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13 Abstract

14 Repeated counts of animal abundance can reveal changes in local ecosystem health and inform 

15 conservation strategies. Unmanned aircraft systems (UAS) such as drones are commonly used to 

16 photograph animals in remote locations; however, counting animals in images is a laborious task. 

17 Crowd-sourcing can reduce the time required to conduct these censuses considerably, but must 

18 first be validated against expert counts to measure sources of error. Our objectives were to assess 

19 the accuracy and precision of citizen science counts and make recommendations for future 

20 citizen science projects. We uploaded drone imagery from Año Nuevo Island (California, USA) 

21 to a curated Zooniverse website that instructed citizen scientists to count seals and sea lions. 

22 Across 212 days, over 1,500 volunteers counted animals in 90,000 photographs. We quantified 

23 the error associated with several descriptive statistics to extract a single citizen science count per 
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24 photograph from the 15 repeat counts and then compared the resulting citizen science counts to 

25 expert counts. Although proportional error was relatively low (9% for sea lions and 5% for seals 

26 during the breeding seasons) and improved with repeat sampling, the 12+ volunteers required to 

27 reduce error was prohibitively slow, taking on average 6 weeks to estimate animals from a single 

28 drone flight covering 25 acres, despite strong public outreach efforts. The single best algorithm 

29 was ‘Median without the lowest two values’, demonstrating that citizen scientists tended to 

30 under-estimate the number of animals present. Citizen scientists accurately counted adult seals, 

31 but accuracy was lower when sea lions were present during the summer and could be confused 

32 for seals. We underscore the importance of validation efforts and careful project design for 

33 researchers hoping to combine citizen science with drone imagery.

34

35 Keywords: Community science, seals, sea lions, drones, UAS, marine mammal
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37 1. Introduction

38 Abundance is a critical metric for wildlife conservation, management, and policy [1-3]. This is 

39 especially true for seals and sea lions (hereafter, pinnipeds) that spend much of the year foraging 

40 at sea and can only be counted when they haul out on land to rest or reproduce [4, 5]. Yet counts 

41 from traditional methods such as visual ground surveys consistently underestimate true animal 

42 abundance [6-8], especially for dense groups of animals in rugged, inaccessible terrain [9]. 

43 Ground counts also disturb resting animals which can exacerbate underestimation. Pinnipeds 

44 have also been counted in photographs taken from manned aircraft [8, 10, 11], but these counts 

45 are costly and tend to be cost-prohibitive for longitudinal studies.

46

47 Unmanned aircraft systems (UAS; hereafter, drones) can provide high-resolution photographs 

48 and geospatial data for wildlife surveys [12], individual identification [13], and photogrammetry 

49 [14]. Despite being limited by weather and the potential to disturb animals if altitude 

50 recommendations are not followed [15], drones have been utilized to count various species [12]. 

51 Benefits of drone censuses include: more animals are counted, remote locations can be accessed, 

52 they are relatively inexpensive, they require less personnel in the field, minimize animal 

53 disturbance, and they create a permanent photographic archive [7, 16, 17]. However, counting 

54 animals manually from drone photographs can be a tedious and time-consuming task. While 

55 these technological advancements have opened new doors for the future of population ecology 

56 [12, 16-18], methods for quickly processing the resulting imagery have lagged. 

57

58 Citizen science is a potentially useful tool that involves recruiting volunteers from the public 

59 without prior experience to complete clearly outlined tasks [19]. Despite concerns of bias and 
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60 volunteer skill, citizen science has been used to gather and process large datasets for over a 

61 decade [20, 21], including for research on abundance and distribution of marine mammals [22-

62 25]. Crowd-sourced science requires an up-front investment of time and labor to create a training 

63 system for new volunteers [26, 27]. However, once trained, citizen scientists can process data at 

64 no cost, leaving project managers to focus their time and funds on other aspects of the project 

65 [27]. Long-term monitoring projects from drone surveys or satellite imagery could greatly 

66 benefit from citizen science's data processing capabilities [28].

67

68 The pinniped colonies at Año Nuevo Island offer an ideal opportunity to validate wildlife drone 

69 censuses. Pinnipeds are present throughout the year, and the island is easily accessible via drone 

70 and inflatable boat from the mainland and lacks vegetation, so animals are easily spotted. For our 

71 validation study, we focus on pinnipeds, specifically northern elephant seals (Mirounga 

72 angustirostris), harbor seals (Phoca vitulina), Steller sea lions (Eumetopias jubatus), and 

73 California sea lions (Zalophus californianus), because their well-documented haul out patterns 

74 provide a useful comparison to past counting methods. We used the Zooniverse platform 

75 (zooniverse.org) to create a citizen science project titled Año Nuevo Island Animal Count, where 

76 volunteers were trained and instructed to count pinnipeds in drone photographs. Our objective 

77 was to explore the benefits and drawbacks of using citizen science to census pinnipeds in drone 

78 images. Here, we detail our methods for creating a citizen science project and use various 

79 analyses to evaluate citizen science accuracy. We also document our strategies for volunteer 

80 engagement, specific tutorials, and supplemental materials recommended by Swanson, Kosmala 

81 (29). If citizen scientists can accurately complete a census project, drones could substantially 

82 reduce the time and labor required for population surveys.
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83

84 2. Materials and Methods

85 2.1. Study Site and Drone Flights

86 We conducted drone flights above Año Nuevo Island (37.1083°N, 122.3378°W), located on the 

87 West Coast of California, USA, using recommended best practices [30]. Año Nuevo Island is a 

88 rookery for many marine bird species and a breeding site for multiple pinniped species. The 

89 cliffs, flat terraces, and surrounding kelp forests provide diverse habitat and food supply for 

90 thousands of animals to rest, feed, and reproduce. Due to extensive restoration efforts on the 

91 island, bird nests are mostly confined to upper terraces, and pinnipeds occupy the edges, 

92 although species in the sea lion family Otariidae (Z. californianus and E. jubatus) often climb 

93 onto the terraces. From January to March, elephant seals haul out on the island’s beaches for the 

94 annual breeding season. The seals will then leave on a foraging migration, returning from April 

95 until August, dependent on their age and sex, to undergo their catastrophic molt to shed their fur 

96 and skin [31, 32]. California and Steller sea lions give birth beginning in June and are abundant 

97 on the island year-round because they undertake shorter foraging trips than elephant seals [33, 

98 34].

99

100 Two consumer-level drones were used for the project: the Phantom 3 Advanced and the Mavic 2 

101 Zoom (SZ DJI Technology Co., Ltd., Shenzhen, China; cost ~$1,000 USD each). Drone flights 

102 were conducted roughly every two weeks from July 2017 to July 2019 (N=60 flights, Table S1) 

103 depending on rain, wind, and swell conditions that would compromise drone flight safety or 

104 photo quality. To minimize animal disturbance, we launched the drone from the mainland and 

105 flew over the 1 km ocean channel to the island at 40 meters above sea level. We undertook drone 
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106 flights early in the morning (typically 7:00-8:00 am) to maximize the number of animals present 

107 on the beaches due to cooler weather. The Litchi application (VC Technology Ltd. London, 

108 England) was used to produce a standardized flight path over the island (Figure 1A). 

109 Photographs were collected approximately every 2 s along the flight path at a speed of 20 kph. 

110 To improve each image's location accuracy, we used a hand-held GPS unit (accuracy set to 5 

111 meters) to measure the latitude and longitude of five locations on the island that were used as 2-

112 dimensional ground control points (hereafter, GCPs).

113

114 Figure 1. The complete workflow to compile individual images from a July 5, 2019 drone flight 
115 into an orthomosaic for citizen science and expert counts (18,366 animals).
116

117 2.2. Photograph Processing

118 The ~500 drone photographs per flight were uploaded into the photograph stitching software 

119 Pix4d (Pix4D S.A., Prilly, Switzerland) to produce a whole-island mosaic (Figure 1B). We used 

120 the 3D maps template with the standard system's settings but changed the coordinate system to 

121 WGS 84 and manually entered the five GCPs. After processing, we rejected mosaics with poor 

122 score reports indicating insufficient photograph matching (N=8 flights). We then used R version 

123 3.6.1 (R Core Team, 2019) to convert the complete island mosaic from a .tif to a .jpeg file using 

124 the R package jpeg with quality set to one. Next, we cut the .jpeg into a standardized 700 x 700-

125 pixel jpegs using the R package drones (~700-1,000 tiled photographs per flight, hereafter 

126 “tiles”). We removed any photographs smaller than 13 kb because these only contained white 

127 space. 

128

129 2.3. Citizen Science Website Development
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130 We uploaded image tiles into a custom project on the free citizen science platform Zooniverse 

131 (Figure 2) and curated content about the team members, species natural history, preliminary 

132 results, frequently asked questions, and a discussion board. Each day, we answered questions and 

133 posted announcements on the discussion boards to keep volunteers engaged. Website design and 

134 volunteer engagement was a critical part of our strategy (see Supplemental Material). For the 

135 animal counting task, we used the "Drawing" program, which records the category (e.g., a 

136 pinniped species) and x and y coordinates of each mark added by volunteers. Prior to counting, 

137 volunteers were given a short tutorial with example photographs. Double-counting of animals in 

138 adjacent photographs was avoided by instructing volunteers to mark each animal only if its head 

139 was visible in the photograph. 

140
141 Figure 2. (A) A screenshot from the "classify" tab of the citizen science website (sealcount.com) 
142 with additional drone photographs of (B) elephant seals and (C) sea lions for illustrative 
143 purposes. Users are asked to select "seal" or "sea lion" and click once on each animal's head to 
144 count it. All volunteers have access to a tutorial and field guide with detailed instructions for 
145 animal identification.
146

147 2.4. Beta Test Accuracy

148 Zooniverse requires a beta test with the full instructional tutorial and a small subset of 

149 photographs before publishing a project. We selected and uploaded 100 tiles that included a mix 

150 of pinnipeds and birds (to assess the most frequently misidentified species) and a small subset 

151 containing no animals (to assess which objects such as rocks were most frequently misidentified 

152 as animals). Beta testers were asked to count animals and subsequently provide feedback and 

153 suggestions for project improvement. Each photograph was considered complete after ten beta 

154 tester volunteers counted the seals, sea lions, and birds. We inspected beta tester counts for 

155 accuracy of counts and the number of counters needed to maximize consistency. The beta tester 
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156 volunteers provided valuable feedback regarding the difficulty of identifying multiple species 

157 and the tutorial's complexity. Many mistakes (e.g., counting only pinnipeds but no birds) were 

158 consistently repeated. 

159

160 Based on our visual inspections and feedback results, we removed birds from the workflow and 

161 increased our requirement from 10 to 15 volunteers per photograph to allow us to determine 

162 which of several algorithms would yield the most accurate estimates. To expedite the data 

163 collection process, we eliminated photographs marked empty (i.e., no animals) by seven 

164 volunteers. Due to the difficulty in identifying pinniped species, volunteers on our citizen science 

165 website were asked only to classify animals based on pinniped family (seals in the family 

166 Phocidae included P. vitulina and M. angustirostris and sea lions in the family Otariidae 

167 included Z. californianus and E. jubatus).

168

169 2.5. Full Count Validation 

170 We uploaded 4,074 photograph tiles from five drone flights that spanned winter and summer for 

171 the full validation effort. We launched the project at www.sealcount.com, actively engaged 

172 volunteers, and advertised the site through social media and news agencies, local educational 

173 organizations, and middle and high school classrooms. We also hosted two week-long counting 

174 contests during the first and last months of the project, where volunteers could win stickers or 

175 stuffed animal prizes for counting the most images over the week. After 212 days of citizen 

176 scientist counting, we downloaded and analyzed the count data. To collapse the multiple citizen 

177 scientist counts per tile into a single count, we used six algorithms: Mean without the two lowest 

178 values (Mean[3:Max]), Mean, Mean without the two highest values (Mean[1:Max-2]), Median 
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179 without the two lowest values (Median [3:Max], Median, and Median without the two highest 

180 values (Median [1:Max-2]). Seal and sea lion count data were evaluated separately.

181

182 We also conducted expert counts on images of the same resolution as those presented to the 

183 volunteers. To create expert counts, each animal was classified using the cell count function in 

184 ImageJ as: sea lions, seals, gulls, cormorants, or pelicans. Only northern elephant seals were 

185 counted during the two winter flights because they made up nearly all pinnipeds on the island. 

186 After using the algorithms to create a single citizen science count per tile, we compared the 

187 citizen science counts and expert counts of elephant seals and sea lions by calculating relative 

188 error as the absolute value of the difference between the citizen science count and the expert 

189 count, divided by the expert count. The percent error calculations were repeated in two ways: (1) 

190 for each photo and (2) for each unique number of citizen scientists that counted each photograph 

191 (Table S2). Because percent error calculations are not possible for photographs in which the 

192 expert counted zero animals (i.e., the denominator is zero), we also calculated the proportion of 

193 photographs that were classified as true negatives (both citizen scientists and the expert counted 

194 no animals), true positives (both citizen scientists and the expert counted at least one animal), 

195 false negatives (citizen scientists counted no animals but the expert counted at least one animal) 

196 and false positives (citizen scientists counted at least one animal but the expert counted no 

197 animals) (Figure S2). A paired Wilcoxon Rank Sum test was used to quantify differences 

198 between citizen scientist counts and expert counts because count data were not normally 

199 distributed. Finally, we created expert counts for all elephant seals in 52 drone flights from July 

200 2017-July 2019 to assess the elephant seal's overall abundance on the island. Citizen science 
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201 counts were overlaid into the 2017-2019 expert counts to assess trends in abundance visually. 

202 Data are available at https://doi.org/10.7291/D1J66X.

203

204 3. Results 

205 3.1. Citizen Scientist Website Response 

206 Between the website launch and the download of data for this analysis (August 7, 2019, and 

207 March 7, 2020, respectively) more than 1,500 volunteers counted ~94,000 tiles. On average, 

208 2,500 photographs were counted each week. The most frequent counts occurred during our 

209 launch week (12,000 photographs counted) and counting contests (7,313 photographs counted 

210 during the sticker contest and 10,981 photographs counted during the stuffed animal contest). 

211 The contests were critical for reaching our count goals. Considerable upticks in counts also 

212 occurred during public outreach events and classroom visits, especially when guests could count 

213 during the events on individual computers. Approximately 30,000 images were counted by 

214 volunteers without a Zooniverse account and 60,000 counted by those with an account. 

215 Throughout the project, the average volunteer counted 59 photographs in total, with a handful of 

216 volunteers counting over 1,000 photographs and a maximum of 5,153 images counted by one 

217 individual (Figure S1). The top three volunteers completed 24% of the images counted by 

218 volunteers logged in to their Zooniverse accounts, or 15% of the total photographs counted by all 

219 volunteers. 

220

221 3.2. Full Count Validation 

222 For both seals and sea lions, percent error was lower for Median algorithms as compared to 

223 Mean algorithms (Figure 3). The single best algorithm was Median without the lowest two 
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224 values (Median[3:Max]; 43% error for seals and 30% error for sea lions), suggesting that citizen 

225 scientists tended to under-estimate the number of sea lions present. This relatively large percent 

226 error was likely because not all photographs reached their retirement limit of 15 counters, and 

227 some photographs were counted by very few counters (Figure 3). Percent error decreased as the 

228 number of classifiers increased (Figure 3). The relationship between the number of counters and 

229 percent error was consistent across seals and sea lions, reaching an asymptote of percent error at 

230 around 11 citizen scientists; however, the relationship was more variable for seals (Figure 3). 

231 Because sea lions were far more common in photographs than seals (Figure 1), we hypothesize 

232 that the high error and variability in seal counts resulted from misclassification of seals as sea 

233 lions. Additionally, the small number of individuals in each photograph (Median=2, Mean=6, 

234 SD=12 for seals; Median=5, Mean=12, SD=19 for sea lions) meant miscounting one or two 

235 individuals led to a large error.

236 Figure 3.  Comparison of percent error for (left) six algorithms for all photographs and (right) 
237 based on the number of citizen scientists that counted each photograph (number of photographs 
238 provided in parentheses). Algorithms using the Median consistently outperformed those using 
239 the Mean, especially for elephant seals. Because scientists tended to underestimate sea lion 
240 abundance, the most accurate counts were obtained using many repeated counts and removing 
241 the lowest two values before calculating the Median.
242

243 Across all species and median algorithms, approximately 80% of photographs were classified 

244 correctly in terms of the presence or absence of animals (Figure S2). For sea lions, 42-46% of 

245 photographs contained true negatives, 34-40% of photographs contained true positives, 9-12% of 

246 photographs contained false positives, and 6-12% of photographs contained false negatives. For 

247 seals, 76-81% of photographs contained true negatives, 3-5% of photographs contained true 

248 positives, 2-5% of photographs contained false negatives, and 12-17% of photographs contained 

249 false positives. In other words, if citizen scientists were to make a mistake in classifying seals, 
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250 they were more likely to mark a non-existent animal than to miss an existent animal.  The low 

251 proportion of true positives for seals is due to their relatively limited abundance and small spatial 

252 range on Año Nuevo Island.

253

254 The relationship between counts from citizen scientists and the expert for each photograph was 

255 relatively good (Figure 4). More variance could be explained in the sea lion counts (R2 range 

256 from 0.82 to 0.93) compared to the seal counts (R2 range from 0.64 to 0.81). The slopes of all 

257 algorithms for elephant seals were less than one, suggesting that underestimation was more 

258 common when many animals were present in photographs (Figure 4). 

259

260 Figure 4. Comparison of raw citizen scientist counts against expert counts for three algorithms. 
261 Citizen scientists tended to underestimate the actual number of pinnipeds present on Año Nuevo 
262 Island, as evidenced by the slopes <1 for all algorithms and species except for Median[3:Max] 
263 with elephant seals (bottom left). Colored lines represent a linear model for each algorithm and 
264 species combination, whereas black lines represent 1:1 relationship between citizen scientist 
265 count and expert count. 
266

267 After summing citizen scientist counts to come up with a single count for each algorithm and 

268 drone flight to compare with the expert count, we discovered that citizen science counts had 

269 variable accuracy after all tiles were combined (Figure 5). Specifically, the percent error of 

270 citizen science counts compared to expert counts was 9% for sea lions and 46% for seals across 

271 all dates (Figure 5). The seal counts were far more accurate during the winter flights (6% error 

272 for both) than the summer flights (54%, 69%, and 95% error), likely due to the presence of sea 

273 lions that were misidentified as seals. The higher percent error for seals compared to seals was 

274 likely due to their overall lower abundance (Figure 5).

275
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276 Figure 5. Counts for each drone flight date by an expert as compared to the three Median 
277 algorithms for summarizing citizen science counts. Sea lions were not counted during the two 
278 winter flights due to extremely low abundance. An asterisk denotes the citizen science algorithm 
279 (Median) that best matches the expert counts across all flights.  

280
281 Because citizen science counts were comparatively slower and could only be obtained for 5 out 

282 of 52 flights, detailed elephant seal abundance trends could not be observed, unlike the high-

283 resolution expert counts (Figure 6). The bi-weekly expert counts of elephant seals from 2017-

284 2019 showed the expected fluctuation in abundance across various life history events, with the 

285 least number of animals present during foraging seasons (summer and late winter), and the most 

286 animals present during the breeding haul-out (winter) and molting haul-out (late spring) (Figure 

287 6). Peak abundance occurred during the molting haul-out. 

288

289 Figure 6. The total number of elephant seals counted by experts (black points) as compared to 
290 citizen science counts using the Median[3:Max] algorithm (pink points). 
291

292 4. Discussion

293 We found that citizen scientists could accurately identify sea lions in most circumstances but had 

294 more difficulty identifying seals, especially when sea lions were present. Generally, citizen 

295 scientists tended to underestimate the abundance of animals on Año Nuevo Island. One possible 

296 explanation for this underestimation is that the small size and dark coloration of newborn seal 

297 and sea lion pups could cause citizen scientists to miss them, mistake them for rocks, or mistake 

298 them for a different species. Proper precautions must be taken to use citizen science as an 

299 alternative to ground surveys and expert counts. We recommend simplifying as much as possible 

300 to single demographic categories (e.g., only seals, only sea lions, or only pups). A critical 

301 consideration is that ground surveys are nearly impossible for many locations with rugged 
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302 terrain, including Año Nuevo Island. The sheer number of animals makes an accurate count 

303 nearly impossible (i.e., scientists estimate sea lions by visually summing groups of ~500 

304 animals).

305

306 As highlighted in other studies [29, 35], we found that repeat counts (11+ counters per image) 

307 were necessary to improve accuracy (Figure 3). More citizen scientist counts resulted in lower 

308 error; however, this requirement for repeated counts coupled with a moderate participation rate 

309 made citizen scientist counts prohibitively slow. Project managers should interact with 

310 volunteers as much as possible, as more photographs were counted when we held events or 

311 contests, and a large proportion of total classifications were done by a small group of citizen 

312 scientists (Figure S1). Finally, creating a thorough and easy-to-read tutorial is critical to project 

313 success. Tutorials must be concise and only give information pertinent to the task volunteers will 

314 perform. Including additional information elsewhere for volunteers to explore is recommended, 

315 but the tutorial is the crucial point at which volunteers decide to participate [36].

316

317 When beginning our project, we underestimated the importance of ensuring that the project was 

318 not too complicated. Using only expert counts for a census would yield more accurate results 

319 overall but would require a significant amount of labor, especially for large datasets. In 

320 comparison, citizen science allows large amounts of data to be collected inexpensively and in a 

321 relatively short amount of time, leaving researchers to focus on data collection and analysis 

322 instead of manually counting animals. Notably, citizen science has a considerable impact on 

323 participants by allowing thousands of individuals across the globe to learn about animal natural 

324 history without having to leave their homes. More specifically, engaging the public in scientific 
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325 endeavors can help teach scientific literacy and motivate people to make environmentally 

326 conscious decisions [37, 38]. Adding a citizen science counting component to drone efforts can 

327 help streamline the data collection and interpretation process if the proper precautions are put in 

328 place. 

329

330 One of our critical challenges was determining how to translate multiple citizen scientist counts 

331 of each photograph into a single, accurate count. We found that the Median algorithm 

332 consistently outperformed the Mean, likely because some extreme counts would have a smaller 

333 impact on the Median than they would on the Mean (i.e., the Median value does not depend on 

334 the magnitude of all values in the dataset). Unfortunately, algorithms that collapse multiple 

335 counts into one cannot provide information on each animal's location (i.e., x-y coordinates on 

336 each photograph) useful for addressing niche partitioning or habitat utilization questions. Such 

337 questions can be addressed by comparing expert counts, which are relatively easy but take 

338 approximately one workday per drone flight (Wood, Pers. Obs.) to six weeks for citizen 

339 scientists.

340

341 Machine learning algorithms are promising tools for automated counting of pinnipeds in 

342 photographs [39, 40]; however, this method is not without challenges [41]. Using this dataset, 

343 our team attempted to work with a machine learning company. While total pinniped counts were 

344 accurate, the lack of ability to differentiate between species (e.g., seals and sea lions) and age 

345 classes (e.g., pups and adults) constrained the questions that could be asked and showed the 

346 promise of the citizen science approach. 

347
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348 The accuracy we report may be higher than observed in other mammal or bird species because 

349 pinnipeds' large size and distinctive shapes make them excellent subjects [42]. Additionally, a 

350 more expensive drone with a higher resolution camera could be used to increase accuracy; 

351 however, these tend to be larger drones with more potential for animal disturbance [43]. Future 

352 research should determine whether drones with thermal imaging payloads are better for 

353 identifying camouflaged animals or differentiating between grouped animals [44]. 

354

355 5. Conclusions

356 Drones continue to improve as technology becomes more sophisticated [30]. In some cases, 

357 drones could replace ground counts entirely and increase the overall accuracy of census data. 

358 When combined with strategic citizen science programs, drone imagery can be used to produce 

359 accurate data quickly and reduce labor for researchers. We did not quantify this project's benefit 

360 to citizen scientists themselves, but other studies have demonstrated increased ownership and 

361 positive environmental attitudes associated with participation [37, 38]. As citizen science 

362 becomes increasingly common, it is essential to continue validating each unique project's data 

363 accuracy. Our data suggest that simple tasks with visually interesting photographs, short 

364 tutorials, and frequent volunteer interaction opportunities are ideal for engaging citizen scientists. 

365 Our project demonstrates that a large-scale, laborious project such as counting pinnipeds can be 

366 made impactful and accurate by engaging the public through citizen science. The data that we 

367 gathered can be further analyzed for geospatial patterns, range expansion, habitat partitioning, 

368 and population changes. We hope that our validation will set the stage for future in-depth 

369 analyses of marine mammals that live and breed on islands globally.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


17

371 Acknowledgments

372 We are indebted to the thousands of volunteers that counted animals, including super volunteers 

373 Charlotte Lenox, Kristen Cotiaux, Julie Wood, Emily Sullivan, Cormack Pegau, and Helen 

374 Bennett. Thank you to Drs. Erika Zavaleta and Judy Straub for making this project possible; to 

375 the staff at Zooniverse, especially Cliff Johnson and Grant Miller, for their guidance in project 

376 design; to Katie Sweeney and Jen Cormier for their expertise with website design and volunteer 

377 recruitment; to Abram Fleishman for creating and sharing image manipulation code; and to past 

378 and present members of the Costa lab and Año Nuevo State Park staff and docents. Our research 

379 was completed at the University of California Natural Reserve System's Año Nuevo Reserve. 

380 The research was approved by the University of California Santa Cruz Institutional Animal Care 

381 and Use Committee #Costd1709 and the National Marine Fisheries Service marine mammal 

382 research permit #19108. Drone flights were authorized by the University of California Center of 

383 Excellence for Unmanned Aircraft Systems Safety with permission from Año Nuevo State Park. 

384 This publication uses data generated via the Zooniverse.org platform funded by generous support 

385 from a Google Global Impact Award and from the Alfred P. Sloan Foundation. Financial support 

386 for this research was provided by the Friends of the Seymour Marine Discovery Center Student 

387 Research and Education Award (to SAW), the Center to Advance Mentored, Inquiry-Based 

388 Opportunities in Ecology and Conservation (to SAW), the Packard Ocean Science and 

389 Technology Endowment (to RSB and DPC), and a National Science Foundation Postdoctoral 

390 Research Fellowship in Biology (to RSB). 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


18

392 References

393

394 1. Eberhardt L. Assessing the dynamics of wild populations. The Journal of Wildlife 

395 Management. 1985:997-1012.

396 2. Hooker SK, Gerber LR. Marine reserves as a tool for ecosystem-based management: the 

397 potential importance of megafauna. Bioscience. 2004;54(1):27-39.

398 3. Morris DW, Kotler BP, Brown JS, Sundararaj V, Ale SB. Behavioral indicators for 

399 conserving mammal diversity. Annals of the New York Academy of Sciences. 

400 2009;1162(1):334-56.

401 4. Taylor BL, Martinez M, Gerrodette T, Barlow J, Hrovat YN. Lessons from monitoring 

402 trends in abundance of marine mammals. Marine Mammal Science. 2007;23(1):157-75.

403 5. Moore SE. Marine mammals as ecosystem sentinels. Journal of Mammalogy. 

404 2008;89(3):534-40.

405 6. Dennis B, Ponciano JM, Lele SR, Taper ML, Staples DF. Estimating density dependence, 

406 process noise, and observation error. Ecological Monographs. 2006;76(3):323-41.

407 7. Adame K, Pardo MA, Salvadeo C, Beier E, Elorriaga‐Verplancken FR. Detectability and 

408 categorization of California sea lions using an unmanned aerial vehicle. Marine Mammal 

409 Science. 2017;33(3):913-25.

410 8. Westlake RL, PBRRYMAN WL, Ono KA. Comparison of vertical aerial photographic 

411 and ground censuses of Steller sea lions at Año Nuevo Island, July 1990‐1993. Marine Mammal 

412 Science. 1997;13(2):207-18.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


19

413 9. Le Boeuf BJ, Condit R, Morris PA, Reiter J. The northern elephant seal (Mirounga 

414 angustirostris) rookery at Año Nuevo: a case study in colonization. Aquatic Mammals. 

415 2011;37(4):486.

416 10. Lowry MS, Condit R, Hatfield B, Allen SG, Berger R, Morris PA, et al. Abundance, 

417 distribution, and population growth of the northern elephant seal (Mirounga angustirostris) in 

418 the United States from 1991 to 2010. Aquatic Mammals. 2014;40(1).

419 11. Lowry MS, Nehasil SE, Jaime EM. Distribution of California sea lions, northern elephant 

420 seals, pacific harbor seals, and Steller sea lions at the Channel Islands during July 2011-2015. 

421 2017.

422 12. Dutton PH, Komoroske LM, Bejder L, Meekan M. Integrating emerging technologies 

423 into marine megafauna conservation management. Frontiers in Marine Science. 2019;6:693.

424 13. Landeo-Yauri SS, Ramos EA, Castelblanco-Martínez DN, Niño-Torres CA, Searle L. 

425 Using small drones to photo-identify Antillean manatees: A novel method for monitoring an 

426 endangered marine mammal in the Caribbean Sea. Endangered Species Research. 2020;41:79-

427 90.

428 14. Christiansen F, Sprogis KR, Gross J, Castrillon J, Warick HA, Leunissen E, et al. 

429 Variation in outer blubber lipid concentration does not reflect morphological body condition in 

430 humpback whales. Journal of Experimental Biology. 2020;223(8).

431 15. Arona L, Dale J, Heaslip SG, Hammill MO, Johnston DW. Assessing the disturbance 

432 potential of small unoccupied aircraft systems (UAS) on gray seals (Halichoerus grypus) at 

433 breeding colonies in Nova Scotia, Canada. PeerJ. 2018;6:e4467.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


20

434 16. Linchant J, Lisein J, Semeki J, Lejeune P, Vermeulen C. Are unmanned aircraft systems 

435 (UAS s) the future of wildlife monitoring? A review of accomplishments and challenges. 

436 Mammal Review. 2015;45(4):239-52.

437 17. Gonzalez LF, Montes GA, Puig E, Johnson S, Mengersen K, Gaston KJ. Unmanned 

438 aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and 

439 conservation. Sensors. 2016;16(1):97.

440 18. Hodgson JC, Mott R, Baylis SM, Pham TT, Wotherspoon S, Kilpatrick AD, et al. Drones 

441 count wildlife more accurately and precisely than humans. Methods in Ecology and Evolution. 

442 2018;9(5):1160-7.

443 19. Kullenberg C, Kasperowski D. What is citizen science?–A scientometric meta-analysis. 

444 PloS One. 2016;11(1):e0147152.

445 20. Dickinson JL, Zuckerberg B, Bonter DN. Citizen science as an ecological research tool: 

446 challenges and benefits. Annual Review of Ecology, Evolution, and Systematics. 2010;41:149-

447 72.

448 21. Silvertown J. A new dawn for citizen science. Trends in Ecology & Evolution. 

449 2009;24(9):467-71.

450 22. Sorrell KJ, Clarke RH, Holmberg R, McIntosh RR. Remotely piloted aircraft improve 

451 precision of capture–mark–resight population estimates of Australian fur seals. Ecosphere. 

452 2019;10(8):e02812.

453 23. LaRue MA, Salas L, Nur N, Ainley DG, Stammerjohn S, Barrington L, et al. Physical 

454 and ecological factors explain the distribution of Ross Sea Weddell seals during the breeding 

455 season. Marine Ecology Progress Series. 2019;612:193-208.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


21

456 24. Vukelic M, Mancini F, Vukelic D, Carere C. A cetacean monitoring system that 

457 integrates citizen science and satellite imagery. Rendiconti Lincei Scienze Fisiche e Naturali. 

458 2018;29(1):53-9.

459 25. Wege M, Salas L, LaRue M. Citizen science and habitat modelling facilitates 

460 conservation planning for crabeater seals in the Weddell Sea. Diversity and Distributions.

461 26. Bonney R, Cooper CB, Dickinson J, Kelling S, Phillips T, Rosenberg KV, et al. Citizen 

462 science: a developing tool for expanding science knowledge and scientific literacy. BioScience. 

463 2009;59(11):977-84.

464 27. Silvertown J, Buesching CD, Jacobson SK, Rebelo T. Citizen science and nature 

465 conservation. Key Topics In Conservation Biology. 2013;2(1):127-42.

466 28. LaRue MA, Ainley DG, Pennycook J, Stamatiou K, Salas L, Nur N, et al. Engaging ‘the 

467 crowd’in remote sensing to learn about habitat affinity of the Weddell seal in Antarctica. Remote 

468 Sensing in Ecology and Conservation. 2020;6(1):70-8.

469 29. Swanson A, Kosmala M, Lintott C, Packer C. A generalized approach for producing, 

470 quantifying, and validating citizen science data from wildlife images. Conservation Biology. 

471 2016;30(3):520-31.

472 30. Raoult V, Colefax AP, Allan BM, Cagnazzi D, Castelblanco-Martínez N, Ierodiaconou 

473 D, et al. Operational protocols for the use of drones in marine animal research. Drones. 

474 2020;4(4):64.

475 31. Le Boeuf BJ, Laws RM. Elephant seals: population ecology, behavior, and physiology: 

476 Univ of California Press; 1994.

477 32. Boyd I, Arnbom T, Fedak M. Water flux, body composition, and metabolic rate during 

478 molt in female southern elephant seals (Mirounga leonina). Physiological Zoology. 1993:43-60.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


22

479 33. Kuhn CE, Costa DP. Interannual variation in the at‐sea behavior of California sea lions 

480 (Zalophus californianus). Marine Mammal Science. 2014;30(4):1297-319.

481 34. Rowley J. Life history of the sea-lions on the California coast. Journal of Mammalogy. 

482 1929;10(1):1-36.

483 35. Freckleton RP, Watkinson AR, Green RE, Sutherland WJ. Census error and the detection 

484 of density dependence. Journal of Animal Ecology. 2006;75(4):837-51.

485 36. Nov O, Arazy O, Anderson D. Scientists@ Home: what drives the quantity and quality of 

486 online citizen science participation? PloS one. 2014;9(4):e90375.

487 37. Conrad CC, Hilchey KG. A review of citizen science and community-based 

488 environmental monitoring: issues and opportunities. Environmental Monitoring and Assessment. 

489 2011;176(1-4):273-91.

490 38. Bonney R, Phillips TB, Ballard HL, Enck JW. Can citizen science enhance public 

491 understanding of science? Public Understanding of Science. 2016;25(1):2-16.

492 39. Weinstein BG. A computer vision for animal ecology. Journal of Animal Ecology. 

493 2018;87(3):533-45.

494 40. van Gemert JC, Verschoor CR, Mettes P, Epema K, Koh LP, Wich S, editors. Nature 

495 conservation drones for automatic localization and counting of animals. European Conference on 

496 Computer Vision; 2014: Springer.

497 41. Norouzzadeh MS, Nguyen A, Kosmala M, Swanson A, Palmer MS, Packer C, et al. 

498 Automatically identifying, counting, and describing wild animals in camera-trap images with 

499 deep learning. Proceedings of the National Academy of Sciences. 2018;115(25):E5716-E25.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


23

500 42. Francis RJ, Lyons MB, Kingsford RT, Brandis KJ. Counting mixed breeding 

501 aggregations of animal species using drones: lessons from waterbirds on semi-automation. 

502 Remote Sensing. 2020;12(7):1185.

503 43. Mulero-Pázmány M, Jenni-Eiermann S, Strebel N, Sattler T, Negro JJ, Tablado Z. 

504 Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. 

505 PloS one. 2017;12(6):e0178448.

506 44. Kays R, Sheppard J, Mclean K, Welch C, Paunescu C, Wang V, et al. Hot monkey, cold 

507 reality: surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. 

508 International Journal of Remote Sensing. 2019;40(2):407-19.

509

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409649doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409649
http://creativecommons.org/licenses/by/4.0/

