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Abstract 38 

Quinoa germplasm preserves useful and substantial genetic variation, yet it remains untapped due to 39 

a lack of implementation of modern breeding tools. We have integrated field and sequence data to 40 

characterize a large diversity panel of quinoa. Whole-genome sequencing of 310 accessions 41 

revealed 2.9 million polymorphic high confidence SNP loci. Highland and Lowland quinoa were 42 

clustered into two main groups, with FST divergence of 0.36 and fast LD decay of 6.5 and 49.8 Kb, 43 

respectively. A genome-wide association study uncovered 600 SNPs stably associated with 17 44 

agronomic traits. Two candidate genes are associated with thousand seed weight, and a resistance 45 

gene analog is associated with downy mildew resistance. We also identified pleiotropically acting 46 

loci for four agronomic traits that are highly responding to photoperiod hence important for the 47 

adaptation to different environments. This work demonstrates the use of re-sequencing data of an 48 

orphan crop, which is partially domesticated to rapidly identify marker-trait association and 49 

provides the underpinning elements for genomics-enabled quinoa breeding.  50 

Introduction 51 

Climate change poses a great threat to crop production worldwide. In temperate climates of the 52 

world, higher temperatures and extended drought periods are expected. Moreover, crop production 53 

in industrialized countries depends on only a few major crops resulting in narrow crop rotations. 54 

Therefore, rapid transfer of wild species into crops using genetic modification and targeted 55 

mutagenesis is currently discussed 1,2. Alternatively, orphan crops with a long tradition of 56 

cultivation but low breeding intensity can be genetically improved by genomics assisted selection 57 

methods. Quinoa (Chenopodium quinoa Willd.) is a pseudocereal crop species with a long history 58 

of cultivation. It was first domesticated about 5000-7000 years ago in the Andean region. Quinoa 59 

was a staple food during the pre-Columbian era, and the cultivation declined after the introduction 60 

of crops like wheat and barley by the Spanish rulers. Owing to diversity, biotic and abiotic stress 61 

tolerance, and ecological plasticity, quinoa can adapt to a broad range of agroecological regions 3,4. 62 

Due to a high seed protein content and a favorable amino acid composition, its biological value is 63 

even higher than beef, fish, and other major cereals 5,6. These favorable characteristics contributed 64 

to the increasing worldwide popularity of quinoa among consumers and farmers. 65 

A spontaneous hybridization event between two diploid species between 3.3 and 6.3 million years 66 

ago gave rise to the allotetraploid species quinoa (2n = 4x = 36) with a genome size of 1.45-1.5 Gb 67 

(nuclear DNA content 1C = 1.49 pg) 7,8. A reference genome of the coastal Chilean quinoa 68 

accession PI 614886 has been published with 44,776 predicted gene models together with whole-69 

genome re-sequencing of C. pallidicaule and C. suecicum species, close relatives of the A and B 70 

subgenome donor species, respectively 9. The organellar genomes are originated from the A-71 

genome ancestor 10. 72 

Quinoa belongs to the Amaranthaceae, together with some other economically important crops like 73 

sugar beet, red beet, spinach, and amaranth. It reproduces sexually after self-pollination. Facultative 74 

autogamy was reported for plants in close proximity with outcrossing rates in a range of 0.5 to 75 

17.36 % 11,12. Thus, quinoa accessions are typically homozygous inbred lines. Nonetheless, 76 

heterozygosity in some accessions has been reported, which indicates cross-pollination 13. The 77 

inflorescences are panicles, which are often highly branched. Florets are tiny, which is a significant 78 

obstacle for hand-crossing. However, routine protocols for F1 seed production in combination with 79 

marker-assisted selection have been developed recently 14,15.  80 
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Systematic breeding of quinoa is still at its infancy compared to major crops. Until recently, 81 

breeding has been mainly limited to Bolivia 16 and Peru 17, which are the major growing areas of 82 

quinoa. Therefore, quinoa can be regarded as a partially domesticated crop. Many accessions suffer 83 

from seed shattering, branching, and non-appropriate plant height, which are typical domestication 84 

traits. Apart from these characters, grain yield and seed size, downy mildew resistance, 85 

synchronized maturity, stalk strength, and low saponin content are major breeding objectives 18. In 86 

the past years, activities have been intensified to breed quinoa genotypes adapted to temperate 87 

environments, for example, Europe, North America, and China 19. Here, the major problem is the 88 

adaptation to long-day conditions because quinoa is predominantly a short-day plant due to its 89 

origin from regions near the equator.  90 

There are only a few studies about the genetic diversity of quinoa. They were mainly based on 91 

phenotypic observations 16,20 and low throughput marker systems like random amplified 92 

polymorphic DNA 21, amplification fragment length polymorphisms 22, and microsatellites 23. A 93 

limited number of single nucleotide polymorphisms (SNP) based on expressed sequence tags were 94 

published 24. Maughan, et al. 25 used five bi-parental populations to identify ca. 14,000 SNPs, from 95 

which 511 KASP markers were developed. Genotyping 119 quinoa accessions gave the first insight 96 

into the population structure of this species 25. Now, the availability of a reference genome enables 97 

genome-wide genotyping (Jarvis et al. 2017). Jarvis, et al. 9 re-sequenced 15 accessions and 98 

identified ca. 7.8 million SNPs. In another study, 11 quinoa accessions were re-sequenced, and 8 99 

million SNPs and ca. 842 thousand indels were identified 26.  100 

Our study aimed to analyze the population structure of quinoa and patterns of variation by re-101 

sequencing a diversity panel encompassing germplasm from all over the world. Using millions of 102 

markers, we performed a genome-wide association study using multiple-year field data. Here, we 103 

identified QTLs that control agronomically important traits important for breeding cultivars to be 104 

grown under long-day conditions. We are discussing the fundamental differences between an 105 

underutilized crop and crops with a long breeding history. Our results provide useful information 106 

for further understanding the genetic basis of agronomically important traits in quinoa and will be 107 

instrumental for future breeding. 108 

Results 109 

Re-sequencing 310 quinoa accessions reveals high sequence variation 110 

We assembled a diversity panel made of 310 quinoa accessions representing regions of major 111 

geographical distributions of quinoa (Supplementary Fig. 1). The diversity panel comprises 112 

accessions with different breeding history (Supplementary Table 1). We included 14 accessions 113 

from a previous study, of which 7 are wild relatives 9. The sequence coverage ranged from 4.07 to 114 

14.55, with an average coverage of 7.78. We mapped sequence reads to the reference genome V2 115 

(CoGe id53523). Using mapping reads, we identified 45,330,710 single nucleotide polymorphisms 116 

(SNPs). 117 

 118 

 119 

 120 

 121 
 122 
 123 
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Table 1: Summary statistics of genome-wide single nucleotide polymorphisms identified in 303 quinoa accessions 124 

 125 

After filtering the initial set of SNPs, we identified 4.5 million SNPs in total for the base SNP set. 126 

We further filtered the SNPs for MAF >5 % (HCSNPs). We obtained 2.9 million high confident 127 

SNPs for subsequent analysis (Supplementary Table 2). Across the whole genome, SNP density 128 

was high, with an average of 2.39 SNPs/kb. However, SNP densities were highly variable between 129 

genomic regions and ranged from 0 to 122 SNPs/kb (Supplementary Fig. 3). We did not observe 130 

significant differences in SNP density between the two subgenomes (A subgenome 2.43 SNPs/kb; 131 

B subgenome 2.35 SNPs/kb). Then, we split the SNPs by their functional effects as determined by 132 

SnpEff 27. Among SNPs located in non-coding regions, 598,383 and 617,699 SNPs were located 133 

upstream (within 5kb from the transcript start site) and downstream (within 5kb from the stop site) 134 

of a gene, whereas 114,654 and 251,481 SNPs were located within exon and intron sequences, 135 

respectively (Table 1). We further searched for SNPs within coding regions. We found 70,604 136 

missense SNPs and 41,914 synonymous SNPs within coding regions of 53,042 predicted gene 137 

models.  138 

Linkage disequilibrium and population structure of the quinoa diversity panel 139 

Across the whole genome, LD decay between SNPs averaged 32.4 kb. We did not observe 140 

substantial LD differences between subgenome A (31.9kb) and subgenome B (30.7kb) 141 

(Supplementary Fig. 4C). The magnitude of LD decay among chromosomes did not vary drastically 142 

except for chromosome Cq6B, which exhibited a substantially slower LD decay (Supplementary 143 

Fig. 4 A and B). 144 

Then, we unraveled the population structure of the diversity panel. We performed principal 145 

component (PCA(SNP)), population structure, and phylogenetic analyses. PCA(SNP) showed two main 146 

clusters consistent with previous studies 13. The first and second principal components (PC1(SNP) and 147 

PC2(SNP)) explained 23.35% and 9.45% of the variation, respectively (Fig. 1A). 202 (66.67%) 148 

accessions were assigned to subpopulation 1 (SP1) and 101 (33.33%) to subpopulation 2 (SP2). SP1 149 

comprised mostly Highland accessions, whereas Lowland accessions were found in SP2. PCA 150 

demonstrated a higher genetic diversity of the Highland population (Fig. 1A). We also calculated 151 

PCs for each chromosome separately. For 16 chromosomes, the same clustering as for the whole 152 

genome was calculated. Nevertheless, two chromosomes, Cq6B, and Cq8B showed three distinct 153 

clusters (Supplementary Fig. 5). This is due to the split of the Lowland population into two clusters. 154 

We reason that gene introgressions on these two chromosomes from another interfertile group 155 

might have caused these differences. This is also supported by a slower LD decay on chromosome 156 

Cq6B (Supplementary Fig. 4B). 157 

Parameter Type 
All genotypes 

(quinoa only) 

Highland 

population 

Lowland  

population 

SNP 

Total 2,872,935 2,590,907 1,938,225 

Intergenic 2,452,347 2,227,952 1,649,310 

Introns 251,481 101,546 172,692 

Exons 114,654 214,945 78,248 

Nucleotide diversity  5.78 x 10-4 3.56 x 10-4 

Tajima’s D  0.884 -0.384 

Population 

divergences 

FST 

(Weighted_average) 
 0.36 
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 158 

Fig. 1: Genetic diversity and population structure of the quinoa diversity panel. (a) PCA of 303 quinoa accessions. PC1 159 
and PC2 represent the first two components of analysis, accounting for 23.35% and 9.45% of the total variation, 160 
respectively. The colors of dots represent the origin of accessions. Two populations are highlighted by different colors: 161 
Highland (light blue) and Lowland (pink). (b) Subpopulation wise LD decay in Highland (blue) and Lowland 162 
population (red). (c) Population structure is based on ten subsets of SNPs, each containing 50,000 SNPs from the 163 
whole-genome SNP data. Model-based clustering was done in ADMIXTURE with different numbers of ancestral 164 
kinships (K=2 and K=8). K=8 was identified as the optimum number of populations. Left: Each vertical bar represents 165 
an accession, and color proportions on the bar correspond to the genetic ancestry. Right: Unrooted phylogenetic tree of 166 
the diversity panel. Colors correspond to the subpopulation. 167 

We also performed a population structure analysis with the ADMIXTURE software. We used cross-168 

validation to estimate the most suitable number of populations. Cross-validation error decreased as 169 

the K value increased, and we observed that after K = 5, cross-validation error reached a plateau 170 

(Supplementary Fig. 6B). We observed allelic admixtures in some accessions, likely owing to their 171 

breeding history. The wild accessions were also clearly separated at the smallest cross-validation 172 

error of K=8, except two C. hircinum accessions (Fig. 1C). The reason for this could be that because 173 

C. hircinum is the closest crop wild relative, it also may have outcrossed with quinoa. The Highland 174 

population was structured into five groups, while the Lowland accessions were split into two 175 

subpopulations. The broad agro-climatic diversity of the Andean Highland germplasm might have 176 

caused a higher number of subpopulations.   177 
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 178 

Fig. 2: Maximum likelihood tree of 303 quinoa and seven wild Chenopodium accessions from the diversity panel. 179 
Colors are depicting the geographical origin of accessions.    180 

We analyzed the phylogenetic relationships between quinoa accessions using 434,077 SNPs. 181 

Constructing a maximum likelihood tree gave rise to five clades (Fig. 2). We found that the 182 

placement of the wild quinoa species was concordant with the previous reports confirming that 183 

quinoa was domesticated from C. hircinum 9. However, we found that the C. hircinum accession 184 

BYU 566 (from Chile) was placed at the base of both Lowland and Highland clades, which is in 185 

contrast to Jarvis, et al. 9, where this accession was placed at the base of coastal quinoa. As 186 

expected, accessions from the USA and Chile are closely related because the USDA germplasm had 187 

been collected at these geographical regions. 188 

Genomic patterns of variations between Highland and Lowland quinoa 189 

We were interested in patterns of variation in response to geographical diversification. We used 190 

principal component analysis derived clusters and phylogenetic analysis to define two diverged 191 

quinoa populations (namely Highland and Lowland). These divergent groups are highly correlated 192 

with Highland and Lowland geographical origin. We used the base SNP set to analyze diversity 193 

statistics. To detect genomic regions affected by the population differentiation, we measured the 194 
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level of nucleotide diversity using 10 kb non-overlapping windows 28. Then we calculated the 195 

whole genome-wide LD decay across the two populations (Highland vs. Lowland); LD decayed 196 

more rapidly in Highland quinoa (6.5 kb vs. 49.8 kb) (Fig. 1B). To measure nucleotide diversity, we 197 

scanned the quinoa genome with non-overlapping windows of 10 kb in length in both populations 198 

separately. The nucleotide diversity of the Highland population (5.78 x 10-4) was 1.62 fold higher 199 

compared to the Lowland population (3.56 x 10-4) (Table 1 and Supplementary Fig. 7). We 200 

observed left-skewed distribution and negative Tajima’s D value (-0.3883) in the Lowland 201 

populations indicating recent population growth (Table 1 and Supplementary Fig. 8). Genomic 202 

regions favorable for adaptation to Highlands should have substantially lower diversity in the 203 

Highland population than the Lowland population. Therefore, we calculated the nucleotide diversity 204 

ratios between Highland and Lowland to identify major genomic regions that are underlying the 205 

population differentiation. The FST value between populations was estimated to be 0.36, illustrating 206 

strong population differentiation. Concerning the regions of variants, the number of exonic SNPs is 207 

substantially higher in the Highland population (Table 1 and Supplementary Fig. 7). 208 

Mapping agronomically important trait loci in the quinoa genome  209 

We evaluated 13 qualitative and four dichotomous traits on 350 accessions across two different 210 

environments. At the time of the final harvest, 254 accessions did not reach maturity (senescence). 211 

All accessions produced seeds therefore used in seed analysis. For all traits, substantial phenotypic 212 

variation among accessions was found. High heritabilities were calculated for all quantitative traits 213 

except for number of branches (NoB) and stem lying (STL), which indicates that the phenotypic 214 

variation between the accessions is mostly caused by genetic variation (Supplementary Table 3). 215 

Trait correlations between years were also high (Supplementary Fig. 9), which is in accordance with 216 

the heritability estimates. We found the strongest positive correlation between days to maturity 217 

(DTM) and panicle length (PL), and plant height (PH) and PL, whereas the strongest negative 218 

correlation was found between DTM and thousand seed weight (TSW) (Supplementary Fig. 10). 219 

Then a principal component analysis was performed based on 12 quantitative traits (PCA(PHEN)) to 220 

explore the phenotypic relationship among quinoa accessions. The first two principal components 221 

explained 62.12% of the phenotypic variation between the accessions. The score plot of the 222 

principal components showed a similar clustering pattern as the SNP based PCA analysis 223 

(PCA(SNP)) (Fig. 1A and Supplementary Fig. 11A). PCA(PHEN) variables factor map indicated that 224 

most Lowland accessions were high yielding with high TSW and dense panicles. Moreover, these 225 

accessions are early flowering and early maturing, and they are short (Supplementary Fig. 11B). 226 

Phenotype-based PCA(PHEN) also showed that the Lowland accessions are better adapted/selected for 227 

cultivation in long-day photoperiods compared to the Highland accessions. These results are in 228 

accordance with LD, nucleotide diversity, and Tajima’s D estimations, implying the Lowland 229 

accessions went through a stronger selection during breeding. 230 

Then, we calculated the best linear unbiased estimates (BLUE) of the traits investigated. In total,  231 

294 accessions shared the re-sequencing information and phenotypes out of 350 phenotypically 232 

evaluated accessions. For GWAS analysis, we used ~2.9 million high-confidence SNPs. In total, we 233 

identified 1480 significant (P<9.41e-7) SNP-trait associations (MTA) for 17 traits (Supplementary 234 

Fig. 12). The number of MTAs ranged from 4 (STL) to 674 (DTM) (Supplementary Table 4). In 235 

agreement with previous reports, we defined an MTA as “consistent” when it was detected in both 236 

years29. We identified 600 consistent MTAs across eleven traits. TSW and DTM showed the highest 237 

number of “consistent” associations. Among these, 143 MTAs are located within a gene, and 22 238 

SNPs resulted in a missense mutation (Supplementary Table 5). MTA for the duration from bolting 239 

to flowering (DTB to DTF), NoB, Seed yield, STL, and growth type (GT) were not “consistent” 240 

between years (Supplementary Fig. 12). This is also reflected by the low heritability estimations of 241 

these traits, indicating considerably higher genotype x environment interactions.   242 
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 243 

Fig. 3: Genomic regions associated with important agronomic traits (a) Significant marker-trait associations for days to 244 
flowering, days to maturity, plant height, and panicle density on chromosome Cq2A. Red color arrows indicate the SNP 245 
loci pleiotropically acting on all four traits. (b) Boxplots showing the average performance for four traits over two 246 
years, depending on single nucleotide variation (C or G allele) within locus Cq2A_ 8093547. (c) Local Manhattan plot 247 
from region 80.40 - 81.43 Mb on chromosome Cq2A associated with PC1 of the days to flowering (DTF), days to 248 
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maturity (DTM), plant height (PH), and panicle length (PL), and local LD heat map (bottom). The colors represent the 249 
pairwise correlation between individual SNPs. Green color dots represent the strongest MTA (Cq2A_ 8093547). 250 

Candidate genes for agronomically important traits 251 

First, we tested the resolution of our mapping study. We searched for major genes 50Kb down- and 252 

upstream of significant SNPs for two qualitative traits in quinoa, flower color, and seed saponin 253 

content. We identified highly significant MTAs for stem color on chromosome Cq1B (69.72-69.76 254 

Mb). There are two genes (CqCYP76AD1 and CqDODA1) from the associated loci displaying high 255 

homology to betalain synthesis pathway genes BvCYP76AD1 30 and BvDODA1 31 from sugar beet 256 

(Supplementary Fig. 14A and Supplementary Fig. 12). A significant MTA for saponin content on 257 

chromosome Cq5B between 8.85 Mb to 9.2 Mb harbored the two BHLH25 genes which have been 258 

reported to control saponin content in quinoa 9 (Supplementary Fig. 14B and Supplementary Fig. 259 

12). This demonstrates that the marker density is high enough to narrow down to causative genes 260 

underlying a trait.  261 

Then, we examined four quantitative traits. We found seven MTA on chromosome Cq2A that are 262 

associated with DTF, DTM, PH, and PL (cross-phenotype association), indicating evidence for 263 

pleiotropic gene action (Fig. 3 and Supplementary Table 6). For further confirmation and to 264 

investigate genes that are pleiotropically active on different traits, we followed a multivariate 265 

approach 32. First, we performed a PCA using the four phenotypes (cross-phenotypes). We found 266 

89.94% of the variation could be explained by the first two principal components of the cross-267 

phenotypes (PCA(CP)) (Supplementary Fig. 15). This indicates the adequate power of the PCA(CP) to 268 

reduce dimensions for the analysis of the cross-phenotypes association. We observed similar 269 

clustering as in PCA(SNP). Therefore, these results indicate that in quinoa, DTF, DTM, PH, and PL 270 

are highly associated with population structure and thus, the adaptation to diverse environments. 271 

Then, we performed a GWAS analysis using the first three PCs as traits (PC-GWAS) 272 

(Supplementary Fig. 15C). We identified strong associations on chromosomes Cq2A, Cq7B (PC1), 273 

and Cq8B (PC2) (Supplementary Fig. 16). Out of 468 MTAs (PC1:426 and PC2 42) across the 274 

whole genome, 222 (PC1:211 and PC2:11) are located within 95 annotated genes. We found 14 275 

SNPs that changed the amino acid sequence in 12 predicted protein sequences of associated genes 276 

(Supplementary Table 5). In the next step, we searched genes located within 50kb to an MTA. 277 

Altogether, 605 genes were identified (PC1:520 and PC2:85) (Supplementary Table 7).  278 

We found the region 80.50 -81.50 Mb on chromosome Cq2A to be of special interest because it 279 

displays stable pleiotropic MTA for DTF, DTM, PH, and PL. The most significant SNP is located 280 

within the CqGLX2-2 gene, which encodes an enzyme of the glyoxalase family (Fig. 3). The 281 

Arabidopsis GLX2-1 has been shown to be essential for growth under abiotic stress 33. The allele 282 

carrying a cytosine at the position with the most significant SNP resulted in early flowering, 283 

maturing, and short panicles and plants (Fig. 3b). These traits are essential for the adaptation to 284 

long-day conditions.  285 

Thousand seed weight is an important yield component. We found a strong MTA between 63.2 – 286 

64.87 Mb on chromosome Cq8B. Significantly associated SNPs were localized within two genes 287 

(Fig. 4). One gene displays homology to PP2C encoding a member of the phosphatase-2C (PP2C) 288 

protein family, which participates in Brassinosteroids signaling pathways and controls the 289 

expression of the transcription factor BZR1 34. The second gene encodes a member of the RING-290 

type E3 ubiquitin ligase family. These genes are controlling seed size in soybean, maize, rice, 291 

soybean, and Arabidopsis  35. We then checked haplotype variation and identified 5 and 7 292 

haplotypes for CqPP2C and CqRING genes, respectively. Accessions carrying PP2C_hap3 and 293 

RING_hap7 displayed larger seeds in both years (Fig. 4 and Supplementary Fig. 17) 294 
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 295 

Fig. 4: Identification of candidate genes for thousand seed weight. (a) Manhattan plot from chromosome Cq8B. Green 296 
and blue dots are depicting the CqPP2C5 and the CqRING gene, respectively. (b) Top: Local Manhattan plot in the 297 
neighborhood of the CqPP2C gene. Bottom: LD heat map. (c) Top: Local Manhattan plot in the neighborhood of the 298 
CqRING gene. Bottom: LD heat map. Differences in thousand seed weight between five CqPP2C (d) and seven 299 
CqRING haplotypes (e). 300 
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Downy mildew is one of the major diseases in quinoa, which causes massive yield damage. 301 

Notably, our GWAS identified strong MTA for resistance against this disease. The most significant 302 

SNPs are located in subgenome A (Supplementary Fig. 12). Thus, the A-genome progenitor seems 303 

to be the donor of downy mildew resistance. We identified a candidate gene within a region 38.99 - 304 

39.03 Mb on chromosome Cq2A, which showed the highest significant association (Supplementary 305 

Fig. 14C). This gene encodes a protein with an NBS-LRR (nucleotide-binding site leucine-rich 306 

repeat) domain often found in resistance gene analogs with a function against mildew infection 36.  307 

Discussion 308 

We assembled a diversity set of 303 quinoa accessions and seven accessions from wild relatives. 309 

Plants were grown under northern European conditions, and agronomically important traits were 310 

studied. In total, 2.9 million SNPs were found after re-sequencing. We found substantial phenotypic 311 

and genetic variation. Our diversity set was structured into two highly diverged populations, and 312 

genomic regions associated for this diversity were localized. Due to a high marker density, 313 

candidate genes controlling qualitative and quantitative traits were identified. The high genetic 314 

diversity and rapid LD breakdown are reflecting the short breeding history of this crop.   315 

We were aiming to assemble the first diversity set, which represents the genetic variation of this 316 

species. Therefore, we established a permanent resource that is genotypically and phenotypically 317 

characterized. We believe that this collection is important for future studies due to the following 318 

reasons: We observed substantial phenotypic variation for all traits and high homogeneity within 319 

accessions. Moreover, low or absent phenotypic variation within accessions demonstrates 320 

homogeneity as expected for a self-pollinating species. Therefore, the sequence of one plant is 321 

representative of the whole accession, which is important for the power of the GWAS.    322 

Today, over sixteen thousand accessions of quinoa are stored ex-situ in seed banks in more than 30 323 

countries 37. Despite the enormous diversity, only a few accessions have been genotyped with 324 

molecular markers. We found a clear differentiation into Highland and Lowland quinoa. In previous 325 

studies, five ecotypes had been distinguished: Valley type, Altiplano type, Salar type, Sea level 326 

type, and Subtropical type  19. Adaptation to different altitudes, tolerance to abiotic stresses such as 327 

drought and salt, and photoperiodic responses are the major factors determining ecotypes 18. In our 328 

study, we could further allocate the quinoa accessions to five Highland and two Lowland 329 

subpopulations. This demonstrates the power of high-density SNP mapping to identity finer 330 

divisions at higher K. The origin of accessions and ecotype differentiation could be meaningfully 331 

interpreted by combining the information from phylogenetic data and population structure. As we 332 

expected, North American accessions (accessions obtained from USDA) were clustering with 333 

Chilean accessions, suggesting sequence-based characterization of ecotypes would be more 334 

informative and reproducible. Moreover, high-density SNP genotyping unveiled the origin of 335 

unknown or falsely labeled gene bank accessions, as recently proposed by Milner, et al. 38. The 336 

geographical origin of 52 accessions from our panel was unknown. We suggest using phylogenic 337 

data and admixture results to complement the available passport data. For instance, two accessions 338 

with origin recorded as Chile are closely related to Peruvian and Bolivian accessions, which 339 

suggests that they are also originating from Highland quinoa.  340 

What can we learn about the domestication of quinoa and its breeding history by comparing our 341 

results with data from other crops? LD decay is one parameter reflecting the intensity of breeding. 342 

LD decay in quinoa (32.4 kb) is faster than in most studies with major crop species, e.g. rapeseed 343 

(465.5 kb) 39, foxtail millet (Setaria italica, 100 kb) 40, pigeonpea (Cajanus cajan, 70 kb) 41, 344 

soybean (150 kb) 42 and rice (200 kb) 43. Although comparisons must be regarded with care due to 345 

different numbers of markers and accessions, different types of reproduction, and the selection 346 
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intensity, the rapid LD decay in quinoa reflects its short breeding history and low selection 347 

intensity. Moreover, quinoa is a self-pollinating species where larger linkage blocks could be 348 

expected. However, cross-pollination rates in some accessions can be up to 17.36 % 12, which is 349 

exploited by small Andean farmers who grow mixed quinoa accessions to ensure harvest under 350 

different biotic and abiotic stresses. This may facilitate a certain degree of cross-pollination and 351 

admixture.  352 

Interestingly, the LD structure between Highland and Lowland populations is highly contrasting 353 

(6.5 vs. 49.8 kb), indicating larger LD blocks in the Lowland population. Low nucleotide diversity 354 

and negative Tajima’s D were also observed in the Lowland population compared to Highland 355 

quinoa. The population differentiation index and LD differences have been used to test the 356 

hypothesis of multiple domestication events. As an example, different domestication bottlenecks 357 

have been reported for japonica (LD decay: 65 kb) and indica rice (LD decay: 200 kb) 44. The 358 

estimated FST value from this study (0.36) is in the similar range of FST  estimates in rice subspecies 359 

indica and japonica (0.55) 45 and melon (Cucumis melo) subspecies melo and agrestis (0.46) 46. 360 

Two hypotheses have been proposed for the domestication of quinoa from C. hircinum; (1) one 361 

event that gave rise to Highland quinoa and subsequently to Lowland quinoa and (2) two separate 362 

domestication events giving rise to Highland and Lowland quinoa independently 9. However, our 363 

study is not strictly following the second hypothesis because C. hircinum accession BYU 566 was 364 

basal to both clades of the phylogenetic tree (Highland and Lowland). Moreover, our wild 365 

Chenopodium germplasm does not represent enough diversity for in-depth analysis of 366 

domestication events. Therefore, we propose three possible scenarios to explain strong differences 367 

in LD structure, nucleotide diversity, Tajima’s D and FST, (1) two independent domestication evens 368 

with a strong bottleneck on lowland populations, (2) a single domestication but strong population 369 

growth after adaptation of lowland quinoa or (3) strong adaptive selection after domestication. To 370 

understand the history and genetics of domestication, it will be necessary to sequence a large 371 

representative set of outgroup species such as C berlandieri, C. hircinum, C. pallidicaule, and C. 372 

suecicum.  373 

Apart from marker density and sample size, the power of GWAS depends on the quality of the 374 

phenotypic data. Plants were grown in Northern Europe. Therefore, the MTAs are, first of all, 375 

relevant for temperate long-day climates. The share of genetic variances and thus, the heritabilities 376 

were high across environments. We expect higher genotype x environment interaction for flowering 377 

time, days to maturity, plant height, and panicle length if short-day environments will be included 378 

because many accessions have a strong day-length response (data not shown). Furthermore, the 379 

positions of genes controlling Mendelian traits were precisely coinciding with significant SNP 380 

positions, as exemplified by the genes associated with saponin content and flower color. Hence, the 381 

diversity panel provides sufficient power to identify SNP-trait associations for important agronomic 382 

traits such as TSW and downy mildew tolerance. In different plant species, seed size is controlled 383 

by six different pathways 35. We found two important genes controlling seed size from the 384 

Brassinosteroid (CqPP2C) and the ubiquitin-proteasome (CqRING) pathway. The non-functional 385 

allele of soybean PP2C1 resulted in small seeds 34. We detected a superior haplotype (PP2C_hap3), 386 

which results in larger seeds. CqRING encodes an E3 ubiquitin ligase protein. There are two RING-387 

type E3 ubiquitins known as DA1 and DA2, which are involved in seed size controlling pathway. 388 

They were found in Arabidopsis rice, maize, and wheat. Downy mildew is the most acute disease 389 

for quinoa, caused by the fungus Peronospora variabili 47. A recent study attempted identification 390 

of genes based on a GWAS analysis. However, no significant associations were found, probably 391 

due to the lack of power because of the small number of accessions used (61 and 88) 48. In our 392 

study, a strong MTA suggests that the NBS-LRR gene on chromosome Cq2A contributes to downy 393 

mildew resistance in quinoa. We propose using this sequence for marker-assisted selection in 394 

segregating F2 populations produced during pedigree breeding of quinoa. 395 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2020. ; https://doi.org/10.1101/2020.12.03.410050doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.410050
http://creativecommons.org/licenses/by-nc/4.0/


13 

Christian Jung, Plant Breeding Institute Kiel, 26.11.2020 

In this study, the advantage of multivariate analysis of cross-phenotype association became obvious. 396 

We could identify candidate genes with a pleiotropic effect on days to flowering, days to maturity, 397 

plant height, and panicle length. Interestingly, the most significant SNP was residing within a 398 

putative GLX-2 ortholog. GLX genes, among other functions, have been shown to impact cell 399 

division and proliferation in Amaranthus paniculatus 49. Therefore, the CqGLX-2 gene is one 400 

candidate for controlling day length response.  401 

This study also has a major breeding perspective. We aimed to elucidate the potential of quinoa for 402 

cultivation in temperate climates. Evidently, many accessions are not adapted to northern European 403 

climate and photoperiod conditions because they flowered too late and did not reach maturity before 404 

October. Nevertheless, 48 accessions are attractive as crossing partners for breeding programs 405 

because they are insensitive to photoperiod or long-day responsive. Moreover, they are attractive 406 

due to their short plant height, low tillering capacity, favorable inflorescence architecture, and high 407 

TSW. These are important characters for mechanical crop cultivation and combine harvesting. The 408 

MTA found in this study offers a perspective to use parents with superior phenotypes in crossing 409 

programs. We suggest a genotype building strategy by pyramiding favorable alleles (haplotypes). In 410 

this way, also accessions from our diversity set, which are not adapted to long-day conditions but 411 

with favorable agronomic characters, will be considered. Then, favorable genotypes will be 412 

identified from offspring generations by marker-assisted selection using markers in LD with 413 

significant SNPs. Furthermore, the MTA from this study will be useful for allele mining in quinoa 414 

germplasm collections to identify yet unexploited genetic variation.  415 

Materials and Methods 416 

Plant materials and growth conditions 417 

We selected 350 quinoa accessions for phenotyping, and of these, 296 were re-sequenced in this 418 

study. Re-sequencing data of 14 additional accessions that had already been published 9 were also 419 

included in the study, together with the wild relatives (C. belandieri and C. hircinum) 9. These 420 

accessions represent different geographical regions of quinoa cultivation (Supplementary Table 1). 421 

Plants were grown in the field in Kiel, Northern Germany, in 2018 and 2019. Seeds were sown in 422 

the second week of April in 35x multi-tray pots. Then plants were transplanted to the field in the 423 

first week of May as single-row plots in a randomized complete block design with three blocks. The 424 

distances between rows and between plants were set to 60 cm and 20 cm, respectively. Each row 425 

plot contained seven plants per accession.  426 

We recorded days to bolting (DTB) as BBCH51 and days to flowering (DTF) as BBCH60 twice a 427 

week during the growth period. Days to maturity (DTM) was determined when plants reached 428 

complete senescence (BBSHC94). If plants did not reach this stage, DTM was set as 250 days. In 429 

both years, plants were harvested in the second week of October. Plant height (PH), panicle length 430 

(PL), and the number of branches (NoB) were phenotyped at harvest. Stem lying (STL) 431 

(Supplementary Fig. 2) was scored on a scale from one to five, where score one indicates no stem 432 

lying. Similarly, panicle density was recorded on a scale from one to seven, where density one 433 

represents lax panicles, and panicle density seven represents highly dense panicles. Flower color 434 

and stem color were determined by visual observation. Pigmented and non-pigmented plants were 435 

scored as 1 and 0, respectively. Growth type was classified into two categories and analyzed as a 436 

dichotomous trait as well. We observed severe mildew infection in 2019. Therefore, we scored 437 

mildew infection on a scale from 1 to 3, where 1 equals no infection, and 3 equals severe infection.  438 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2020. ; https://doi.org/10.1101/2020.12.03.410050doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.410050
http://creativecommons.org/licenses/by-nc/4.0/


14 

Christian Jung, Plant Breeding Institute Kiel, 26.11.2020 

Statistical analysis 439 

We calculated the best linear unbiased estimates of the traits across years by fitting a linear mixed 440 

model using the lme4 R package  50. We used the following model: 441 

Y
ijk

=µ + Accession
i
 + Block

j
 + Year

k
 + (Accession x Block)

ij
+ (Accession x Year)

ik 
+ Error

ijk 
442 

Where µ is the mean, Accessioni is the genotype effect of the i-th accession, Blockj  is the effect of 443 

the j-th Block, Yeark is the effect of the k-th year, (Accession x Block)ij is the Accession-Block 444 

interaction effect, Accession x Yearik is the accession-year interaction effect, Errorijk is the error of 445 

the j-th block in the k-th year. We treated all items as random effects for heritability estimation, and 446 

for best linear unbiased estimates (BLUE), accessions were treated as fixed effects. We analyzed the 447 

principle components of phenotypes using the R package FactoMineR 51.  448 

Genome sequencing and identification of genomic variations  449 

For DNA extraction, two plants per genotype were grown in a greenhouse at the University of 450 

Hohenheim, and two leaves from a single two-months old plant were collected and frozen 451 

immediately. DNA was subsequently extracted using the AX Gravity DNA extraction kit (A\&A 452 

Biotechnology, Gdynia, Poland) following the manufacturer’s instructions. Purity and quality of 453 

DNA were controlled by agarose gel electrophoresis and the concentration determined with a Qubit 454 

instrument using SYBR green staining. Whole-genome sequencing was performed for 312 455 

accessions at Novogene (China) using short-reads Illumina NovaSeq S4 Flowcell technology and 456 

yielded an average of 10 Gb of paired-end (PE) 2 x 150 bp reads with quality Q>30 Phred score per 457 

sample, which is equivalent to ~7X coverage of the haploid quinoa genome (~1.45 Gb). We then 458 

used an automated pipeline (https://github.com/IBEXCluster/IBEX-459 

SNPcaller/blob/master/workflow.sh) compiled based on the Genome Analysis Toolkit. Raw 460 

sequence reads were filtered with trimmomatic-v0.38 52 using the following criteria: LEADING:20; 461 

TRAILING:20; SLIDINGWINDOW:5:20; MINLEN:50. The filtered paired-end reads were then 462 

individually mapped for each sample against an improved version of the QQ74 quinoa reference 463 

genome (CoGe id53523) using BWA-MEM (v-0.7.17) 53 followed by sorting and indexing using 464 

samtools (v1.8) 54. Duplicated reads were marked, and read groups were assigned using the Picard 465 

tools (http://broadinstitute.github.io/picard/). Variants were identified with GATK (v4.0.1.1) 55 56 466 

using the “--emitRefConfidence” function of the HaplotypeCaller algorithm and “—heterozygosity” 467 

value set at 0.005 to call SNPs and InDels for each accession. Individual g.vcf files for each sample 468 

were then compressed and indexed with tabix (v-0.2.6) 57 and combined into chromosome g.vcf 469 

using GenomicsDBImport function of GATK. Joint genotyping was then performed for each 470 

chromosome using the function GenotypeGVCFs of GATK. To obtain high confidence variants, we 471 

excluded SNPs with the VariantFiltration function of GATK with the criteria: QD < 2.0; FS > 60.0; 472 

MQ < 40.0; MQRankSum < −12.5; ReadPosRankSum < - 8.0 and SOR > 3.0.  Then, SNP loci 473 

which contained more than 70% missing data, were filtered by VCFtools 58 (v0.1.5), which resulted 474 

in our initial set of ~45M SNPs for all the 332 accessions, including 20 previously re-sequenced 475 

accessions 9. All resequencing data are submitted to SRA under project id BioProject 476 

PRJNA673789. 477 

In our panel, we had three triplicates for quality checking and nine duplicates between Jarvis et al. 478 

2017 and 312 newly re-sequenced accessions. In order to remove duplicates, as a preliminary 479 

analysis, we removed SNP loci with a minimum mean-depth <5 across samples and SNP loci with 480 

more than 5% missing data. Then, we filtered SNPs with a minor allele frequency lower than 0.05 481 

(MAF<0.05). After these filtering steps, we obtained a VCF file that contained 229,017 SNPs. 482 

Then, we construct a maximum likelihood (ML) tree. First, we used the modelFinder 59 in IQ-TREE 483 
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v1.6.619 (Nguyen et al. 2015) to determine the best model for ML tree construction. We selected 484 

GTR+F+R8 (GTR: General time-reversible, F: Empirical base frequencies, R8: FreeRate model) as 485 

the best fitting model according to the Bayesian Information Criterion (BIC) estimated by the 486 

software. We used 1000 replicates with ultrafast bootstrapping (UFboots)60 to check the reliability 487 

of the phylogenetic tree. To visualize the phylogenetic tree, we used the Interactive Tree Of Life 488 

tool (https://itol.embl.de/)61. Then, based on the phylogenetic tree, we removed duplicate accessions 489 

and accessions with unclear identity. After the quality control, we retained 310 accessions (303 490 

quinoa accessions and 7 wild Chenopodium accessions). 491 

Then we used the initial SNP set and defined two subsets using the following criteria: (1) A base 492 

SNP set of 5,817,159 biallelic SNPs obtained by removing SNPs with more than 50% missing 493 

genotype data, minimum mean depth less than five, and minor allele frequency less than 1%. (2) A 494 

high confidence (HCSNP) set of 2,872,935 SNPs from the base SNP set by removing SNPs with a 495 

minor allele frequency of less than 5%. The base SNP set was used for the diversity statistics, and 496 

the HCSNPs set was used for GWAS analysis.   497 

We annotated the HCSNP using SnpEff 4.3T 27 and a custom database 27 based on the QQ74 498 

reference genome and annotation (CoGe id53523). Afterward, we extracted the SNP annotations 499 

using SnpSift 62. Based on the annotations, SNPs were mainly categorized into five groups, (1) 500 

upstream of the transcript start site (5kb), (2) downstream of the transcript stop site (5kb), (3) 501 

coding sequence (CDS), (4) intergenic, and (5) intronic. We used SnpEff to categorize SNPs in 502 

coding regions based on their effects such as synonymous, missense, splice acceptor, splice donor, 503 

splice region, start lost, start gained, stop lost, and spot retained. 504 

Phylogenetic analysis and population structure analysis  505 

For population structure analysis, we employed SNP subsets, as demonstrated in previous studies, 506 

to reduce the computational time 63. We created ten randomized SNP sets, each containing 50,000 507 

SNPs. To create subsets, first, the base SNP set was split into 5000 subsets of an equal number of 508 

SNPs. Then, 10 SNPs from each subset were randomly selected, providing a total of 50,000 SNPs 509 

in a randomized set (randomized 50k set). We then repeated this procedure for nine more times and 510 

finally obtained ten randomized 50k sets. Population structure analysis was conducted using 511 

ADMIXTURE (Version: 1.3) 64. We ran ADMIXTURE for each subset separately with a 512 

predefined number of genetic clusters K from 2 to 10 and varying random seeds with 1000 513 

bootstraps. Also, we performed the cross-validation (CV) procedure for each run. Obtained Q 514 

matrices were aligned using the greedy algorithm in the CLUMPP software 65. Population structure 515 

plots were created using custom R scripts. We then combined SNP from the ten subsets to create a 516 

single SNP set of 434,077 unique SNPs for the phylogenetic analysis. We used the same method 517 

mentioned above to create the phylogenetic tree. Here we selected the model GTR+F+R6 based on 518 

the BIC estimates. For the principal component analysis (PCA) we used the HCSNP set and 519 

analysis was done in R package SNPrelate 66. We estimated the top 10 principal components. The 520 

first (PC1) and second (PC2) were plotted using custom R scripts.  521 

Genomic patterns of variations  522 

Using the base SNP set, we calculated nucleotide diversity (π) for subpopulations and π ratios for 523 

Highland and Lowland population regions with the top 1% ratios of π Highland/ π Lowland candidate 524 

regions for population divergence. We also estimated Tajima’s D values for both populations to 525 

check the influence of selection on populations. FST  values were calculated between Highland and 526 

Lowland populations using the 10kb non-overlapping window approach. Nucleotide diversity, 527 

Tajima’s D, and FST  calculations were carried out in VCFtools (v0.1.5) 58.  528 
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Linkage disequilibrium analysis  529 

First, we calculated linkage disequilibrium in each population separately (Highland and Lowland). 530 

Then, LD was calculated in the whole population, excluding wild accessions. For LD calculations, 531 

we further filtered the HCSNP set by removing SNPs with >80% missing data 29. Using a set of 532 

2,513,717 SNPs, we calculated the correlation coefficient (r2) between SNPs up to 300kb apart by 533 

setting -MaxDist 300 and default parameters in the PopLDdecay software 67. LD decay was plotted 534 

using custom R scripts based on the ggplot2 package.  535 

Genome-wide association study 536 

We used the best linear unbiased estimates (BLUE) of traits and HCSNPs for the GWAS analysis. 537 

Morphological traits were treated as dichotomous traits and analyzed using generalized mixed linear 538 

models with the lme4 R software package 50. We used population structure and genetic relationships 539 

among accessions to minimize false-positive associations. Population structure represented by the 540 

PC was estimated with the SNPrelate software 66. Genetic relationships between accessions were 541 

represented by a kinship matrix calculated with the efficient mixed-model association expedited 542 

(EMMAX) software 68 using HCSNPs. Then, we performed an association analysis using the mixed 543 

linear model, including K and P matrices in EMMAX. We estimated the effective number of SNPs 544 

(n=1,062,716) using the Genetic type I Error Calculator (GEC) 69. We set the significant P-value 545 

threshold (Bonferroni correction, 0.05/n, -log10(4.7e-08)=7.32) and suggestive significant threshold 546 

(1/n, -log10(9.41e-7)= 6.02) to identify significant loci underlying traits. We plotted SNP P-values 547 

on Manhattan plots using the qqman R package 70.  548 
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Supplementary Fig. 2: Overview of the field experiment and exemplary images demonstrating 747 
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(C): Bolting (BBCH51) and (D) flowering (BBCH60) stage; Glomerulate (E) and amarantiform (F) 749 
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Supplementary Fig. 3: SNP density heat map across the 18 quinoa chromosomes. Different colors 752 

depict SNP density. 753 

Supplementary Fig. 4: Chromosome wide LD decay in genome A (A) and genome B (B). Colors 754 

are depicting different chromosomes. (C) Genome-wide average LD decay of the A sub-genome 755 

(blue) and B sub-genome (red).  756 

Supplementary Fig. 5: SNP based PCA across all 18 quinoa chromosomes. Red circles are 757 

depicting the two clusters of Lowland accessions.   758 

Supplementary Fig. 6 (A) ADMIXTURE ancestry coefficients for K ranging from 3 to 7 and 9. 759 

Each vertical bar represents an accession, and color proportions on the bar correspond to the genetic 760 

ancestry. (B) Cross-validation error in ADMIXTURE run. 761 

Supplementary Fig. 7: Diversity of populations along chromosomes measured based on 10 kb non-762 

overlapping windows. Nucleotide diversity (π) distribution of 10 kb windows in population 763 

Highland (A) and Lowland (B). (C) Nucleotide diversity ratios (π Lowland/ π Highland). (D) 764 

Pairwise genome-wide fixation index (FST) between Highland and Lowland. The broken horizontal 765 

line represents the top 1% threshold.  766 

Supplementary Fig. 8: Distribution of Tajima’s D along chromosomes in Highland (B) and 767 

Lowland (D) populations. Density distribution of Tajima's D between populations. Different colors 768 

represent the quartiles.  769 

Supplementary Fig. 9: Graphical presentation of correlations between years among 12 traits. 770 

Pearson correlation value (R) with P-values are shown. DTB: days to bolting (inflorescence 771 

emergence), DTF: days to flowering, DTB to DTF: days between bolting and flowering, DTM; 772 

days to maturity, PH: plant height (cm), PL: panicle length (cm), PD: panicle density (cm), NoB: 773 

Number of branches, STL: stem lying, Saponin: saponin content as foam height (mm), Seed yield: 774 
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Supplementary Fig. 10: Pearson correlations among 12 quinoa traits. Best linear unbiased 776 

estimates across two years were used. Below the diagonal, scatter plots are shown with the fitted 777 

line in red. Above the diagonal, the Pearson correlation coefficients are shown with significance 778 

levels, *** =P<0.001, **=P<0.01. 779 

Supplementary Fig. 11: PCA of 12 quantitative phenotypes. A: Individual factor map colored 780 

according to populations identified from SNP analysis. B: Variables factor map of the PCA. 781 

Supplementary Fig. 12:  Manhattan plots from GWAS with data from 2018 (left), 2019 (center), 782 

and the mean of both years (right):  The blue horizontal line indicates the suggestive threshold -783 
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log10 (8.98E-7). The red horizontal line indicates the significant threshold (Bonferroni correction) -784 

log10(1.67e-8).   785 

Supplementary Fig. 13: Quantile-quantile plots of GWAS in two years, 2018 (left) and 2019 786 

(center), and BLUE (right).    787 

 Supplementary Fig. 14:  Local Manhattan plots for (A) flower color, (B) saponin content, and (C) 788 

mildew infection. Candidate genes are shown in the color legend. LD heat maps are placed at the 789 

Bottom. The colors of the heat map represent the pairwise correlation between individual SNPs.  790 

Supplementary Fig. 15: PCA of 4 quantitative traits (DTF, DTM, PH, and PL). A: Individual 791 

factor map, B: variables factor map of the PCA, C: distribution of the first three principal 792 

components which were used for GWAS analysis. 793 

Supplementary Fig. 16: GWAS analysis of principal components, PC1 (A), PC2 (B), PC3 (C): 794 

Manhattan plots (left), and quantile-quantile plots (right): The blue horizontal line in the Manhattan 795 

plots indicates the suggestive threshold -log10(8.98E-7). The red horizontal line indicates the 796 

significance threshold (Bonferroni correction) -log10(1.67e-8). 797 

Supplementary Fig. 17: Haplotypes of two genes, CqPP2C and CqRING controlling seed size in 798 

quinoa. Geographic origin of the accessions and haplotype networks are displayed below the gene 799 

structure.  800 
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Fig. 1: Genetic diversity and population structure of the quinoa diversity panel. (a) PCA of 303 quinoa accessions. PC1 
and PC2 represent the first two components of analysis, accounting for 23.35% and 9.45% of the total variation, 
respectively. The colors of dots represent the origin of accessions. Two populations are highlighted by different colors: 
Highland (light blue) and Lowland (pink). (b) Subpopulation wise LD decay in Highland (blue) and Lowland population 
(red). (c) Population structure is based on ten subsets of SNPs, each containing 50,000 SNPs from the whole-genome 
SNP data. Model-based clustering was done in ADMIXTURE with different numbers of ancestral kinships (K=2 and 
K=8). K=8 was identified as the optimum number of populations. Left: Each vertical bar represents an accession, and 
color proportions on the bar correspond to the genetic ancestry. Right: Unrooted phylogenetic tree of the diversity panel. 
Colors correspond to the subpopulation.
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Fig. 2: Maximum likelihood tree of 303 quinoa and seven wild Chenopodium accessions from the diversity 
panel. Colors are depicting the geographical origin of accessions. 
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Fig. 3: Genomic regions associated with 
important agronomic traits (a) Significant 
marker-trait associations for days to flowering, 
days to maturity, plant height, and panicle 
density on chromosome Cq2A. Red color 
arrows indicate the SNP loci pleiotropically 
acting on all four traits. (b) Boxplots showing 
the average performance for four traits over 
two years, depending on single nucleotide 
variation (C or G allele) within locus Cq2A_ 
8093547. (c) Local Manhattan plot from region 
80.40 - 81.43 Mb on chromosome Cq2A 
associated with PC1 of the days to flowering 
(DTF), days to maturity (DTM), plant height 
(PH) and panicle length (PL), and local LD 
heat map (bottom). The colors represent the 
pairwise correlation between individual SNPs. 
Green color dots represent the strongest MTA 
(Cq2A_ 8093547).
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