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Abstract	
The	 identification	of	stabilizing	amino	acid	substitutions	 in	proteins	 is	a	key	challenge	 in	protein	
engineering.	Advances	in	biotechnology	have	enabled	assaying	of	thousands	of	protein	variants	in	
a	single	high-throughput	experiment,	and	more	recent	studies	use	such	data	in	protein	engineering.	
We	 present	 a	 Global	 Multi-Mutant	 Analysis	 (GMMA)	 that	 exploits	 the	 presence	 of	 multiply-
substituted	variants	to	identify	individual	substitutions	that	stabilize	the	functionally-relevant	state	
of	a	protein.	GMMA	identifies	substitutions	that	stabilize	in	different	sequence	contexts	that	thus	
may	be	combined	to	achieve	 improved	stability.	We	have	applied	GMMA	to	>54,000	variants	of	
green	 fluorescent	 protein	 (GFP)	 each	 carrying	 1-15	 amino	 acid	 substitutions.	 The	 method	 is	
transparent	with	a	physical	interpretation	of	the	estimated	parameters	and	related	uncertainties.	
We	show	that	using	only	this	single	experiment	as	input,	GMMA	is	able	to	identify	nearly	all	of	the	
substitutions	previously	reported	to	be	beneficial	for	GFP	folding	and	function.	

Introduction	
A	major	challenge	in	practical	uses	of	proteins	is	the	engineering	of	protein	stability	while	at	the	
same	 time	 maintaining	 the	 function	 of	 the	 protein.	 New	 developments	 in	 biotechnology	 are	
continuously	applied	to	address	this	challenge	with	high-throughput	methods	currently	 in	 focus.	
Synthesis,	screening	and	sequencing	may	today	be	performed	for	thousands	of	protein	variants	in	
parallel	via	Multiplexed	Assay	of	Variant	Effects	(MAVE)	also	known	as	deep	mutational	scanning	[1,	
2].	Such	experiments	can	identify	loss-of-function	variants	with	high	accuracy,	but	are	often	unable	
to	gauge	more	subtle	effects	on	stability.	Stabilizing,	neutral	or	mildly	destabilizing	substitutions	are	
likely	to	have	a	minor,	if	any,	detectable	impact	on	protein	function	and	are	therefore	more	difficult	
to	 identify	from	such	experiments.	This	has	 in	general	 limited	their	direct	applicability	 in	protein	
engineering.	

When	the	screened	library	of	variants	contains	doubly-	or	multiply-substituted	variants,	statistical	
models	have	been	used	to	investigate	how	the	effect	of	individual	substitutions	combine	in	the	read-
out	 for	 observed	 variants.	 Global	 fitness	 models	 typically	 consider	 additive	 single-substitution	
effects	 in	 a	 latent	 space	 and	 transformed	 these	 to	 the	 assayed	 quantity	 via	 various	 non-linear	
functions	to	describe	the	data	generated	by	a	MAVE	[3,	4].	One	particularly	relevant	study	further	
showed	that	a	thermodynamic	model	could	be	used	to	improve	the	mechanistic	understanding	and	
to	quantify	 the	effects	of	 single-substitutions	on	protein	binding	and	structural	 stability	 [5].	This	
model	was	shown	to	capture	structural	stability	well	 [6]	and	a	similar	approach	was	successfully	
applied	to	fit	deleterious	effects	of	multiply-substituted	variants	[4].	
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Here,	we	present	a	generally	applicable	method,	Global	Multi-Mutant	Analysis	(GMMA),	that	allows	
for	the	identification	of	amino	acid	substitutions	that	have	a	general	stability-enhancing	effect	with	
little	dependency	on	the	sequence	context,	and	thus	substitutions	with	the	potential	to	be	additively	
combined	for	 further	enhanced	stabilization.	We	demonstrate	that	single-substitution	effects,	 in	
general,	may	be	informed	by	multiply-substituted	protein	variants,	which	we	here,	for	simplicity,	
refer	to	as	multi-mutants.	Since	the	analysis	is	based	on	a	functional	read-out	of	diverse	sequence	
contexts,	the	identification	of	stabilizing	substitutions	is	carried	out	while	considering	the	assayed	
function	of	 the	protein.	The	central	 idea	 is	 to	 identify	 stabilizing	 substitutions	by	 their	ability	 to	
compensate	 destabilizing	 ones.	 Specifically,	 while	 a	 stabilizing	 substitution	 may	 not	 have	 a	
measurable	 effect	 in	 the	 background	 of	 an	 already	 stable	 protein,	 it	 can	 be	 identified	 in	 the	
background	 of	 one	 or	 more	 destabilizing	 substitutions.	 The	 concept	 is	 similar	 to	 the	 “partner	
potentiation”	principle	formulated	previously	[7],	but	here	generalized	to	multi-mutants	and	with	a	
method	to	understand	and	handle	the	parameter	estimation	challenges	that	arises	with	random	
multi-mutant	libraries.	

We	have	applied	our	analysis	to	an	experiment	that	reports	the	fluorescence	of	>54,000	variants	of	
green	fluorescent	protein	(GFP)	each	containing	1–15	of	the	total	1,879	unique	single-amino-acid	
substitutions	observed	in	the	experiment	[3].	The	GFP	variants	were	generated	using	error-prone	
PCR	(epPCR)	and	expressed	in	fusion	with	a	red-fluorescent	protein	in	order	to	correct	for	variations	
in	expression	levels.	Then,	fluorescence	activated	cell	sorting	(FACS)	was	used	to	divide	the	cells	into	
eight	 fractions	 based	 on	 level	 of	 green	 fluorescence,	 and	 each	 fraction	 was	 sequenced	 to	
reconstruct	a	measure	of	fluorescence	of	each	genotype.	We	have	applied	GMMA	to	the	results	of	
this	single	experiment	to	estimate	the	effects	on	stability	of	1,107	single-substitutions,	and	identify	
stabilizing	substitutions	that	do	not	compromise	function	and	are	directly	applicable	to	engineering	
studies.	As	a	validation	of	the	approach,	we	identity	a	large	number	of	substitutions	that	are	known	
to	be	beneficial	in	improved	GFP	variants.		

Results	 	
Biophysical	concept	
The	identification	of	stabilizing	single-amino-acid	substitutions	in	an	already	stabile	protein,	when	
based	on	a	functional	assay,	 is	challenging	because	these	may	not	 improve	the	assayed	function	
substantially.	Also,	stability	assays	based	on	general	structural	properties,	e.g.	circular	dichroism,	
may	not	report	on	the	particular	state	of	the	protein	that	is	relevant	for	function.	In	order	to	address	
this	situation,	we	define	the	states	of	a	protein	by	the	assayed	property	and	consider	an	equilibrium	
between	the	active	state,	A,	and	an	inactive	state,	D:	

𝐴 ⇌ 𝐷	 (1)	

In	analogy	with	traditional	measurements	of	protein	stability	[8],	we	can	probe	this	equilibrium	by	
perturbing	the	system	and	measuring	a	deactivation	transition.	In	the	context	of	protein	engineering	
the	relevant	change	is	to	the	protein	sequence.	Thus,	we	consider	a	“variable	protein”	and	probe	
the	 stability	 related	 to	Eq.	 1	 in	 amino	acid	 sequence	 space.	With	 this,	 the	equilibrium	does	not	
describe	a	particular	protein	variant	but	rather	a	system	that	may	be	perturbed	by	changing	the	
sequence	of	the	protein.	

The	equilibrium	is	associated	with	a	free	energy	of	activation,	denoted	D𝐺% = 𝐺%' − 𝐺%)	for	a	variant	
𝑣 ∈ 1…𝑉 	 in	 a	 library	 of	V	 amino	 acid	 sequence	 variants	 that	 will	 each	 contain	 one	 or	more	
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individual	amino	acid	substitutions.	From	this	free	energy	of	activation,	here	simply	referred	to	as	
the	stability,	we	can	calculate	the	fraction	of	active	protein	which	is	assumed	to	be	proportional	to	
the	functional	readout	(see	Methods).	This	probing	of	the	equilibrium	in	sequence	space	has	some	
analogy	 to	conventional	denaturation	experiments	where	 the	equilibrium	of	a	 “fixed	protein”	 is	
probed	by	changes	e.g.	in	temperature	or	solvent	composition	[8].	

The	equilibrium	Eq.	1	implies	that	amino	acid	substitutions	stabilize	or	destabilize	the	protein	via	
mechanisms	that	allow	for	compensation	by	other	substitutions.	Such	effects	are	often	found	to	be	
mostly	independent	and	with	additive	free	energies	[7,	9,	10]:	

∆𝐺% = ∆𝐺wt + ∆∆𝐺3
3∈%

	 (2)	

Here,	DGwt	is	the	stability	of	the	“wild	type”	(reference)	sequence	and	DDGs	is	the	stability	effect	of	
the	substitution	s.	We	note	that	our	approach	is	not	limited	to	additive	effects	and	that	couplings	
may	be	included	in	Eq.	2,	as	long	as	the	data	warrants	estimation	of	these.	Rather,	the	additivity	in	
this	particular	model	could	be	viewed	as	the	desired	output:	We	wish	to	identify	those	stabilizing	
substitutions	 that	 can	 compensate	 several	 different	destabilized	 variants	 and	 thus	be	 stabilizing	
additively	in	diverse	backgrounds	(Fig.	1a).	This	formulation	is	similar	to	previous	global	models	[3-
5,	 10],	 but	 here	 applied	 to	 identify	 stabilizing	 substitutions	 and	 with	 a	 thermodynamic	
interpretation.	

	
	
Figure	1.	(a)	A	schematic	outline	of	the	GMMA	approach.	Consider	a	protein	(WT)	with	five	variants	
(named	1–5)	that	are	composed	of	one	or	more	of	three	substitutions	(named	A–C).	The	lengths	of	
the	colored	bars	 represent	 the	magnitude	of	 the	additive	stability	effects.	All	 single-substitution	
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variants	show	wild-type-like	activity,	with	the	most	destabilized	variant,	B,	only	being	slightly	less	
active	than	the	wild	type.	While	both	variants	A	and	B	are	active,	the	double	mutant	A:B	is	inactive.	
Thus,	we	infer	the	additive	effect	of	A	and	B	are	both	mildly	destabilizing.	Substitution	C	on	its	own	
does	not	appear	to	affect	activity.	However,	when	it	is	introduced	into	the	inactive	A:B	background	
(to	form	A:B:C)	it	is	able	to	compensate	the	loss	of	function,	and	we	thus	infer	that	substitution	C	is	
stabilizing	with	the	magnitude	of	the	green	bar.	(b)	The	five	variants	and	the	three	substitutions	may	
be	represented	in	a	bipartite	graph,	and	as	an	example	we	highlight	(in	green)	the	subset	of	protein	
variants	 used	 to	 estimate	 the	effect	 of	 substitution	A.	 (c)	Multi-mutant	 composition	of	 the	GFP	
library	 (red)	 shown	 together	with	 the	 fraction	 of	 active	 variants	 (blue).	 The	 high	 population	 of	
variants	in	the	transition	region	between	2	and	6	amino	acid	substitutions	makes	this	excellent	for	
GMMA.	(d)	Three-step	estimation	strategy.	The	three	steps	relate	to	panels	e,	f	and	g	respectively	
(e)	 Fit	 of	 initial	 global	 parameters	 (red	 line)	 to	 the	 average	 brightness	 of	 variants	with	 a	 given	
number	of	substitutions	(red	points)	using	Eq.	3.	The	GFP	library	is	shown	with	random	jitter	in	the	
horizontal	coordinate	to	ease	visualization	(black	dots).	(f)	Three	examples	of	initial	fits	of	individual	
stability	effects	(colored	lines)	compared	to	the	WT	fit	from	panel	e	(dashed	line).	Each	DDGs	is	fit	
to	the	average	N-mutant	brightness	(points)	calculated	only	using	the	subset	of	variant	that	contains	
s.	Mildly	destabilizing	substitutions,	like	C48S,	lowers	the	endurance	towards	additional	generally	
destabilizing	substitutions	and	thus	the	system	inactivates	with	fewer	substitutions	and	the	curve	
shifts	 left	 (blue	 line)	 compared	 to	 the	 wild-type	 (dashed	 line).	 On	 the	 other	 hand,	 stabilizing	
substitutions,	 like	 V163A,	may	 be	 identified	 by	 their	 ability	 to	 increase	 the	 endurance	 towards	
substitutions,	thus	shifting	the	curve	to	the	right	(red	line).	Substitutions	observed	in	few	variants	
are	difficult	to	fit,	here	demonstrated	with	L178V	observed	in	only	14	variants	compared	to	677	and	
194	 variants	 for	 V163A	 and	 C48S	 respectively.	 (g)	 Result	 of	 the	 final	 global	 optimization	 of	 all	
stability	effects	(red	line)	to	all	variants	(black	dots).	

The	 GMMA	 thus	 comprises	 a	 set	 of	V	 equations,	 each	 describing	 the	 activity	 of	 a	 variant,	 and	
carrying	 a	 number	 of	 parameters,	DDGs,	 together	with	 the	 global	wild-type	 stability,	DGwt,	 and	
baseline	parameters.	For	such	a	system	of	equations,	it	is	important	to	have	more	data	(variants)	
than	 parameters	 (substitutions),	 and	 this	 is	 possible	with	 a	multi-mutant	 library	where	 a	 set	 of	
substitutions	may	 be	mixed	 in	many	 different	 ways	 to	make	 a	 larger	 set	 of	 variants.	 It	 is	 also	
important	 that	 all	 equations	 are	 coupled,	 and	 this	 may	 be	 tested	 by	 analyzing	 an	 undirected	
bipartite	graph	in	which	the	protein	variants	constitute	one	layer	of	nodes	(Fig.	1b,	circles)	and	the	
unique	substitutions	 the	other	 layer	 (Fig.	1b,	 squares).	This	 substitution-variant-graph	 formalism	
may	 be	 used	 to	 study	 many	 aspects	 of	 the	 multi-mutant	 library	 (see	 discussion	 section	 and	
supplementary	Fig.	S3).	For	example,	the	degree	distribution	of	variant	nodes	gives	the	distribution	
of	the	number	of	substitutions	in	the	variants	(Fig.	1c),	which	shows	that	most	variants	contain	two	
to	six	substitutions.	The	fraction	of	active	variants	per	N-mutant	(Fig.	1c,	blue	line)	shows	that	the	
substitutions	 are	 in	 general	 destabilizing	 and	 that	 the	 stability	 of	 GFP	 is	 approximately	 4	when	
measured	 in	units	of	 “general	 substitution	effects”.	GMMA	 identifies	 stabilizing	 substitutions	by	
compensation	of	this	general	destabilization,	and	it	is	important	that	the	variant	library	has	an	N-
mutant	distribution	that	covers	the	transition	region	where	the	system	loses	activity.	

The	 inactive	 state,	D,	 results	 from	 amino	 acid	 substitutions	 that	 are	 deactivating	 by	 reversible	
means,	irrespective	of	mechanism,	and	is	thus	somewhat	broadly	defined.	On	the	other	hand,	we	
term	 deactivating	 substitutions	 that	 cannot	 be	 compensated	 by	 stabilizing	 substitutions,	 e.g.	
removal	of	a	crucial	functional	side	chain,	as	irreversible	fatal	substitutions	(IFS).	IFS	may	be	related	
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to	 the	 assayed	 function	 of	 the	 protein,	 stability	 or	 folding	 hotspots,	 or	 for	 GFP,	 related	 to	 the	
chromophore	maturation	reaction.	Since	they	are	dominantly	deleterious	for	the	active	system,	IFS	
will	artificially	appear	as	highly	destabilizing	although	nothing	may	be	inferred	about	their	effect	on	
conventional	structural	stability.	This	highlights	a	distinct	advantage	that	GMMA	will	only	identify	
substitutions	that	stabilize	the	active	system	defined	by	the	assay.	

In	 the	 interpretation	 of	 the	 GFP	 data	 it	 is	 important	 to	 realize	 that	 the	 destabilization-via-
substitutions	 is	 qualitatively	 different	 from	 conventional	 in	 vitro	 unfolding	 experiments	 where	
unfolding	 is	 induced	after	 the	 irreversible	maturation.	 Indeed,	one	of	 the	best-known	enhanced	
variants	of	GFP	 is	named	superfolder	GFP	 (sfGFP)	and	this	name	refers	 to	the	ability	 to	 fold	and	
mature	 before	 creating	 non-fluorescent	 inclusion	 bodies	 [11].	 For	 GMMA,	 the	 considered	
equilibrium,	Eq.	1,	may	likewise	lie	before	the	maturation	reaction	with	only	the	active	state	being	
able	to	mature.	Furthermore,	the	physical	situation	may	closer	resemble	a	steady	state	where	active	
protein	 is	 removed	 from	 the	 equilibrium	 by	 irreversible	 maturation,	 possibly	 in	 a	 chaperone	
dependent	 fashion	 [12],	 and	 inactive	 protein	 is	 removed,	 e.g.	 by	 protease	 degradation	 or	
aggregation.	In	this	scenario,	maturation	kinetics	could	also	influence	the	apparent	stabilities	and	
thus	the	outcome	of	GMMA.	The	sfGFP	variant	was	selected	to	complement	folding	when	GFP	was	
destabilized	by	fusion	to	a	poorly	folding	protein	–	an	approach	which	indeed	has	some	analogy	to	
GMMA	[11].	Here,	we	assume	that	the	simple	equilibrium	Eq.	1.	approximates	the	situation	well	
and	keep	in	mind	that	the	absolute	stabilities	estimated	here	should	not	be	compared	directly	to	
denaturation	experiments	of	mature	GFP.	

Model	estimation	
The	global	fit	of	the	effects	of	the	individual	substitutions	is	complex	for	at	least	two	reasons.	First,	
the	global	parameters	including	baselines	(Fig.	1a,	black	line)	are	estimated	simultaneously	with	all	
individual	variant	stabilities	(Fig.	1a,	abscissa	values).	The	trade-off	between	adjusting	the	curve	or	
the	 points	 may	 result	 in	 a	 highly	 rough	 optimization	 surface.	 Second,	 many	 substitutions	 are	
observed	in	only	few	variants	and	may	be	poorly	determined	with	greater	uncertainties	that	are	
combined	 with	 otherwise	 well-determined	 substitution	 effects.	 In	 order	 to	 address	 these	
complexities,	we	have	developed	a	three-step	estimation	procedure	that	relies	on	initial	estimates	
of	 individual	 stability	effects	 (Fig.	 1d).	 The	 first	 two	 steps	 focus	on	achieving	 initial	 estimates	of	
global	parameters	(Fig.	1e)	and	individual	stability	effects	(Fig.	1f)	while	the	final	global	optimization	
in	step	three	is	only	allowed	to	converge	to	the	nearest	optimum	(Fig.	1g).	

In	the	first	step,	an	initial	global	wild-type	stability,	DGwt,	 is	estimated	together	with	the	average	
effect	of	a	substitution,	 ∆∆𝐺 	(Fig.	1e).	This	average	effect	replaces	the	sum	in	Eq.	2:	

∆𝐺% ≈ ∆𝐺wt + 𝑁% ∆∆𝐺 	 (3)	

where,	Nv	is	the	number	of	substitutions	in	variant	v.	While	this	assumption	is	rather	crude,	it	is	only	
used	in	the	estimates	of	initial	values	in	step	two,	and	it	becomes	robust	with	an	increasing	number	
of	variants	of	each	N-mutant	(i.e.	a	variant	with	N	substitutions).	The	average	stability	effect,	 ∆∆𝐺 ,	
may	be	biased	by	IFS	(which	are	in	principle	infinite)	and	these	are	therefore	not	used	in	the	fit	of	
DGwt	and	 ∆∆𝐺 	in	steps	one	and	two	(see	Methods).	

In	 the	second	step,	stability	effects	of	 individual	substitutions	are	 initially	estimated	by	a	similar	
approach	 (Fig.	 1f).	 For	 each	 substitution,	 s,	DDGs	 is	 estimated	 from	 the	 subset	 of	 variants	 that	
contains	 that	 substitution.	 The	 effect	 is	 included	 in	 Eq.	 3	 by	 replacing	 one	 term	of	 the	 average	
stability	with	the	specific	stability	effect	of	s	to	be	estimated:	
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∆𝐺% ≈ ∆𝐺wt + ∆∆𝐺3 + 𝑁% − 1 ∆∆𝐺 	 (4)	

A	robust	fit	to	Eq.	4	requires	a	sufficient	number	of	N-mutants	(to	estimate	the	average	brightness)	
for	several	different	values	of	N,	but	in	contrast	to	above	we	only	consider	the	subset	of	variants	
that	contains	the	substitution	s.	To	illustrate	the	required	number	of	variants	per	substitution,	figure	
1f	shows	three	examples	of	fits	to	Eq.	4	where	it	is	clear	that	the	14	observed	variants	containing	
L178V	result	in	average	values	of	the	N-mutant	brightness	that	do	not	fit	the	model	well.	In	contrast,	
the	stabilizing	V163A	and	destabilizing	C48S	fit	the	model	well	with	677	and	194	observed	variants,	
respectively.	The	three-step	estimation	strategy	ensures	that	effects	that	are	poorly	estimated	due	
to	few	observations,	typically	<	10-20	depending	on	the	distribution	on	N-mutants	(supplementary	
Fig.	S1),	do	not	affect	the	initial	estimation	for	substitutions	with	good	data.	When	all	initial	stability	
effects	 have	 been	 estimated	 individually,	 we	 perform	 a	 global	 optimization	 in	 step	 three	 using	
damped	least-squares	optimization	from	which	uncertainties	are	calculated	(see	Methods).	

We	estimate	the	stability	of	the	“wild-type”	sequence	(avGFP	+	F64L)	to	be	-2.8	kcal/mol.	This	is	
substantially	smaller	in	magnitude	than	values	<	-10	kcal/mol	reported	from	unfolding	experiments	
of	aGFP	(avGFP	+	Q80R:F99S:M153T:V163A);	however,	unambiguously	determining	the	stability	of	
GFP	is	challenged	by	at	least	one	folding	intermediate	of	stability	-3.7	kcal/mol	[13].	The	discrepancy	
may	 also	 be	 explained	 by	 in	 vitro	 unfolding	 experiments	 being	 qualitatively	 different	 from	 the	
equilibrium	probed	in	the	GFP	data	considered	here.	As	discussed	above,	GMMA	probes	the	stability	
of	the	pre-mature	GFP	fold	and	its	ability	to	mature	irreversibly	in	the	context	of	a	cell,	whereas	
unfolding	experiments	deactivates	the	mature	protein	in	vitro.	Since	maturation	is	spontaneous,	the	
pre-mature	structure	is	likely	less	stable	compared	to	the	mature	protein	and	thus,	GMMA	could	
probe	a	less	stable	structure	compared	to	unfolding	experiments	of	the	mature	protein.		

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.03.408732doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408732


	

Global	multi-mutant	analysis	 7	

	
Figure	2.	Heatmap	showing	the	1107	single-substitution	effects	estimated	by	GMMA	from	the	multi-
mutant	library	of	GFP.	Green	indicates	a	stabilizing	substitution,	yellow	are	substitutions	with	close-
to-zero	 effect,	 and	 orange-red	 indicate	 destabilizing	 substitutions.	 Substitutions	 in	 gray	 are	
observed	in	the	library	but	poorly	estimated	and	white	substitutions	are	not	observed	in	the	data.	
The	rightmost	column	shows	the	solvent	exposed	residues	in	white	and	buried	residues	in	black.	
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GFP	substitution	effects	
Using	GMMA	we	obtain	accurate	estimates	for	1,107	substitution	effects	(59%	of	the	1,879	present	
in	 the	 library)	with	80%	found	to	be	destabilizing	and	8%	stabilizing	 (Fig.	2).	The	majority	of	 the	
accurately	 estimated	 effects	 are	 found	 at	 solvent	 exposed	 positions	 (712/1,107;	 64%)	 which	
includes	 most	 of	 the	 stabilizing	 (63/83;	 76%;	 Fig.	 3)	 and	 almost	 all	 of	 the	 substitutions	 with	
insignificant	effect	(126/140;	90%).	We	find	an	enrichment	of	stabilizing	substitutions	at	positions	
with	solvent	exposed	Phe,	Ile	and	Leu,	so	that	2/11	(18%)	substitutions	from	Phe,	4/18	(22%)	from	
Ile	 and	 5/35	 (14%)	 from	 Leu	 are	 stabilizing,	 compared	 to	 a	 total	 of	 63/712	 (9%)	 stabilizing	
substitutions	at	 surface	positions.	Perhaps	more	 surprising,	 surface	positions	with	wild-type	Glu	
have	a	significant	higher	fraction	of	stabilizing	substitutions,	12/71	(17%),	as	compared	to	Asp	with	
only	5/90	(6%)	substitutions	being	stabilizing.	This	may	suggest	a	qualitative	difference	in	the	role	
of	these	two	negatively	charged	amino	acids	(that	otherwise	have	the	same	transitions	in	the	codon	
table)	in	the	context	of	a	beta-barrel.		

While	most	stabilizing	substitutions	are	found	at	solvent	exposed	positions,	a	notable	exception	is	
the	buried	strand	position	V163	for	which	the	smaller	side	chains	Ala	and	Gly	are	among	the	most	
stabilizing	 in	 our	 analysis	with	V163A	 as	 the	most	 highly	 stabilizing	 (0.94	 ±	 0.04	 kcal/mol).	 Also	
notable	is	that	positions	with	wild-type	Ile	show	a	relatively	high	fraction	of	stabilizing	substitutions	
(10/68;	15%)	with	 relatively	more	at	exposed	positions	 (4/18;	22%)	compared	 to	 those	 that	are	
buried	(6/50;	12%).	All	42	substitutions	at	all	ten	Pro	residues	in	GFP	are	found	to	be	destabilizing,	
which	is	not	surprising	considering	the	structural	role	of	Pro.	Other	positions	that	only	show	highly	
destabilizing	 substitutions	 include	 the	 chromophore	positions	Y66	and	G67	and	 the	maturation-
related	sites	R96	and	E222	[14].	

	
Figure	3.	Positions	of	the	top	30	stabilizing	substitutions	shown	on	the	structure	of	GFP	(PDB	ID	
1EMM).	Some	positions	have	more	substitutions	within	top	30	and	positions	of	rank	9,	25	and	29	
(E3,	G232	and	L236)	are	not	resolved	in	this	structure.	
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Analysis	of	known	GFP	substitutions	
To	 examine	 whether	 the	 substitutions	 we	 identify	 using	 GMMA	 indeed	 have	 stabilizing	 and	
generally	background-insensitive	effects,	we	compare	these	to	substitutions	that	are	known	to	be	
beneficial	 for	 GFP	 [15].	 We	 focus	 on	 enhanced	 variants	 that	 are	 relevant	 for	 our	 “wild-type”	
reference	sequence	(avGFP	+	F64L)	and	consider	the	substitutions	that	constitute	superfolder	GFP	
(sfGFP)	[11],	T-Sapphire	GFP	(tsGFP)	[16],	a	split	GFP	(splitGFP)	[17],	a	computationally-optimized	
GFP	 known	 as	 des11	 [12]	 and	 a	 tryptophan	 chromophore	 variant	 called	 nowGFP	 [18]	
(supplementary	 Table	 S1).	 We	 expect	 substitutions	 from	 these	 to	 be	 stabilizing	 or	 have	 an	
insignificant	effect	in	our	GMMA.	A	one-to-one	comparison	is	not	possible	because	substitutions	in	
these	variants	have	typically	not	been	characterized	individually.	Additionally,	we	also	consider	136	
substitutions	found	in	147	structures	of	GFP,	selected	in	the	PDB	to	have	>90%	identity	to	our	wild-
type	sequence.	Since	these	variants	have	all	been	expressed	and	crystalized,	we	expect	that	these	
substitutions	 in	 general	 do	 not	 destabilize	 GFP	 substantially,	 i.e.	 slightly	 lower	 expectations	
compared	to	substitutions	from	the	enhanced	variants	mentioned	above.	

As	 expected,	 the	 substitutions	 that	 constitute	 sfGFP,	 tsGFP,	 splitGFP,	 nowGFP	 and	des11	 are	 in	
general	found	to	be	stabilizing	or	with	insignificant	effect	(Fig.	4	and	supplementary	Fig.	S2).	We	find	
that	19	of	the	top	30	stabilizing	substitutions	obtained	from	GMMA	are	described	in	the	literature	
including	4	of	the	10	sfGFP	substitutions,	2	of	the	5	from	tsGFP,	7	of	the	17	from	splitGFP	and	5	of	
the	20	from	nowGFP	(Fig.	3).	In	general,	the	substitutions	known	to	be	favorable	tend	to	rank	high	
in	GMMA	and	within	the	top	100	most	stabilizing,	46	are	known	from	previous	studies	and	cover	
39%	of	all	the	known	substitutions	included	here	(supplementary	Fig.	S2).	Known	substitutions	that	
are	 estimated	 by	 GMMA	 to	 be	 destabilizing	 may	 indeed	 also	 be	 accurate	 because	 they	 were	
originally	selected	for	other	purposes	than	stability.	Perhaps	most	notable	are	the	chromophore	
substitution	S65T,	selected	for	spectral	properties,	and	splitGFP	C48S,	introduced	to	avoid	cysteine	
oxidation	 in	 extracellular	 environments.	 Likewise,	 the	 substitutions	 Q80R	 (sfGFP)	 and	 H231L	
(nowGFP,	tsGFP	and	des11),	here	estimated	to	be	slightly	destabilizing,	are	historical	substitutions	
caused	by	early	PCR	errors	which	are	still	present	in	some	synthetic	genes	of	GFP	variants	[19].	The	
most	 destabilizing	 substitutions	 present	 in	 nowGFP	 either	 interact	 directly	 with	 the	 Trp	
chromophore	(V150A)	or	are	reported	to	indirectly	support	the	chromophore	(N146I,	Y151N	and	
L207Q)	[20,	21].	Thus,	the	destabilizing	effect	of	these	substitutions	may	indeed	be	accurate	with	
the	 Tyr	 chromophore	 in	 our	 wild-type.	 The	 only	 other	 sfGFP	 substitution	 found	 to	 be	 slightly	
destabilizing	 in	 our	 analysis,	 namely	 F99S	 with	 0.26	 ±	 0.04	 kcal/mol,	 emerged	 from	 an	 early	
optimization	of	GFP	using	DNA	shuffling	and	was	speculated	to	remove	a	hydrophobic	Aequorin	
interaction	site	[22].	This	is	sometimes	replaced	with	F99T	[23]	whereas	our	analysis	suggests	that	
F99Y	would	be	a	better	choice.	None	of	the	known	substitutions	were	estimated	to	make	the	protein	
unstable	(DDG	>DGwt)	and	only	four	substitutions	found	in	the	PDB	were	estimated	to	destabilize	
by	more	than	half	of	the	wild-type	stability.	

Interestingly,	while	des11	has	11	substitutions,	a	12th	substitution	(V68G)	also	resulted	from	the	
computational	 analysis,	 but	 was	 later	 excluded	 based	 on	 experimental	 assessment	 [12].	 In	
agreement	with	this,	GMMA	estimates	V68G	to	be	highly	destabilizing	(1.6	±	0.4	kcal/mol;	more	
than	twice	the	average	effect)	and	highlights	another	substitution,	V68M,	known	from	nowGFP	and	
estimated	by	GMMA	to	be	the	third	most	stabilizing	with	-0.65	±	0.08	kcal/mol.	
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Figure	4.	Brightness	versus	GMMA	stabilities	for	single	amino	acid	variants.	GMMA	estimates	with	
large	uncertainties	are	shown	in	grey	circles.	Substitutions	known	from	optimized	versions	of	GFP	
are	shown	in	color.	The	vertical	 lines	mark	DDG=0	and	the	horizontal	 lines	the	brightness	of	the	
wild-type	sequence.	The	insert	shows	the	highly	stabilizing,	high	brightness	region	and	is	enriched	
in	known	GFP	variants.	

The	stability	effects	estimated	by	GMMA	correlate	strongly	with	the	observed	brightness	of	singly-
substituted	variants	(Fig.	4;	Spearman’s	correlation	coefficient,	rs=-0.77).	This,	however,	is	mainly	
caused	by	the	fact	that	the	averaged	FACS	readout	and	GMMA	analysis	agree	on	destabilizing/low	
brightness	variants.	In	contrast,	when	the	goal	is	the	more	challenging	one	of	identifying	stabilizing	
variants	we	see	a	much	weaker	correlation	between	the	observed	brightness	and	GMMA	(rs=-0.26	
for	 variants	 identified	 by	 GMMA	 as	 significantly	 stabilizing;	 see	 Methods)	 because	 individual	
stabilizing	 variants	 have	 only	modest	 effects	when	 introduced	 in	 an	 already	 stable	 background.	
Thus,	GMMA	is	able	to	separate	this	population	according	to	their	stability	effects	with	the	sfGFP,	
splitGFP	and	des11	substitutions	estimated	to	be	stabilizing	or	with	a	minor	effect	(Fig.	4,	insert).	

Discussion	
We	have	demonstrated	the	ability	of	GMMA	to	identify	stabilizing	substitutions	that	are	insensitive	
to	other	substitutions	and	facilitate	the	function	of	the	protein	as	defined	by	a	specific	assay.	 In	
relation	to	protein	engineering,	it	is	interesting	that	the	chromophore	substitution	S65T	is	found	to	
be	 destabilizing	 by	 GMMA	 even	 though	 this	 has	 previously	 been	 selected	 as	 enhancing	 in	 a	
fluorescence	assay	similar	to	the	one	considered	here	[24].	Indeed,	in	protein	engineering,	it	is	not	
rare	 that	 function-enhancing	 substitutions	 compromise	 stability	 as	 it	 is	 seen	 here.	 While	 S65T	
specifically	enhances	function,	it	is,	however,	found	to	decrease	the	endurance	towards	additional	
generally	destabilizing	substitutions	and	thus	deemed	destabilizing	by	GMMA.	Whereas	the	former	
function-enhancing	effect	may	be	identified	from	a	single-mutant	analysis	as	in	traditional	selection	
approaches,	the	latter	stability	effect	results	from	the	multi-mutant	analysis	which	is	insensitive	to	
the	level	of	function	of	the	single-mutant	as	long	as	this	is	active.	This	indicates	that	the	catalogue	
of	 GMMA	 effects	 may	 be	 complemented	 by	 single-mutant	 effects	 from	 traditional	 screening	
approaches,	or	interestingly,	the	single-mutant	read-out	from	the	same	assay	as	used	by	the	GMMA	
if	this	is	within	the	desired	accuracy.	
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For	 the	 practical	 construction	 of	 a	 GMMA	 multi-mutant	 library,	 different	 approaches	 may	 be	
considered.	The	GFP	multi-mutant	library	which	we	have	analyzed	was	generated	by	epPCR.	The	
variant-substitution-graph	(Fig.	1b)	indicated	the	presence	of	“hub-substitutions”	that	are	observed	
in	more	variants	than	expected	from	random	(supplementary	Fig.	S3).	These	could	emerge	both	
from	biases	in	the	codon	table,	and	from	sequential	rounds	of	epPCR	where	early	substitutions	are	
inherited	in	the	following	rounds.	Most	notably	is	N121S	that	is	observed	in	982	variants	together	
with	 847	 other	 substitutions	 (i.e.	 more	 than	 half	 of	 the	 1,879	 unique	 single-amino-acid	
substitutions),	and	results	in	a	substantial	parameter	correlation	with	the	global	stability	parameter	
in	the	initial	fits.	A	narrower	degree	distribution,	e.g.	a	more	homogenous	distribution	around	100-
200	variants	per	substitution	(compared	to	supplementary	Fig.	S3),	could	be	beneficial	for	GMMA,	
although	this	would	not	always	solve	the	problem	that	arises	when	observing	either	only	inactive	or	
only	active	variants	for	a	given	substitution.	Several	technologies	are	available	for	making	random,	
semi-random	 or	 defined	 DNA	 libraries	 that	 may	 be	 explored	 for	 designing	 GMMA	 libraries.	
However,	we	speculate	that	a	library	with	a	broad	range	of	N-mutants	(i.e.	containing	variants	with	
both	many	and	 few	substitutions)	may	provide	a	beneficial	 range	of	backgrounds	 in	which	each	
substitution	 is	 observed.	 The	 random	 connections	 between	 variants	 and	 substitutions	 gives	 an	
entangled	 graph	 where	 systematic	 biases	 from	 specific	 side-chain	 interactions	 are	 avoided,	
presumably	 making	 the	 approximation	 of	 additivity	 (Eq.	 1)	 more	 reliable.	 Also,	 while	 a	 library	
consisting	only	of	N-mutants	for	a	fixed	value	of	N	could	have	a	stability	distribution	that	lies	around	
the	inactivation	transition,	it	might	be	more	sensitive	to	systematic	biases	and	estimation	artifacts.	
For	example,	consider	a	hypothetical	data	set	of	4-mutants	only.	Here,	an	increase,	dG,	in	the	wild-
type	stability	may	be	fully	compensated	by	a	decrease	in	all	substitution	effects	of	dG/4	to	make	an	
equally	 good	 fit	 of	 Eq.	 2	 (an	 isoline	 in	 the	 optimization	 hyper-surface).	 Furthermore,	 for	 the	
estimation	strategy	presented	here,	a	broad	range	of	N-mutants	is	necessary	in	the	initial	stability	
estimations	(Fig.	1e	and	1f).	Finally,	we	highlight	that	GMMA	in	the	presented	case	appears	robust	
with	a	random	library	and	thus	offers	a	cost-effective	approach	for	protein	engineering	given	the	
low	cost	of	epPCR.	

Conclusions	
We	have	here	introduced	an	approach	to	extract	information	about	individual	substitutions	through	
a	global	analysis	of	noisy,	high-throughput	measurements	on	randomly	generated	multi-mutants.	
We	argue	that	for	such	experiments,	the	effect	of	single	amino	acid	substitutions	may	be	better	
determined	by	analysis	of	multi-mutant	variants	and	have	presented	a	Global	Multi-Mutant	Analysis	
(GMMA)	 that	 implements	 this.	 Important	 features	 of	 the	 multi-mutant	 library	 are	 that	 the	
distribution	of	stabilities	 lies	around	the	 inactivation	transition	and	that	the	variant-substitution-
graph	is	connected	with	many	more	variants	than	substitutions.	

Because	GMMA	works	by	finding	stabilizing	substitutions	that	can	compensate	effects	of	several	
different	 destabilizing	 substitutions	 it	 is	 particularly	 suitable	 for	 identifying	 substitutions	 with	
additive	effects.	This	makes	the	method	ideal	for	protein	engineering	and	we	find	indications	that	
GMMA	may	complement	measurements	of	single-mutant	function	which	is	particular	interesting	
for	enzyme	engineering.	The	robustness	of	the	method	makes	it	cost-effective	and	the	presented	
results	are	obtained	from	a	single	high-throughput	experiment	based	on	a	random	genetic	library	
and	a	relatively	simple	assay.	Thus,	it	should	be	applicable	to	any	protein	which	is	amenable	to	a	
simple	high-throughput	screen,	and,	importantly,	can	be	applied	to	an	already	very	stable	starting	
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point.	 This	 makes	 the	 method	 applicable	 to	 systems	 that	 are	 difficult	 to	 study	 via	 traditional	
optimization	approaches,	and	does	not	require	access	to	automated	high-throughput	facilities.	
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Methods	
We	assume	that	the	observed	activity,	F,	of	a	variant,	v,	is	proportional	to	the	fraction	of	the	
protein	found	in	the	active	state	A:	

𝐹 ∝ 𝑓% =
A

A + D
=

1
1 + exp ∆𝐺% 𝑅𝑇

	 (5)	

where	[A]	and	[D]	are	the	concentrations	of	active	and	inactive	protein	respectively,	R	 is	the	gas	
constant	and	T	the	temperature.	Following	the	original	report	of	the	data	[3],	the	log	fluorescence,	
or	brightness	F,	is	assumed	proportional	to	the	fraction	of	active	protein.	We	carried	out	all	data	
analyses	using	the	R	project	for	statistical	computing	with	packages	minpack.lm	and	igraph,	and	our	
code	 for	 GMMA	 is	 available	 from	 https://github.com/KULL-
Centre/papers/tree/master/2020/multi-mutant-analysis-Johansson-et-al.	

Initial	estimation	
The	initial	estimation	of	stability	effects	considers	the	average	effect	of	substitutions,	 ∆∆𝐺 ,	which	
is	sensitive	to	highly	destabilizing	substitutions.	Thus,	we	first	detect	irreversible	fatal	substitutions	
(IFS)	that	are	inactive	in	all	contexts	and	have	an	unlikely	pattern	of	activity	among	multi-mutants,	
e.g.	many	 inactive	double	mutants	 in	 the	case	of	GFP	 (see	supplementary	Appendix	1).	Variants	
containing	nonsense	mutations	are	also	generally	expected	to	be	IFS.	We	exclude	62	nonsense	IFS	
and	51	missense	IFS	from	the	initial	estimation	together	with	the	2,310+4,851	variants	that	contain	
these	nonsense	and	missense	IFS	substitutions	respectively.	
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The	wild-type	stability,	DGwt,	is	first	estimated	together	with	the	average	effect	of	all	substitutions,	
∆∆𝐺 ,	using	Eq.	6	which	is	simply	a	combination	of	Eqs.	3	and	5.	These	are	fitted	to	the	average	
brightness	of	the	N-mutants,	 𝐹 @,	i.e.	the	average	brightness	of	double-mutants,	triple-mutants,	
etc.		

𝐹 @ =
𝛼B + 𝛼C	exp − ∆𝐺wt + 𝑁 ∆∆𝐺 𝑅𝑇
1 + exp − ∆𝐺wt + 𝑁 ∆∆𝐺 𝑅𝑇

	 (6)	

Here,	a	constant	baseline,	𝛼C,	for	the	brightness	of	the	inactive	variants	is	fitted	whereas	a	constant	
baseline	 for	 active	 variants,	 𝛼B,	 is	 not	 fitted	 independently	 but	 calculated	 from	 DGwt	 and	 the	
brightness	of	the	wild-type	sequence,	Fwt,	during	fitting:	

𝛼B = 𝐹wt + 𝐹wt − 𝛼C 	exp −∆𝐺wt 𝑅𝑇 	 (7)	

This	makes	𝛼B	less	sensitive	to	noise	and	outliers	in	the	variant	readout	by	relying	on	the	data	point	
(DGwt,	Fwt)	which	 is	experimentally	well-determined	with	3,645	barcodes	 in	 the	high-throughput	
assay,	 i.e.	 individual	 observations	 of	 wild-type	 nucleotide	 sequence	 (2,444)	 or	 synonymous	
sequences	[3].	A	standard	error	of	each	parameter	is	calculated	as	the	square	root	of	the	diagonal	
of	 the	 inverse	 Hessian	matrix.	 The	 initial	 wild-type	 stability	 is	 estimated	 to	∆𝐺wt = −1.8 ± 0.2	
kcal/mol,	 the	 average	 effect	 of	 substitutions	 ∆∆𝐺 = 0.45 ± 0.04	 kcal/mol,	 and	 𝛼C = 1.43	 ±
	0.03	(Fig.	1e).	This	results	in	𝛼B = 3.8.	

In	step	2,	we	use	the	values	of	DGwt,	 ∆∆𝐺 	and	the	baseline	parameters	from	step	1,	to	estimate	
initial	 values	of	 the	 individual	 substitutions,	DDGs,	 from	the	 subset	of	 variants	 that	 contains	 the	
substitution,	 s,	 using	 Eqs.	 4	 and	 6	 (Fig.	 1f).	 The	 use	 of	 a	 fixed	 value	 of	 ∆∆𝐺 	makes	 the	 initial	
estimates	robust	and	self-consistent	for	the	global	fit,	and	the	approach	is	further	supported	by	the	
observation	that	variant	effects	are	mostly	independent	of	the	details	of	the	background	[9].	Since	
we	always	only	change	the	background	with	a	single	substitution,	 ∆∆𝐺 	 is	not	expected	to	vary	
much	and	in	practice	less	than	the	uncertainty	that	results	from	small	sets	of	variants.	We	require	
that	all	subsets	have	a	diversity	of	at	least	3	different	multi-mutants	that	spans	the	transition	region	
and	gives	a	fit	with	standard	error	<	1.0	and	an	absolute	deviation	<	5.0	log	fluorescence	units.	With	
this,	 we	 find	 that	 56%	 of	 substitutions	 have	 sufficient	 data	 for	 this	 initial	 estimation.	We	 then	
afterwards	estimate	the	remaining	initial	DDGs	values	from	these	well-determined	effects.	

Graph	analysis	
We	 pre-process	 the	 data	 for	 the	 global	 multi-mutant	 analysis,	 and	 build	 a	 bipartite	 graph	 by	
assigning	protein	variants	to	one	layer	of	nodes	and	another	 layer	of	 individual	substitutions.	All	
variant	nodes	are	linked	to	the	substitution	nodes	that	the	variant	is	composed	of.	We	check	that	
all	nodes	are	connected	in	the	graph.	If	a	subset	of	variants	is	composed	of	a	subset	of	substitutions	
that	does	not	occur	in	the	rest	of	the	variants,	this	graph	becomes	disconnected	from	the	rest,	and	
GMMA	may	be	carried	out	on	the	subset	alone.	Since	a	single-mutant	library	is	fully	disconnected,	
GMMA	cannot	be	applied	to	this.	Single	mutants	do	not	inform	the	global	fit	more	than	any	other	
variants	and	indeed	130	stability	effects	are	estimated	without	the	single	mutant	being	observed.	
Substitution	nodes	with	a	single	link	represents	substitutions	that	contributes	one	parameter	and	
only	one	data	point	to	the	global	analysis,	referred	to	as	hanging	nodes.	These	do	not	inform	the	
global	optimization	and,	 thus,	 the	effect	of	 these	are	calculated	after	the	global	optimization.	 In	
summary,	the	graph	is	cleaned	for	7	disconnected	node	pairs,	and	257	hanging	substitution	nodes	
together	with	255	dependent	variants	nodes.	Finally,	the	graph	is	checked	to	ensure	that	no	pair	of	
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substitutions	only	occurs	together	as	these	would	make	them	impossible	to	distinguish	and	should	
be	reparametrized	as	a	single	effect.	The	graph	analysis	is	independent	of	the	initial	estimates	and	
considers	all	data,	including	IFS	and	non-sense	substitutions.	

Global	estimation	
With	 input	 from	 both	 the	 initial	 estimation	 and	 the	 graph	 analysis,	 we	 perform	 the	 global	
optimization	using	the	same	damped	non-linear	least	squares	algorithm	as	above.	We	optimize	all	
stability	 effects	 ∆∆𝐺3 	and	 the	 wild-type	 stability	 DGwt	 to	 the	 nearest	 optimum	 (Fig.	 1g).	 The	
baselines	are	fixed	at	the	values	determined	in	the	initial	fit	(1.4	and	3.8).	The	stability	effects	are	
limited	to	the	range	 -5	 to	10	kcal/mol	 for	 robustness.	With	analytically	calculated	gradients,	 the	
global	optimization	of	1,616	parameters	from	53,763	data	points	took	4-5	hours	on	a	normal	laptop.	

The	fit	has	a	reduced	chi-square	𝜒N = 4.4	which	indicates	that	some	parts	of	the	data	do	not	fit	the	
model,	 however,	 we	 note	 that	 the	 risk	 of	 overfitting	 is	 in	 general	 low.	 One	 contribution	 to	 an	
elevated	 𝜒N	 could	 be	 the	 use	 of	 the	 distribution	 of	 the	 observed	 brightness	 of	 the	 wild-type	
sequence	as	a	proxy	for	the	variation	of	all	variants,	which	may	indeed	have	higher	uncertainties.	
Since	our	aim	is	robust	identification	of	additive	and	stabilizing	substitutions,	we	accept	that	other	
models	may	indeed	explain	the	data	better,	e.g.	by	including	higher	order	terms	in	Eq.	2.	

Uncertainties	
In	the	global	analysis,	we	estimate	the	uncertainties	from	the	covariations	in	the	inverted	Hessian	
matrix.	We	calculate	 two	error	measures	 to	 judge	 the	uncertainty	and	 reliability	of	 the	 stability	
effects.	The	first,	ds,	is	calculated	using	the	log-fluorescence	measurement	uncertainty,	reported	to	
be	𝛿𝐹wt = 0.11	for	the	wild-type	sequence	[3],	propagated	via	the	covariance	matrix	diagonal	and	
multiplied	by	3	to	get	the	99.7%	percentile	(and	to	somewhat	compensate	for	the	expectation	that	
the	variants	have	higher	uncertainty	than	the	wild	type):	

𝛿3 = 3	
𝜕∆∆𝐺3
𝜕𝐹

	𝛿𝐹wt	 (8)	

A	resampling	experiment	suggests	that	this	measure	captures	the	estimation	accuracy	well	and	we	
report	this	uncertainty	as	the	stability	error	with	±	notation	(supplementary	Fig.	S1).	

The	second	uncertainty,	dDDGs,	is	used	to	filter	out	unreliable	stability	effects	and	is	calculated	from:	

𝛿∆∆Q3
N =

𝜕∆∆𝐺3
𝜕𝐹

N RSS3
DOF3

1
𝑉3
	 (9)	

Again,	 the	derivative	 is	 from	the	diagonal	of	 the	covariance	matrix,	RSS3	 is	 the	 residual	 sum-of-
squares	of	the	variants	used	to	estimate	substitution	s,	DOF3	is	the	number	of	degrees-of-freedom	
and	Vs	is	the	number	of	variants	used	to	estimate	substitution	s.	The	last	factor	gives	an	error-of-
the-mean	type	of	uncertainty	 that	compensates	 for	 the	case	where	a	 lucky	 fit	of	 few	variants	 is	
penalized.	The	number	of	degrees	of	freedom	for	a	substitution	assumes	that	a	uniform	fraction	of	
parameters	is	estimated	together	with	∆∆𝐺3	from	the	Vs	data	points	

DOF3 = 𝑉3 1 − 𝑆 𝑉 − 2	

where	S	and	V	are	the	total	number	of	substitutions	and	variants	respectively.	We	set	a	relatively	
conservative	 threshold	 and	 mark	 772	 (61%)	 stability	 effects	 with	 𝛿∆∆Q3 > 0.05	 kcal/mol	 as	
unreliably	(a	value	that	can	be	compared	to	 ∆∆𝐺 ≈ 0.5	kcal/mol).	This	low	threshold	has	been	set	
by	manual	 inspection	 of	 plots	 that	 show	 the	 fit	 of	 each	 substitution	 to	 its	 respective	 subset	 of	
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variants	(similar	to	Fig.	1f).	We	use	a	hard	threshold	here	to	facilitate	a	clear	discussion.	However,	
in	 a	 specific	 application,	 substitutions	 could	 be	 judged	 individually	 based	 on	 both	 uncertainty	
measures	and	such	plots,	since	many	of	the	772	poorly	estimated	substitutions	are	still	informative.	
Notably,	222	(12%	of	all	substitutions)	are	exclusively	or	predominantly	observed	in	inactive	variants	
and	are	therefore	only	represented	in	the	flat	region	of	the	model.	Thus,	all	of	these	may	reliably	be	
identified	 as	destabilizing	or	 even	well	 determined	on	a	 range,	 even	 though	 the	 reported	point	
estimate	itself	is	highly	uncertain.	Of	the	remaining	550	(29%)	substitutions	with	uncertain	effects,	
the	majority	 (398,	 21%)	 are	 caused	by	 poor	 statistics	with	 five	 or	 fewer	 observed	 variants.	 The	
conservative	threshold	does	exclude	some	substitutions	with	more	than	10	observations	(61	or	3%),	
that	are	potentially	stabilizing,	e.g.	L221V,	Q80K	or	E6A,	and	may	be	interesting	depending	on	the	
application.		

Classification	
For	 the	 sake	of	discussion	and	early	 IFS	 identification,	we	classify	all	 variants	as	either	active	or	
inactive.	 Variants	 with	 log	 fluorescence	 below	 2.7,	 half-way	 between	 maximum	 and	 minimum	
observed	log	fluorescence	in	the	original	data,	are	assigned	as	inactive	and	the	rest	as	active.	

We	 mark	 substitutions	 with	 low	 uncertainty	 in	 the	 scores	 from	 GMMA	 (high/low	 uncertainty	
classification	 described	 above	with	 the	 uncertainty	 calculation)	 as	 significantly	 stabilizing	 if	 the	
effect	plus	uncertainty	is	less	than	zero,	destabilizing	if	the	effects	minus	uncertainty	is	greater	than	
zero	and	insignificant	otherwise.	Substitutions	with	high	uncertainty	are	marked	as	destabilizing	if	
the	effect	is	more	destabilizing	than	the	wild-type	stability	and	marked	as	unknown	otherwise.	

Solvent	exposure	categories	are	exposed	or	buried	according	to	DSSP	[25].	
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