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Abstract

Genome-scale metabolic modeling is an important tool in understanding metabolism, by
enhancing collation of knowledge, interpretation of data, and prediction of metabolic
capabilities. A central assumption in the construction and use of genome-scale models is
that the in vivo organism is evolved for optimal growth, where growth is represented by
flux through a biomass objective function (BOF). While the specific composition of the
BOF is crucial, its formulation is often inherited from similar organisms due to the
experimental challenges associated with its proper determination.

However, a cell’s macro-molecular composition is not fixed and it responds to
changes in environmental conditions. As a consequence, initiatives for the high-fidelity
determination of cellular biomass composition have been launched. Thus, there is a
need for a mathematical and computational framework capable of using multiple
measurements of cellular biomass composition in different environments. Here, we
propose two different computational approaches for directly addressing this challenge:
Biomass Trade-off Weighting (BTW) and Higher-dimensional-plane InterPolation (HIP).

In lieu of experimental data on biomass composition-variation in response to
changing nutrient environment, we assess the properties of BTW and HIP using three
hypothetical, yet biologically plausible, BOFs for the Escherichia coli genome-scale
metabolic model iML1515. We find that the BTW and HIP formulations have a
significant impact on model performance and phenotypes. Furthermore, the BTW
method generates larger growth rates in all environments when compared to HIP. Using
acetate secretion and the respiratory quotient as proxies for phenotypic changes, we find
marked differences between the methods as HIP generates BOFs more similar to a
reference BOF than BTW. We conclude that the presented methods constitute a first
conceptual step in developing genome-scale metabolic modelling approaches capable of
addressing the inherent dependence of cellular biomass composition on nutrient
environments.

Author summary

Changes in the environment promote changes in an organism’s metabolism. To achieve
balanced growth states for near-optimal function, cells respond through metabolic
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rearrangements, which may influence the biosynthesis of metabolic precursors for
building a cell’s molecular constituents. Therefore, it is necessary to take the
dependence of biomass composition on environmental conditions into consideration.
While measuring the biomass composition for some environments is possible, and should
be done, it cannot be completed for all possible environments.

In this work, we propose two main approaches, BTW and HIP, for addressing the
challenge of estimating biomass composition in response to environmental changes. We
evaluate the phenotypic consequences of BTW and HIP by characterizing their effect on
growth, secretion potential, respiratory efficiency, and gene essentiality of a cell.

Our work constitutes a first conceptual step in accounting for the influence of growth 1

conditions on biomass composition, and in turn the biomass composition’s effect on 2

metabolic phenotypic traits, within constraint-based modelling. As such, we believe it 3

will improve the relevance of constraint-based methods in metabolic engineering and 4

drug discovery, since the biosynthetic potential of microbes for generating industrially 5

relevant products or drugs often is closely linked to their biomass composition. 6

Introduction 7

The constraint-based reconstruction and analysis (COBRA) framework allows for the 8

system-level analysis of genome-scale metabolism in microbes [1]. This framework has 9

been used to construct metabolic models and knowledge bases for a large number of 10

microorganisms with industrial and medical applications [2, 3]. Despite that the premise 11

of COBRA is quite simple, the methodology is able to capture essential parts of the vast 12

complexity of a full metabolism. In its simplest formulations, a COBRA approach such 13

as flux balance analysis (FBA) is based on a set of linear equations corresponding to 14

biochemical reactions, for which reasonable biological constraints are applied. This set 15

of mathematical relations is subsequently converted into a linear program that is 16

optimized with regards to a biologically plausible objective [1]. Typically, this objective 17

is chosen to be the biomass objective function (BOF); a pseudo-reaction that utilizes 18

the cellular metabolic network to consume nutrient resources. The output of the BOF is 19

intended as a stoichiometrically balanced representation of the organism’s in vivo 20

biomass composition for a given nutrient environment. The use of BOF as a cellular 21

objective is a reasonable assumption, as an organism’s ability to quickly replicate is a 22

property that often provides a fitness benefit [4, 5]. 23

Given the widely accepted use of the BOF as an objective for genome-scale 24

constraint-based metabolic modelling [3, 6, 7], relatively little attention has been given 25

from this research field to exactly what the detailed composition of a cell is. In many 26

cases, the formulation of a BOF is based on assumptions of similarity to related 27

organisms; a chain of similarity that in many cases goes back to early model 28

generations [8–16]. This has been an approach born out of necessity, as high-quality 29

experimental determination of the detailed biomass composition of an organism is far 30

from a trivial exercise [17, 18]. However, the detailed formulation of the BOF will affect 31

phenotypic predictions [16,19,20]. 32

The composition of the biomass closely reflects the metabolic state of the cell [7]. 33

Changes in the environment will trigger changes in gene expression that eventually 34

adjust or radically change the production of certain compounds, which over time will 35

result in a different biomass composition [21]. In metabolism and macro-molecular 36

expression models (ME-model), a stable structural composition is assumed where the 37

(biomass) composition of proteins and transcripts are dependent on the nutrient 38

environment [22–24], and these models typically contain tens of thousands of reactions. 39

In contrast, the metabolic model (M-model, hereafter simply referred to as model) 40

usually assumes a constant biomass composition. With typically just a few thousand 41
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reactions, this model type is significantly smaller and depend on accurate laboratory 42

biomass component determination. These biomass components include precursor 43

metabolites [25], DNA, RNA, proteins, lipids, coenzymes and cofactors, solutes, and 44

more [7, 9, 20,25–27]. During certain forms of starvation, the cell might also elect to 45

accumulate some compounds for later use. An example of this is 46

poly(3-hydroxybutyrate) (PHB) which can accumulate up to 87% of dry weight in 47

Alcaligenes latus in a nitrogen limited environment [28]. 48

Naturally, a range of important metabolic phenotypic traits change with biomass 49

composition, such as growth potential, knock-out predictions, secretion rates, 50

biosynthetic potential of industrially relevant products, or drug sensitivity [7, 16, 29, 30]. 51

Based on this, one would also expect variations in nutrient environment to affect 52

metabolic phenotypes due to their dependence on biomass composition. Therefore, 53

measuring the biomass composition of an organism, not just once, but for a range of 54

conditions relevant for the task at hand, has the potential for significantly improving 55

modeling predictions. 56

However, measuring the biomass composition for every relevant combination of 57

environmental parameters is unrealistic: There is a limit to the range of environmental 58

or genetic conditions for which experimental measurements can be taken, which is an 59

important reason for the popularity of GSMs. This raises the questions: How does one 60

select among potentially multiple BOFs when modelling, and how can a limited number 61

of experimentally determined BOFs be used to improve modelling predictions? 62

In this study, we propose two approaches to generate biomass compositions for a 63

GSM that respond to changes in the nutrient environment based on linear combinations 64

of available data. These methods, intended to be simple in both implementation and 65

interpretation, are BTW (Biomass Tradeoff Weighting) and HIP 66

(Higher-dimensional-plane InterPolation). They are based on the two assumptions that 67

(i) the biomass composition depends on the nutrient environment, and (ii) similar 68

environments yield similar biomass compositions. We explore the ramifications of BTW 69

and HIP using the Escherichia coli model iML1515 [20] with three fictional, yet 70

biologically plausible, biomass compositions across varying glucose and ammonium 71

uptake rates. Finally, we assess the impact of BTW and HIP on a set of key model 72

characteristics, such as growth and acetate secretion potential, the respiratory state of 73

the cell, and gene essentiality. 74

Results and Discussion 75

The environment encoded in a GSM is solely incorporated in the bounds of the nutrient 76

uptake rates. A typical minimal medium contains sources for carbon, nitrogen, 77

phosphate, and sulphate, as well as some additional essential nutrients which depend on 78

the organism. However, the particulars of a nutrient environment directly affects an 79

organism’s macro-molecular composition [21], and we may thus consider the process of 80

growth as a mapping between two sub-spaces: An environmental space where each 81

uptake rate corresponds to a dimension, and the biomass space, where each biomass 82

compound BCi corresponds to a dimension (see Materials and Methods for details). In 83

this work, we limit our discussion to the case of only two uptake reactions, glucose and 84

ammonium, for reasons of simplicity of presentation. Note however, the considerations 85

presented in this work are also valid in higher-dimensional situations and are indeed 86

motivated by such cases. 87

The glucose and ammonium uptake reactions generate a 2-dimensional environment 88

space that represents all combinations of their flux uptake rates for the given ranges. 89

We envision that for any given point in this 2-dimensional space, the biomass 90

components of the cell would trend towards some ideal composition given enough time. 91
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This process would be guided by regulatory mechanisms responding directly to the 92

metabolite concentrations and/or downstream consequences. Any point in this 93

environment space should therefore have a corresponding point in biomass composition 94

space. Note that, the mapping between the nutrient- and biomass component spaces is 95

not necessarily a one-to-one mapping: Various environments could result in the 96

same/similar biomass composition if, e.g the biomass composition is not monotonically 97

dependent on one of the environment variables, and multiple points in the nutrient 98

space could thus be mapped to a single point in the biomass component space. In lieu 99

of high-quality data, however, we will make the simplifying assumption in the following 100

discussion that the chosen uptake reactions (environmental dimensions) give rise to a 101

1-to-1 mapping between the two spaces. 102

In addition to metabolic uptake rates, other data sources relevant for any 103

constraint-based modelling approach could be included as well. This includes 104

experimentally determined growth rates or exchange rates of CO2 or acetate. All these 105

data, as well as the BOF, are linked to a specific environment determined by the uptake 106

reaction flux values. 107

In this work, we proceed by using a set of three artificial biomass compositions 108

assumed to be measured for the same organism in three different environments: The 109

first environment is characterized by nitrogen starvation (nitrogen limited - NL), the 110

second by carbon starvation (carbon limited - CL), and the last is an environment 111

where neither of these two elements are limiting (unlimited - UL). We will assume that 112

the carbon source is glucose and the nitrogen source is ammonium, and the 113

environments are specified by the uptake rates of the respective compounds (see 114

Materials and Methods for details). 115

Properties of the artificial BOFs for iML1515 116

The BOF for the artificial nutrient-rich environment UL was based on the BOFs 117

available in the iML1515 model. The core BOF contains 31 compounds less than the 118

WT BOF, and both contain the compound adocbl. In the standard minimal medium 119

that is given in the model SBML-file, this compound prevents growth. Since a detailed 120

curation of the model is beyond the scope of this work, we solved the discrepancy by 121

simply removing this compound. We combined the two BOFs by taking the arithmetic 122

mean of their respective biomass coefficients, and thereafter, scaled the resulting BOF to 123

1 g/gCDW−1. This step was implemented to assure a reliable generic BOF to imitate an 124

environment with high availability of glucose and ammonium. Starting from this BOF, 125

we generated the two artificial BOFs for nitrogen and carbon limited environments. 126

Briefly, we sorted the BOF compounds into groups, such as DNA, RNA, and protein. 127

For the limited environments CL and NL, the relative amounts of the compounds in 128

these groups were all scaled in a biologically inspired manner: For instance, we 129

increased the relative fraction of compounds in the carbohydrate group in the nitrogen 130

limited NL environment, and reduced it in the carbon limited CL environment. The 131

details of the scaling are provided in Supplementary S1 Table and in Tab. 2 in the 132

Materials and Methods section. 133

The three environments as defined by the specific maximum uptake flux rates for 134

carbon and nitrogen are detailed in Tab. 1. The CL environment emulates a low uptake 135

rate of glucose, while the NL environment emulates a low uptake rate of ammonia. The 136

uptake rates shown in Tab. 1 are the upper bounds, with corresponding excretion rates 137

being unconstrained. Note that, the BOFs and environments are created with the sole 138

purpose of evaluating the methods for constraint-based simulations with multiple BOFs. 139

Therefore, the defined uptake rates were chosen to be within the capabilities of a 140

genome-scale model, not chosen to mirror physiolgical capabilities of E. coli in detail. 141

November 23, 2020 4/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409565
http://creativecommons.org/licenses/by/4.0/


Fig 1. Comparison of the phenotypic properties of the three BOFs. In all panels, we
vary the (fixed) glucose and ammonium uptake rates in units of mmol gCDW−1 h−1

along the horizontal and vertical axes, respectively. Non-growth areas are shown in light
grey, and relative values of unity are represented by pink. Panels A to C, show the
growth phenotype phase-planes with coloring according to growth rate. Maximal
acetate secretion rates are shown in panels D to F. In panels G to I, we plot the
respiratory quotient RQ.

The CL and NL BOFs provide the largest growth rates within their respective 142

environment when compared with each other. However, the UL BOF outperforms only 143

the NL BOF in a rich environment. In many organisms, carbon (glucose) is the growth 144

limiting compound, and the carbon-starvation biomass composition is created to survive 145

with as little carbon as possible. Consequently, in an unconstrained environment, this 146

BOF can generate more flux with the same carbon uptake rate, thus outperforming the 147

UL BOF, as demonstrated in Fig. 1 panels A to C. If more biologically plausible 148

constraints were imposed on the uptake reactions based on the available biomass 149

composition, we are of the opinion that the CL biomass would not perform as well. 150

Next, we explore the phenotypic properties of the three different BOFs. This is 151

important to understand the impact of their formulation on the model and its 152

phenotype predictions. To that end, we display key metabolic traits of the generated 153

BOFs in Fig. 1. Panels A to C show the 2-D phenotype phase-planes of glucose against 154

ammonium, where the calculated growth rate is represented by the color code. Note 155

that all other uptake rates of the specified environment are unlimited. Furthermore, we 156

draw the attention to the fact that the shown phenotype phase-planes are for the 157

uptake of glucose plotted against ammonium, and should not be mistaken for the 158

common plots of oxygen versus carbon source. We highlight that we only scaled the 159

BOF compound coefficients; no compounds were added or removed, which is something 160

one would expect to observe in an experimental BOF determination. 161

Not surprisingly, these panels show that the biomass composition affects the growth 162

potential of cells in response to environmental changes. The CL biomass composition 163

(with a reduced fraction of carbohydrates) generates a high growth potential in nitrogen 164

and carbon rich environments, shown in panel C. In fact, the growth potential in a 165

nutrient rich environment is even higher than the UL biomass, comparing 166

panels A and C. This contrasts what one might expect to observe experimentally, as 167

the UL BOF is constructed for a nutrient rich environment, whereas both limited BOFs 168

are constructed for starving environments. However, as the ratio of carbon to nitrogen 169

is CL < UL < NL, the CL BOF outperforms the other BOFs in the same environment, 170

due to the fact that the same amount of carbon generates more flux through the BOF. 171

Acetate is the only byproduct that is secreted in both phenotypic states (respiration 172

and fermentation), although the abundance of acetate secretion is higher in the 173

Table 1. The artificial BOFs used in this model. CL is the carbon limited biomass, NL
nitrogen limitation, and UL is the unlimited environment. The assumed maximum
uptake flux rates are detailed for the respective environments. The growth rates are
given in units of h−1, while the flux bound on the uptake rates are given in
mmol gCDW−1 h−1.

C/N uptake CL NL UL
”in vivo” uptake carbon/nitrogen 1.5/0.68 13.5/1.5 18/8.5
in silico Growth rate 2/15 0.40 0.09 0.18
in silico Growth rate 15/2 0.32 0.42 0.22
in silico Growth rate 15/15 2.42 0.79 1.57
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fermentation state than in the respiratory state [25,31]. Thus, the production of acetate 174

is maximal at low oxygen availability, or low concentrations of other respiratory 175

electron-chain acceptors, but non-zero in the presence of oxygen [32]. Fig. 1 176

panels D to F shows the secretion potential profile of acetate with respect to the 177

biomass composition. In these calculations, we have maximized acetate production 178

subject to optimal growth constraint. Large parts of the profile are in black, in areas of 179

limited acetate production. This indicates the metabolism’s tendency towards a 180

respiratory state. Note that, the maximal acetate production is in areas of a low 181

nitrogen uptake or a high C/N ratio. Especially for the NL BOF, the acetate 182

production phase is small, however, the phase transition gradient is very sharp. Acetate 183

secretion is associated with lower growth [25,31]. The model shows this behaviour in 184

Fig. 1 panels A to F, where low nitrogen-carbon rich environments generate higher 185

acetate secretion, which corresponds to low growth rates. 186

The respiration potential is measured by the respiratory quotient RQ and shown in 187

Fig. 1 panels G to I. RQ is defined as the ratio between secreted carbon dioxide and 188

absorbed oxygen v(CO2)/v(O2). To reasonably calculate RQ, we perform a multi-level 189

optimization: First, we maximize growth using the respective BOF. Second, we 190

maximize for acetate secretion subject to growth fixed at the maximal value. Finally, 191

using a parsimonious FBA implementation, we minimize all reaction fluxes, including 192

oxygen uptake and CO2 excretion, while keeping the BOF and the acetate fluxes at 193

their previously determined (maximal) values. 194

RQ is another central phenotypic descriptor that one would expect it to be 195

profoundly affected by the biomass composition, as it is connected to the the respiratory 196

state of the cell [33]. As is evident from Fig. 1, the dependence of the RQ on the 197

environmental parameters changes drastically with the different biomass compositions: 198

RQ ≈ 1 is associated with fully oxidative respiratory metabolism, which is indicated by 199

pink color in Fig. 1 panels G to I. In the respiratory state, the cell is able to fully 200

oxidize glucose and produce flux trough the TCA cycle and electron transport 201

chain [25,34]. RQ < 1 represents fermentation, where pyruvate, as CO2 producing 202

precursor of acetate formation, is excreted in vivo. In contrast, an RQ > 1 represents 203

oxidative fermentation, where glycolytic activity with redox NAD+/NADH potential is 204

enhanced and oxidative phosphorylation is impaired with the underlying decoupling of 205

glycolysis and TCA cycle from oxidative phosphorylation [34]. This metabolic state is 206

generally referred to as ”overflow metabolism” [33]. All three metabolic states can be 207

seen in the plots. Especially the NL BOF generates large areas where RQ > 1 for low 208

ammonium uptakes; areas for which the CL and UL BOFs have an RQ ≈ 1. The area 209

for RQ < 1, indicating a fermentative metabolism, is similar for the NL and CL BOFs, 210

and larger for the UL BOF. 211

In sum, Fig. 1 shows how the chosen BOF formulations impact the performance of 212

the iML1515 genome-scale metabolic model using standard flux-balance analysis. This 213

knowledge leads us to the main focus of this work: Given the availability of multiple 214

BOF formulations, how may we use this knowledge in a flux-balance analysis 215

formulation? Since it is only reasonable to assume that one may perform high-fidelity 216

determination of a BOF for a limited set of conditions, we believe it necessary to 217

develop heuristics that are capable of bridging this knowledge gap. 218

Approaches to leverage multiple biomass composition data 219

Consider a situation where multiple BOFs are provided, and they are presumed to be 220

clearly connected with (measured) environmental information. Each BOF is associated 221

with a mapping from an n-dimensional environmental space onto an m-dimensional 222

biomass component space. Here n corresponds to the number of relevant environmental 223

parameters, and for reasons of simplicity, we will explore the case of n = 2 using carbon 224
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Fig 2. A simple illustration of the principles behind the Biomass Tradeoff Weighting
(BTW) and Higher-dimensional-plane InterPolation (HIP) approaches. The green and
red point represent a laboratory determined BOF (panel A) or the coefficient of biomass
component BCi (panel B) for the given uptake. The blue point mark in both panels the
requested environment defined by the respective uptake. A) An illustration of the
BTW, where the linear optimization algorithm is allowed to select an optimal tradeoff
between multiple BOFs in order to maximize total biomass production. The fluxes
trough the different BOFs are combined for an optimal objective value, represented as
the blue combined biomass. The green and red solid line represent the use of each single
BOF, the dotted lines their contribution to the BTW BOF. B) A schematic depiction of
HIP, which uses environmental parameters to interpolate between different known levels
of biomass component coefficients BCi to generate coefficients for a new BOF. In
contrast to BTW, the BOF is depending on the environment and nutrient data.

and nitrogen uptake as the environmental variables. The m dimensions correspond to 225

the different possible molecular components in the BOF. The respective BOFs are 226

constructed for different points in the environmental space, and we imagine them as 227

resulting from measurements during those conditions in the wet lab. The challenge is 228

then: If the metabolic behavior is of interest at locations in environment space that are 229

between experimentally determined points, how does one combine the existing 230

knowledge to infer relevant BOF composition? 231

In the following, we propose the two approaches of Biomass Tradoff Weighting 232

(BTW) and Higher-dimensional-plane InterPolation (HIP). While they are both 233

applicable to any value of n, we provide a visual presentation of their guiding principle 234

in Fig. 2 using n = 1 for simplicity. Further details are provided in the Materials and 235

Methods section. Simply put, the BTW approach allows a linear optimization algorithm 236

to select the optimal combination of relevant (available) BOFs by setting their weights 237

to unity in the objective vector c (Fig. 2A). The HIP algorithm (Fig. 2 B) interpolates 238

between BOF compounds in biomass composition space by spanning the experimentally 239

measured points with a linear plane. Additionally, in order to demonstrate an example 240

of how these methods can be altered for greater utility and/or realism, we introduce an 241

extended version of HIP, the Higher-dimensional-plane InterPolation-Iteration (HIP-I). 242

HIP-I generates a BOF for a given environment using the HIP algorithm, after which 243

the model is optimized without fixed uptake rates. The optimization step will 244

oftentimes result in an optimal set of uptake flux rates that are not consistent with the 245

coordinates for the BOF composition that was used. The new set of uptake rates is 246

subsequently used to query the HIP algorithm for a new BOF. This procedure is 247

iterated until it converges on a self-consistent point in nutrient and environment space. 248

Since the genome-scale models of interest for computational analyses and 249

biotechnological applications consist of a few to tens of thousands of reactions [23,24], it 250

is important to assess the computational efficiency of the proposed methods. The BTW 251

approach only requires the time to add multiple biomasses once, and then setting each 252

of their coefficients in the objective vector c to 1, also once. The model can be tested 253

for any range of environments. The HIP approach requires the generation of a new BOF 254

for the query point in nutrient space, which in our tests for the iML1515 model and the 255

two-dimensional environment space mentioned above, increased the mean compute time 256

relative to just solving a standard FBA problem in the COBRA Toolbox, by 257

28.6%± 1.2% over 104 runs. Here, we have used the standard COBRA Toolbox 258

functions for adding a reaction and changing the objective function. The time used for 259

the model optimization itself does not change measurably in either of the two 260

approaches. 261

Another point to consider is the ”data hunger” of the different methods: BTW 262
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works with as little as one BOF (in the limit of one BOF, it reduces to regular 263

single-BOF FBA), whereas interpolation requires measurements that span relevant 264

environmental parameters. Interpolation is also applied assuming local linearity, and the 265

reference mapping from environment to biomass composition should therefore have a 266

certain level of resolution (in terms of the density of measurement points) for the 267

assumption of linearity to hold. 268

For the HIP method, one could also envision non-linear interpolation functions 269

between the experimentally determined BOF-points in biomass component space, but 270

fitting these would require both a higher density of data points and additional biological 271

insight into the mapping between environment-biomass component spaces. 272

Consequently, the assumption of linearity is the simplest, and therefore the most 273

prudent, given our current knowledge and lack of high-resolution biomass-composition 274

data available. 275

While the HIP method is designed to interpolate between measurement points, its 276

formulation also allows the extrapolation outside. Such extrapolation might in many 277

cases be reasonable, for example close proximity to the measurement points, but extra 278

care must then be taken. The evidence-base becomes shakier and extrapolation past a 279

line drawn from a positive coefficient to a zero will result in a negative coefficient. This 280

equates a forced infusion of a given biomass component into the metabolism, coupled to 281

growth. In such cases, this phenomenon should be handled. For some compounds, such 282

as glycogen or PHB, it is expected that they would be present in infinitesimal amounts 283

in a given environment: For example, a carbon storage compound such as glycogen will 284

not be formed in appreciable amounts during carbon starvation. Other compounds, say 285

for example alanine, are essential for an organism and should not become zero. 286

Consequently, in order to extrapolate to a BOF outside the region spanned by the 287

experimentally determined biomass coordinates, one must classify such compounds and 288

include a scale for returning a non-negative coefficient. Here, for simplicity, we used 1% 289

of the respective UL coefficient, though alternative approaches are possible, and indeed 290

highly required. In the following, we explore the phenotypic consequences of BTW and 291

HIP/HIP-I when using the set of three artificial BOFs as input for the approaches. 292

Comparing the multiple-biomass analysis methods 293

While determining one method as being strictly ”better” than another is not meaningful 294

without high-resolution empirical data, some comparisons are still in order, and we 295

conducted a direct comparison for the three methods. In the standard phenotype 296

phase-plane mapping, one uses fixed values for the tested uptake fluxes, which is not 297

commensurable with the HIP-I iterative framework. Thus, we may only directly 298

compare BTW and HIP. However, given the way HIP-I is defined as an iterative process, 299

its zero’th iteration is identical to HIP. Also, environmental uptake flux values that 300

correspond to the self-consistent HIP-I solutions (fixed points) are identical to the HIP 301

results in these points. 302

In Fig. 3, we calculate several phenotype phase-planes by varying the two 303

environmental variables of glucose and ammonium (using the same approach and values 304

as in Fig. 1), and plot these relative to the values presented in the UL column of Fig. 1. 305

The absolute plots for HIP and BTW can be found in S3 Fig.1. The phenotype profiles 306

shown are growth (panels A-B), growth relative to UL (C-D), acetate secretion relative 307

to UL (E-F) and respiratory quotient RQ relative to UL (panels G-H). 308

We first generated phenotypic phase-planes in response to varying glucose and 309

ammonium uptake rates for the two approaches, as shown in Fig. 3 panels A and B. If 310

BTW and HIP returned the same results as the UL BOF with standard FBA 311

calculations, the plots in panels C through H would only be pink. The growth potential 312

is clearly affected by the chosen method: BTW displays higher growth potential 313
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Fig 3. Side-by-side comparison of the BTW and HIP method, panels C to H are
relative to the respective panels (and uptake rates therein) in Fig. 1 of the unlimited
environment UL. Glucose and nitrogen were fixed to the given uptake rates, all other
uptakes are unconstrained. Non-growth areas are in light grey, a value of unity is
indicated by pink. Panels A and B show growth phenotype phase-planes, panels
C and D show relative growth phenotype phase-planes with the UL BOF as reference.
Panels E and F show acetate secretion flux rates relative to those of the UL BOF, and
G and H show the respiratory quotient RQ relative to the UL BOF RQ. The white
area in the relative acetate secretion plot for the HIP method indicates a small acetate
production in HIP, and zero acetate production in the UL BOF.

Fig 4. Panel A shows the growth phenotype phase-plane of the HIP-I method. A
white area indicates no stable HIP-I solution. Gray color indicates a non-growing region
in the UL. The remainder of the plot consists of stable HIP-I solutions, i.e. points that
have the same growth phenotype as HIP. The dotted arrow between the green and the
blue X shows the transition from an unstable HIP-I point to a stable one. Panel B
illustrates the HIP-I algorithm: The starting constraint indicated by the blue line, here
being ammonium uptake, generates a new BOF for the next iteration. This process is
repeated iteratively until a stable uptake (within a given tolerance) is found, indicated
here by the blue cross.

compared to the HIP approach. This is to be expected since the BTW methods chooses 314

the combination of available BOFs that maximizes the objective function; in this case 315

total growth. Next, we evaluated the growth potential of the methods relative to the 316

original UL BOF, as seen in Fig. 3 panels C and D The BTW strategy generates the 317

highest relative growth potential, which is as expected due to its definition. The values 318

are consistently larger than the UL reference BOF. In contrast, HIP generates some 319

areas (shown in pink, panel D) with similar growth as the UL BOF. The smallest pink 320

region around coordinate (8.5, 18) is expected, since this is the region in which UL is 321

defined to be the experimental BOF. Similarly, we observe pink at and near this 322

coordinate in both panels F and H. 323

The relative RQ profiles are shown in Fig. 3 panels G and H. BTW generates a 324

higher RQ than the UL BOF, in the areas with RQ < 1, BTW and HIP perform similar 325

to UL. The HIP method therefore generates a BOF biased more towards fermentative 326

states and consequently towards higher acetate secretion rates than BTW does 327

(Fig. 3 panels E and F). The relative acetate secretion of BTW shows similar phases as 328

the NL BOF. In fact, the absolute acetate secretion, shown in Supplementary S3 Fig.1, 329

indicate a high similarity between the BTW and NL BOFs. 330

Since fixing uptakes is inconsistent with the definition of HIP-I, we scanned the 331

space of glucose an ammonium uptake fluxes in a different manner. Instead of fixing the 332

uptake fluxes, we enforced an upper bound on their value (and zero as lower bound), at 333

which the HIP-I method was initiated. The resulting growth phenotype phase-plane is 334

shown in Fig. 4 A. When using a discrete mapping such as HIP-I, it is to be expected 335

that the queried flux values give rise to two categorically different types of solutions: 336

Either the flux coordinate is a fixed point, for which the HIP-I produces a 337

self-consistent solution without any iteration (i.e. the HIP solution), or it is an unstable 338

point. In the latter case, HIP-I will iterate through a sequence of such points until a 339

fixed point is encountered. Fig. 4 B shows one such transition corresponding to the 340

indicated starting and end point in panel A. 341

As expected, a high-ammonium and low-glucose environment is not beneficial for the 342

model and consequently, the uptake is iteratively adjusted to reach a lower nitrogen 343

uptake. Hence, we find that the transition line between the unstable and stable HIP-I 344
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Fig 5. Single gene knockouts at 10 different environments using FBA with the biomass
functions being UL, NL, or CL, and for the methods BTW, HIP and HIP-I. The
environments are defined by their carbon and nitrogen uptake fluxes, where the flux
value represents the maximum uptake limit. The genes are sorted according to mutant
growth rate relative to the wild type, sorted into the following intervals: [0, 0.01) /
[0.01, 0.50] / (0.50, 0.88] / (0.88, 0.98] / (0.98, 1] These intervals are reflected in the
width of each bar in the histograms, while the heights are the log base 2 of the number
of genes falling within the respective interval.

coordinates serves as an attractor for the unstable region. 345

Gene essentiality is an important phenotype in a genome-scale metabolic 346

model [29,35,36]. To assess the consequence of the three different BOF formulations 347

and the methods BTW, HIP and HIP-I on gene-essentiality predictions, we conducted a 348

full single-gene knockout screen at 10 different coordinates in the environmental space. 349

For the three different BOF formulations, we used standard FBA calculations to 350

calculate mutant growth rates. Note that, while Fig. 4 shows that HIP-I fixed-point 351

regions show the same growth characteristics (and also other phenotypes) as HIP, their 352

evaluations of knockouts differ. The reason for this is that each mutant genome-scale 353

metabolic network will have a different topology for its fixed-point region. Consequently, 354

a given (C/N) flux coordinate point that is a HIP-I fixed point in the wild-type model, 355

may become HIP-I unstable in a knockout mutant model. Due to the need to run HIP-I 356

through multiple iterations, computational run-times required for a full single-gene 357

knockout screen increase significantly. 358

The results of the knockout study are shown in Fig. 5, and a depiction of the chosen 359

glucose and ammonium (C/N) coordinates is given in Supplementary S4 Fig.2. A table 360

summarizing the knockout data is to be found in Supplementary S2 Table. When 361

comparing the UL, NL, and CL BOFs for the given environment location, the number 362

of essential genes show small variations in a range from 240 to 250. The effect of gene 363

knockouts in the CL BOF fall into only two categories: Either the gene is essential or it 364

will not affect the growth rate. For the NL BOF, which has the largest carbohydrate 365

fraction, we find the largest fraction of genes with slight to moderate reduction of 366

relative growth, within the relative growth range (0.5, 0.98] in all the selected 367

environments. Additionally, in 7 out of 10 knockout environments, eight genes reduce 368

growth to [0.01, 0.50] of the WT growth rate. In summary, the NL BOF demonstrates 369

more genes with effects on growth than the UL and CL BOFs. 370

Comparing the three methodologies BTW, HIP, and HIP-I, the numbers of essential 371

genes show the largest variation with BTW BOFs: They range from 233 to 250, 372

whereas for HIP we find values from 239 to 250. In 9 out of 10 environments, the model 373

with the HIP-I BOFs contain 250 essential genes. The BTW is the only method where 374

genes with a low relative growth reduction (0.88, 0.98] are found in 9 out of 10 375

environments. In contrast, the HIP algorithm finds eight genes with intermediate effect 376

in the range (0.5, 0.88] in 8 out of 10 environments, BTW in 4 out of 10 environments. 377

Note that, the number of genes varying in the range of [0.01, 0.88] is same (eight) the 378

for all three methods. These eight genes display a significant reduction of relative 379

growth (down to [0.01, 0.50]) for 5 out of 10 knockouts environments for a HIP-I BOF, 380

similar to the NL BOF. None of the other methods or BOFs contain these genes with a 381

significant reduction. In summary, the BTW BOFs show a larger variation in genes 382

with little phenotypic effects, HIP-I demonstrates more genes with significant growth 383

reductions and more stable number (upper limit) of essential genes. 384
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Conclusion and Outlook 385

We implemented three different BOFs in the iML1515 genome-scale metabolic model 386

for E. coli. These gave rise to different phenotype profiles for growth potential, acetate 387

secretion potential, gene essentiality, and respiratory quotient. The underlying reason 388

for these changes are metabolic rearrangements necessitated by the different drain on 389

resources imposed by the changes in biomass compositions. 390

Using this basis, we investigated the challenge of how to implement and combine 391

several different BOFs in a genome-scale model. The approaches presented lead to 392

different formulations of the biomass function, which cause distinctly different 393

phenotypic responses to changes in the nutrient environment. We have proposed two 394

basic methodologies, BTW and HIP, with an iterative extension of the latter in the 395

form of HIP-I. The proposed methods are merely a first line of suggestions to initiate 396

the exploration of this important extension to constraint-based analyses, since 397

high-quality experimental data do not yet exist to evaluate their efficacy. The chosen 398

methods are therefore designed to be fast and easy to apply and interpret, while at the 399

same time having a simple and sensible, appealing heuristic basis. We foresee possible 400

future expansions of these methods or altogether completely different approaches. 401

Given enough data, one can imagine the development of a range of methods, based 402

on methodologies such as advanced statistical regression analyses, or other machine 403

learning approaches, and mechanistic models involving the specific topology of the 404

metabolic networks. In that respect, non-uniform mapping between nutrient- and 405

biomass space could be considered within the range of perturbed environmental 406

variables. We are aware that there are multiple options to be explored and validated 407

when in vivo data become available. The experimental data might not be as linear as 408

we have assumed in this manuscript; non-linear surfaces or step-wise variations are 409

possible consequences of gene-regulatory effects. Additionally, it is not a given that the 410

measurements will fit on a plane due to uncertainties in biomass-component 411

measurements. The HIP and HIP-I methods may easily be extended to this case by 412

generating a best-fit plane using simple linear regression. However, with the presented 413

work, we open a direction for further interdisciplinary discussion on this matter. 414

Furthermore, it seems reasonable to assume that, for some organisms, the biomass 415

composition could change significantly between quite similar nutrient conditions. An 416

example of this could be a carbon-limiting minimal medium with different carbon 417

sources, such as glucose or lactate. As the biomass composition depends on the 418

environment, detailed and accurate knowledge of environmental conditions is crucial 419

when using multiple BOFs. 420

We propose that next-generation GSMs should contain (hard-coded) laboratory data 421

about their included BOF(s). Community-driven adjustments to the current version of 422

the SBML format might be required, as has recently happened for a different 423

challenge [37]. Including additional fields in the SBML format regarding the BOF offers 424

the possibility of a diverse range of methods for BOF combinations, whether based on 425

the methods presented here, or something completely different. Functions for correct 426

BOF selection, automatic BOF selection based on environmental similarity, or even 427

generation of more suitable BOFs based on a mechanistic understanding of the 428

relationship between environment and biomass composition are all possibilities. We 429

believe that adjustment and combination of BOFs as presented here will also be 430

instrumental in attaining an increased level of mechanistic knowledge of the relationship 431

between environment, metabolism, and biomass composition. 432
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Table 2. The table shows the three environments defined by carbon (C) and nitrogen
(N) uptake and the scaling of biomass groups. The groupings are used to scale the
containing compounds for the creation of the BOF. For example, we define that protein
is scaled by 0.2 in a nitrogen limited environment. Consequently, the factor for each
compounds in the protein group is multiplied by the corresponding factor for the new
BOF.

UL NL CL
Uptake rates C18, N8.5 C13.5, N1.5 C1.5, N0.68

DNA 1 1.1 1.9
RNA 1 0.86 1.6
Protein 1 0.2 3.5
Lipid 1 20 0.26
Carbohydrates 1 15 0.2
Energy 1 4 0.5
Co-factors 1 4 3
Ions 1 1 1.1
Others 1 3 2

Materials and methods 433

In this manuscript, we consider the biomass objective function (BOF) for an organism 434

as follows: 435

α1BC1 + α2BC2 + ...+ αmBCm → αm+1BCm+1 + ...+ αnBCn (1)

Each compound in the BOF corresponds to a dimension in an n-dimensional biomass 436

component space, where the coefficients αi may vary in response to changes in the 437

organism’s nutrient environment. Note that, in the biomass component space, one 438

particular value for the different αi corresponds to a single point. 439

Generation of artificial biomass functions 440

In order to test the effects of combining BOFs in multiple ways, different BOFs are 441

needed. The reconstruction iML1515 includes two separate biomass functions with 442

reaction codes 2669 (BIOMASS Ec iML1515 core 75p37M) and 2670 443

(BIOMASS Ec iML1515 WT 75p37M). In order to create a single reference biomass, we 444

took the arithmetic mean for each biomass component in the two to generate a new 445

BOF. In Supplementary S1 Table we listed the coefficients αi of the two BOFs, and the 446

WT version contains 31 compounds more than core. The new, nutrient-rich BOF is 447

listed as Mean and was scaled to 1gh−1gCDW−1 based on the given molecular weights. 448

We use this BOF as our reference biomass, and we refer to it as the unlimited (UL) 449

environment composition. Note that, the compound adocbl (adenosylcobalamin) is 450

present in the WT BOF (BIOMASS Ec iML1515 WT 75p37M) but needed to be 451

removed since it inhibits model growth. 452

Also shown in Supplementary S1 Table is the group we used for each compound. For 453

example, we categorize the compound arg L[c] arginine in the group protein in Tab. 2. 454

Subsequently, all compounds were scaled according to their listed group to generate the 455

nitrogen limited (NL) and carbon limited (CL) environment BOFs. The BOF was 456

scaled so that consumed metabolites for a unit flux through it sums to 1gh−1gCDW−1
457

based on the compounds’ molecular weight in the model. 458

Since the existing knowledge of biomass composition as a function of microbial 459

growth environment is somewhat limited, we generated artificial biomass functions for 460

three different environments, all of which are under aerobic conditions in a minimal 461

mineral medium: (1) CL - carbon limitation (glucose), (2) NL - nitrogen limitation 462

(ammonia), and (3) UL - an environment without any nutrient limitation. These three 463
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artificial BOFs contain distinct and biologically plausible differences in the amounts of 464

the five major groups of macromolecules: DNA, RNA, proteins, lipids, and 465

carbohydrates. All compounds appear in all environments, and we assume no abrupt 466

change in the presence of a single compound, such as the poly(3-hydroxybutyrate) in A. 467

latus [28]. 468

We define measured uptake rates for glucose and ammonium, the other uptake rates 469

required for growth in a minimal medium are set to be non-limiting. Specifically, this 470

refers to the uptake rates of oxygen and the other compounds set to 471

−1000 mmol gCDW−1 h−1, which is also their default values included in the original 472

genome-scale model. In Tab. 2 the chosen environments are defined by the carbon (C) 473

and nitrogen (N) uptake rates and their scaling of the macromolecular groups in the 474

BOF is presented. Here, we will assume that RNA is 1.6 times higher in a carbon 475

starvation (CL) environment (C1.5, N0.68), and 0.86 times less abundant in a nitrogen 476

starvation (NL) environment (C13.5, N1.5), than in the unlimited (UL) environment 477

(C18, N8.5). The scaling applies equally to all compounds within a defined group, details 478

of which can be found in Supporting Information S1 Table. The relative placement of 479

the three biomass functions in the considered 2-dimensional (ammonium, glucose) 480

nutrient space is depicted in Supplementary S4 Fig.2. 481

Method 1: Biomass Tradeoff Weighting (BTW) 482

The standard flux balance analysis (FBA) problem can be stated as the following linear
program [1]:

max X =

n∑
j=1

cjvj

s.t.

n∑
j=1

sijvj = 0, ∀i ∈M,

vlbj ≤ vj ≤ vubj , ∀j ∈ N,

where sij is the stoichiometric coefficient of metabolite i in reaction j, vj is the flux 483

through reaction j, vlbj and vubj are respectively the lower and upper bounds on reaction 484

j. Here, cj is the objective function coefficient of reaction j, typically chosen such that 485

the only non-zero coefficient corresponds to the reaction flux of the BOF. 486

The BTW method is based on the assumption that, given enough time, bacteria will 487

obtain a biomass composition most optimal for their growth circumstances: If a 488

bacterium in a population shifts its composition slightly to attain a higher growth rate 489

without impeding any other functions or utility, then with time, this adaptation will be 490

propagated by natural selection. As bacteria grow and produce copies of themselves, 491

they use the resources available to the best of their evolved ability. It is therefore 492

possible that, given some limiting nutritional factor on growth, the biomass composition 493

would adapt to use as little as possible of that limiting factor. 494

While conceptually simple, this method is even simpler in implementation: several 495

biomass compositions for the organism are acquired, then implemented in the standard 496

FBA formulation. All the different biomass functions are included in the objective 497

function by assigning their objective function coefficients cj = 1, with all other entries 498

being zero. This allows the linear optimization procedure to distribute the optimal flux 499

simultaneously among the multiple BOFs in order to produce the objective value. An 500

illustration of this method for a simple case in 1 dimension is displayed in Fig. 2 A. 501

Thus, there is no explicit dependence of the BTW biomass objective function 502

coefficients on the nutrient uptake fluxes. 503
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Method 2: Higher-dimensional-plane InterPolation (HIP) 504

This approach is based on assuming the existence of a stable, linear mapping between 505

the nutrient environment space and the biomass coefficient space. This is conditional on 506

similar nutrient environment conditions generating similar values for the organism’s 507

biomass composition. When this assumption holds, it is possible to infer the biomass 508

composition for an organism growing under specified growth conditions if one knows the 509

biomass composition when the organism grows under similar conditions. From this line 510

of thought stems the Higher-dimensional-plane InterPolation (HIP) method. 511

We hypothesize that the assumption of linearity in the biomass component space 512

will be reasonable if the points in the uptake rate space are close together. We illustrate 513

HIP for a simple case of mapping from one environmental parameter to the amount of 514

one biomass coefficient, see Fig. 2. 515

In this paper, we have implemented and tested the HIP approach for the 516

hypothetical case of only two nutrient uptake fluxes, those of glucose and ammonium, 517

affecting the biomass composition of the model iML1515 for Eschericha coli. In order to 518

uniquely determine the HIP linear mapping between this (2-dimensional) nutrient 519

environment space and the biomass component space, we need to have three points in 520

nutrient environment space (that are not in a line) and their corresponding mappings in 521

biomass component space. For this, we use the UL, CL and NL BOFs and their 522

corresponding location in nutrient environment space. 523

We implement HIP by using either the upper bounds or fixed values of the nutrient 524

environment uptake fluxes to determine the relevant BOF composition. Subsequently, 525

we perform a standard FBA analysis using this BOF. 526

Higher-dimensional-plane InterPolation-Iteratively (HIP-I) 527

As the name would imply, this is an iterative extension of the HIP method that 528

originates from the fact that the optimal solution to HIP may consist of nutrient 529

environment space uptake fluxes that are inconsistent with the values used for 530

determining the HIP biomass function: For a HIP simulation mirroring standard FBA, 531

we constrain the problem using upper bounds on the nutrient environment uptake 532

fluxes. The nutrient environment space coordinates corresponding to these upper 533

bounds are used to determine the specific biomass composition in HIP. If the optimal 534

solution has determined values for these nutrient uptake fluxes that are different from 535

the upper bounds, the solution is not self-consistent. In such a case, the new fluxes 536

through the uptake reactions are used as a new input to the HIP function, and the 537

process is then repeated iteratively until a self-consistent solution is determined, as 538

illustrated in Fig. 4 B. 539

We implement HIP-I as follows. First, we define u as the vector of upper bounds for 540

the nutrient environment uptake fluxes, and vk as the optimal flux solution after the 541

k-th iteration of HIP-I. The initial step of HIP-I (k = 0) uses u to determine the BOF 542

(B0). Running HIP with these inputs results in an optimal uptake flux vector v1. If 543

|v1 − u| ≤ ε, the algorithm terminates, and the HIP-I solution for u will equal the HIP 544

solution for u. Instead, if |v1 − u > ε, we use v1 and its corresponding biomass 545

composition B1 as input for the next (k = 1) HIP execution. This is iterated until 546

|vk − vk−1| ≤ ε or until we reach km, a predetermined maximum number of iterations. 547

For the current simulations, we used ε = 10−3 and km = 100. Note that km was never 548

reached in any of the iterations, in HIP areas km was km = 0 and in other areas 549

km ≈ 2.5. 550
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Modeling and plotting 551

All simulation analyses have been implemented using the COBRA Toolbox 3.0 [38] in 552

Matlab 2019b [39], and we used the genome-scale metabolic reconstruction iML1515 for 553

Eschericha coli. The COBRA Toolbox function optimizeCbModel was used in 554

combination with the solver gurobi [40]. The settings feasTol and optTol were changed 555

from 10−6 to 10−9 to resolve numerical issues for all calculations. For knockouts, we 556

used the COBRA toolbox function singleGeneDeletion with the data output grRatio. 557

The threshold for a knockout was 10−2. The RQ determinations were performed with 558

parsimonious FBA [41]. The result of the first optimization for the BOF was fixed. 559

Afterwards, the optimized acetate production flux was also fixed. Then, the 560

parsimonious FBA minimizes all fluxes in the (irreversible) model. This allows for 561

stable, minimal required fluxes of oxygen and CO2 to determine RQ. The plots were 562

created with Matplotlib [42]. Values are for the most part represented exactly as they 563

are in the colormaps, with the exception that the values for relative acetate are capped 564

at 10, due to some values being divided by very low ones. 565
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Supporting information 576

S1 Table Three biomasses used and scaling of groups. This table lists the 577

three BOFs for the nitrogen- and carbon-limitation, as well as the unlimited function. 578

Note, that these BOFs are made up and not based on measurements. Additionally we 579

list the groups used in the manuscript for scaling shown in Tab. 2. 580

November 23, 2020 16/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409565
http://creativecommons.org/licenses/by/4.0/


Table 3. Single gene knockouts at 10 different environments using FBA with the
biomass functions being UL, NL, or CL, and for the methods BTW, HIP and HIP-I.
The environments are defined by their carbon and nitrogen uptake fluxes, where the
flux value represents the maximum uptake limit. Number of genes are reported
according to induced mutant growth phenotype relative to the wild type in the following
intervals: [0, 0.01) / [0.01, 0.50] / (0.50, 0.88] / (0.88, 0.98] / (0.98, 1].

(C,N) max flux UL NL CL BTW HIP HIP-I
1 : (18, 8.5) 250/0/8/0/1258 250/8/2/35/1221 250/0/0/0/1266 250/0/0/10/1256 250/0/8/0/1258 250/8/0/0/1258
2 : (15.29, 4.28) 241/0/0/0/1275 250/8/2/35/1221 241/0/0/0/1275 250/0/8/20/1238 250/0/8/0/1258 250/8/0/0/1258
3 : (15.16, 6) 250/0/8/0/1258 250/8/2/35/1221 241/0/0/0/1275 250/0/0/10/1256 250/0/8/0/1258 250/8/0/0/1258
4 : (13.5, 1.5) 241/0/0/0/1275 240/0/8/0/1268 240/0/0/0/1276 233/0/0/8/1275 240/0/8/0/1268 250/0/8/0/1258
5 : (12.91, 2.5) 241/0/0/0/1275 250/8/0/0/1258 241/0/0/0/1275 250/0/8/0/1258 250/0/8/0/1258 250/0/8/0/1258
6 : (12.32, 3.5) 241/0/0/0/1275 250/8/2/35/1221 241/0/0/0/1275 250/0/8/20/1238 250/0/8/0/1258 250/8/0/0/1258
7 : (11.25, 5.3) 250/0/8/0/1258 250/8/2/35/1221 241/0/0/0/1275 250/0/0/10/1256 239/0/8/0/1269 250/8/0/0/1258
8 : (9.74, 1.24) 241/0/0/0/1275 240/0/8/0/1268 241/0/0/0/1275 233/0/0/8/1275 240/0/0/0/1276 250/0/0/0/1266
9 : (6.91, 2.09) 241/0/0/8/1267 240/8/2/35/1231 241/0/0/0/1275 240/0/8/20/1248 240/0/8/0/1268 250/0/8/0/1258
10 : (1.5, 0.68) 247/0/0/0/1269 245/0/19/18/1234 249/0/0/0/1267 235/0/0/19/1262 249/0/0/0/1267 258/0/0/0/1258

S2 Table Table of knockouts. 581

November 23, 2020 17/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.409565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.409565
http://creativecommons.org/licenses/by/4.0/


S3 Fig.1 Direct plots for the Fig. 3. The plot shows the non-relative heatmaps 582

presented in Fig. 3, for BTW, HIP and UL for a direct comparison. Note especially the 583

light-grey zero-areas in the direct comparison. 584
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S4 Fig.2 Selected points for single-gene knockout analysis presented in 585

Fig. 5. The figure shows the glucose-ammonium environmental space and the three 586

BOFs UL, NL, and CL (marked in red). The other points marked in the figure are the 587

coordinate locations for the single gene knockout analysis. The numbering of the points 588

corresponds to the numbering in Fig. 5. 589
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