occur probabilistically. We
also want to understand how the external signal controls
the noise that arises from the bursty production of mRNA.
Bursty productions are sources of high gene expression
noises. Gene expression bursts have been experimentally
observed in diverse cell types [41]–[46], and correspond
to distinct mechanisms at the transcriptional and translation
level. The production of mRNA as a bursty process, which
can be thought of as a result of stochastic switching between
multiple promoter states [43], [47]–[49]. In this analysis, we
assume that the copy numbers of mRNA released in a burst
follow the (shifted) geometric distribution

P(B = j) =
(1− 1

〈B〉 )
j−1

〈B〉
for j ∈ {1, 2, 3, ...}, (4)

where 〈B〉 is the average burst size. The other productions
are assumed to follow simple birth process.

Let us denote the stochastic variables for the copy numbers
of the mRNA, intermediate protein, and repressor protein
at time t by m(t), e(t), and p(t). Then, the transition
probability of all the synthesis and degradation reactions in
the time interval (t, t+ dt] are given by,

Bursty mRNA synthesis :

P(m(t+dt) = m(t)+j|m(t)) = k̃mP(B=j)Φ(t)g(p)dt
(5a)

mRNA degradation :

P(m(t+dt) = m(t)−1|m(t)) = γmm(t)dt (5b)
Intermediate protein synthesis :

P(e(t+dt) = e(t)+1|e(t)) = kem(t)dt, (5c)
Intermediate protein degradation :

P(e(t+dt) = e(t)−1|e(t)) = γee(t)dt (5d)
Repressor protein synthesis :

P(p(t+dt) = p(t)+1|p(t)) = kpe(t)dt, (5e)
Repressor protein degradation :

P(p(t+dt) = p(t)−1|p(t)) = γpp(t)dt. (5f)

Here, k̃m = km/〈B〉 is the scaled burst frequency which
cancels the burst effect on the mean dynamics. The set
of transition probabilities define the dynamics of stochastic
system of the Goodwin oscillator in the presence of external
signal. To get the dynamics in the absence of periodic signal,
Φ(t) in (6a) must be replaced with 1. Let P (m, e,p, t) be
the probability density for observing m copies of mRNA, e
copies of intermediate protein, and p copies of the repressor
protein at time t. Then the time evolution of P (m, e,p, t)
is given by the chemical master equation (CME) [50]

∂P (m, e,p, t)

∂t
= k̃m

∞∑
j=1

P(B=j)Φ(t)g(p)P (m−j, e,p, t)

+ γm(m+1)P (m+1, e,p, t) + kemP (m, e−1,p, t)

+ γe(e+1)P (m, e+1,p, t) + kpeP (m, e,p−1, t)

+ γp(p+1)P (m, e,p+1, t)− (k̃mΦ(t)g(p) + γmm

+ kem + γee + kpe + γpp)P (m, e,p, t).

A. Moment dynamics and the LNA

The nonlinearity in the above equation makes it impossible
for solving it for the full probability distribution. Rather, we
are interested in computing the noise in copy numbers as a
function of time which relies on the first two moment dy-
namics. Therefore, we want to derive the dynamical equation
for the first two moments. The dynamics of any arbitrary
moment 〈mn1en2pn3〉 where n1, n2, n3 ∈ {0, 1, 2, ..} for
the above stochastic systems can be obtained from the CME
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and is given by the Dynkin’s equation [51],

d〈mn1en2pn3〉
dt

= 〈
∞∑
j=1

k̃mP(B = j)Φ(t)g(p)

((m + j)n1en2pn3 −mn1en2pn3)〉
+ 〈kem(mn1(e + 1)n2pn3 −mn1en2pn3)〉
+ 〈γmm((m− 1)n1en2pn3 −mn1en2pn3)〉
+ 〈kpe(mn1en2(p + 1)n3 −mn1en2pn3)〉
+ 〈γee(mn1(e− 1)n2pn3 −mn1en2pn3)〉
+ 〈γpp(mn1en2(p− 1)n3 −mn1en2pn3)〉.

(6)

The nonlinearlity in the propensity of the mRNA synthesis
due to the function g(p) makes the moment dynamics un-
closed where the dynamics of a lower order moment depends
on the higher moments [51]. We use the Linear Noise
Approximation(LNA) to obtain close moment dynamics [50],
[52]–[54]. Under the LNA, we linearize the g(p) assuming
the fluctuation around the mean 〈(p)〉 is small:

g(p) ≈ g(〈p〉) + (p− 〈p〉)g′(〈p〉), (7)

where g′(p) is the derivative of g with respect to p. Using
(7), we obtain the first and second order moment dynamic
equations of the system from the above Dynkin’s equation.
Here we list them:

d〈m〉
dt

= kmΦ(t)g(〈p〉)− γm〈m〉, (8a)

d〈e〉
dt

= ke〈m〉 − γe〈e〉, (8b)

d〈p〉
dt

= kp〈e〉 − γp〈p〉, (8c)

d〈m2〉
dt

= kmΦ(t)[〈B2〉g(〈p〉)/〈B〉 − 2g′(〈p〉)〈p〉〈m〉

+ 2〈m〉g(〈p〉) + 2g′(〈p〉)〈mp〉]
+ γm〈m〉 − 2γm〈m2〉, (8d)

d〈e2〉
dt

= γe〈e〉 − 2γe〈e2〉+ ke〈m〉+ 2ke〈me〉 (8e)

d〈p2〉
dt

= kp〈e〉+ 2kp〈ep〉+ γp〈p〉 − 2γp〈p2〉, (8f)

d〈me〉
dt

= kmΦ(t)[g(〈p〉)〈e〉 − g′(〈p〉)〈ep〉 − g′(〈p〉)〈e〉〈p〉]

− γe〈me〉+ ke〈m2〉 − γm〈me〉, (8g)
d〈mp〉
dt

= kmΦ(t)[g′(〈p〉)〈p2〉−g′(〈p〉)〈p〉2+g(〈p〉)〈p〉]

− γm〈mp〉+ kp〈me〉 − γp〈mp〉, (8h)
d〈ep〉
dt

= ke〈mp〉+ kp〈e2〉 − γe〈ep〉 − γp〈ep〉. (8i)

Please note that under this approximation, the first order
moments dynamics (9a-c) reduces to the deterministic system
discussed before. By numerically solving these 9 ODEs (8),
we obtain values of 〈m2〉 and 〈m〉 to compute the noise
level, considering zero species at t = 0. We quantify the
noise in mRNA count as function of time in terms of the
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Fig. 3. A damped system in the absence and presence of
periodic force: (A) and (B) Typical stochastic trajectories
for the mRNA count for the damped oscillator in the absence
and presence of external signalling. (C) and (D) The mean
level of mRNA computed using the LNA and Gillespie are
plotted against time in the presence and absence of external
signalling. The external force can drive damped oscillations
to sustained oscillations. The match between the LNA is
excellent. (E) and (F) The Fano factor obtained from the
LNA and stochastic simulations are plotted as a function of
time. The quantitative match between LNA and Gillespie
is quite good, except for noise values near the peaks in
the presence of forcing. Parameters: km=20, ke=1, kp=0.2,
γm=γe=γp=0.1, pcrit=100, h=4, As=0.2, fs=0.022Hz and
〈B〉=1.

Fano factor Fm(t):

Fm(t) =
〈m(t)2〉 − 〈m(t)〉2

〈m(t)〉
. (9)

B. Exact Stochastic Simulations using Gillespie algorithm

We perform stochastic simulations to check the validity of
the LNA. We evolve the stochastic system (5) in numerically
exact way using Gillespie algorithm [55] using our own code
written in C++. According to this algorithm, at a given time
t, we choose a reaction randomly according to its transition
probability from (5). Then we update the species counts
accordingly and increment the time by a random amount
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that is drawn from an exponential with whose mean is the
total transition rate (sum of transition rates for all the events)
of the system at that time. We generate a large number of
stochastic trajectories starting from zero species at t = 0 and
compute the noise statistics.

C. Results

Damped oscillator in the presence of periodic forcing: We
first study how an external periodic signal entrains a damped
oscillation dynamics. We note that for a Hill coefficient
h < 8, the Goodwin system show damped oscillations. Fig.
3(A) shows a typical trajectory for a damped system for
h=4 in the absence of periodic forcing. The mean (〈m〉) and
the noise (Fm(t)) dynamics for the mRNA counts obtained
from both the stochastic simulations and LNA are shown
in Fig. 3(C), (E), respectively. Both the mean and noise
show oscillating modulations that eventually dies out and
converges to fixed values for large t. The match between the
stochastic simulation and the LNA is very good.

In the damped system, periodic forcing can generate
sustained oscillations that get entrained with the signal (see
Fig. 3(B)). The LNA and stochastic simulation results for the
mean and noise match quite well (see Fig. 3(D), (F)). The
noise Fm(t) also shows sustained oscillations. The peak in
the noise and the mean level do not appear at the same time
point, but they do appear in the proximity. The quantitative
match can be poor near the peaks of the oscillating noise.

Sustained oscillator in the presence of periodic forcing:
The trajectories of the sustained oscillations in the absence
and presence of external signal are shown in Fig. 4(A)
and (B), respectively. As can be seen, the external signal
makes the clock oscillations more precise. Interestingly, the
mean behavior of stochastic simulations and LNA results
show distinct behavior (see Fig. 4(C) and (D)). While the
LNA (the same as deterministic) results shows sustained
oscillations, the Gillespie results seem to follow a damped
dynamics in the absence of external signal (Fig. 4(C)). This
damped behavior at the mean level obtained from Gillespie
simulations is as a result of the loss of coherence due to large
stochasticity in the absence of entrainment. In the presence
of external forcing, however, both LNA and Gillespie results
show sustained oscillations (see Fig. 4(C)), as entrainment
makes the clock more precise in time. The quantitative match
between LNA and Gillespie results are very good, except
near the peaks(see Fig. 4(D)).

The noise behavior from the LNA is completely mislead-
ing in the absence of the periodic signal (Fig. 4(E)). The
noise shows oscillating behavior that diverges with time.
Again, this behavior arises because of the presence large
fluctuations that propagate in time where the LNA breaks
down. For the entrained case, the noise also shows sustained
oscillations (Fig. 4(F)). The quantitative match is poor near
the peaks at the early times.

To understand the effect of periodic forcing on the reg-
ularity of the oscillations, we compute the distribution of
the time period from the steady-state trajectories. In Fig.
5(A), we plot the distributions in the presence and absence

 

 
 

 
 

 

A 

C 

E F 

D 

B 

Fig. 4. An autonomous system in the absence and
presence of periodic force: (A) and (B) Typical stochastic
trajectories showing sustained oscillations for the mRNA
count in the absence and presence of external signalling. (C)
and (D) The mean level of mRNA computed using the LNA
and Gillespie are plotted against time in the presence and
absence of external signalling. In the absence of external
forcing, the mean trajectory for mRNA obtained using the
stochastic simulations, show damped behavior inconsistent
with the LNA results that predict sustained oscillations. In
the presence of forcing, the match between the LNA and
stochastic simulations quite good. (E) and (F) The Fano
factor obtained from the LNA and stochastic simulations
are plotted as a function of time. While the Gillespie re-
sults predict noise convergence, the LNA predicts divergent
behavior as a function of time in the absence of periodic
forcing. In the presence of periodic forcing, the noise from
both the methods show sustained periodic modulations with
good quantitative match for large time, expect peak regions.
Parameters: km=20, ke=1, kp=0.2, 〈B〉=1, γm=γe=γp=0.1,
pcrit=100, h=12, As=0.2, and fs ≈ 0.9f0.

of the periodic forcing. As can be seen, forcing makes
the distribution narrower, causing more precise oscillations.
We also compute the steady-state distributions in the peak
values (Fig. 5(B)), and as expected, the distribution become
narrower in the present of forcing.
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Fig. 5. Stochastic simulation results for probability distri-
butions of the time period and peak value. (A) The time
period distributions in the presence and absence of periodic
forcing. (B) The peak value distributions in the presence
and absence of periodic forcing. The periodic forcing makes
the distributions for time period and peak value narrower.
Parameters: km=20, ke=1, kp=0.2, 〈B〉 = 1, γm=γe=γp=0.1,
pcrit=100, h = 12, As = 0.2 and fs ≈ 0.9f0.
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Fig. 6. The relationship between burst sizes and the first
peak value of Fano factor: (A) The noise increases with the
burst size linearly and the noise in the presence of forcing is
the same as no forced case. (B) Noise in unforced system in
much larger than forced for sustained system, but both noises
increase linearly with the burst size. Parameters: km=20,
ke=1, kp=0.2, 〈B〉=1, γm=γe=γp=0.1, pcrit=100, As = 0.2
and fs ≈ 0.9f0.

D. Effect of the burst sizes

In the no feedback limit, one it can be shown that the
noise for bursty productions is given by its average burst size
[56]. How does burst size affect the oscillatory circuit in the
presence of periodic forcing? To address this issue, we study
the effect of bursty production of mRNA with various burst
sizes. All the results presented above were for with average
mRNA burst size 〈B〉 = 1. Here, we consider the first peak
value of the noise as a representative measure. However, the
conclusion is independent of the specific choice. We plot the
first peak noise value as a function of noise for damped and
sustained systems in the absence and presence of periodic
forcing in Fig. 6. The noise linearly increases with burst
sizes for all the case. In the case of damped oscillation, the
forcing does not alter the noise (Fig. 6(A)). However, in the
sustained case, the forcing substantially reduces the noise.

IV. CONCLUSIONS

In summary, in this paper, we have investigated the effect
of periodic forcing on the stochastic dynamics on a biomolec-
ular clock, motivated by the circadian clock in the presence
of the light-dark cycle. For this, we have considered the
classic Goodwin oscillator in the presence of a squarewave
signal. The presence of the external signal makes the clock
precise in terms of amplitude and time period fluctuations.
We have quantified the noise in the mRNA level as a function
of time using two approaches: (i) solving moment dynamics
obtained using the linear noise approximation, assuming
small fluctuations around the mean, and (ii) using exact
stochastic simulations. We have demonstrated that the LNA
works well in the presence of periodic forcing when the
fluctuations become smaller. For an autonomous oscillator,
the LNA results can be misleading in the absence of periodic
forcing due to large fluctuations in the time period and
amplitude. Finally, we have studied the effect the mRNA
bursts and have found entrainment is unable to reduce the
effect of bursts.
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