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ABSTRACT 

 

Purpose 

 

Diffusion weighted imaging (DWI) allows investigators to identify structural, microstructural, and connectivity-

based differences between subjects, but variability due to session and scanner biases is a challenge.  

 

Methods 

 

To investigate DWI variability, we present MASiVar, a multisite dataset consisting of 319 diffusion scans acquired 

at 3T from b = 1000 to 3000 s/mm2 across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four 

scanners as a publicly available, preprocessed, and de-identified dataset. With the adult data, we demonstrate the 

capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject 

variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment 

neurite orientation dispersion and density model, (3) white matter bundle segmentation, and (4) structural 

connectomics. Respectively, we evaluate region-wise fractional anisotropy (FA), mean diffusivity, and principal 

eigenvector; region-wise cerebral spinal fluid volume fraction, intracellular volume fraction, and orientation 

dispersion index; bundle-wise shape, volume, FA, and length; and whole connectome correlation and maximized 

modularity, global efficiency, and characteristic path length.  

 

Results 

 

We plot the variability in these measures at each level and find that it consistently increases with intrasession to 

intersession to interscanner to intersubject effects across all processing approaches and that sometimes interscanner 

variability can approach intersubject variability.  

 

Conclusions 

 

This study demonstrates the potential of MASiVar to more globally investigate DWI variability across multiple 

levels and processing approaches simultaneously and suggests harmonization between scanners for multisite 

analyses should be considered prior to inference of group differences on subjects. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2020.12.03.408567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

INTRODUCTION 

 

Diffusion weighted MRI imaging (DWI) is a noninvasive way of elucidating the brain’s microstructural makeup 

(1). Common modes of DWI analysis include representing the diffusion signal with tensors (2,3), representing 

biological tissues with multi-compartment models (4–6), identifying white matter bundles (7), and investigating the 

human structural connectome (8). These approaches form the basis for many studies including those investigating 

a wide range of neurological disorders including autism (9,10), diabetes (11,12), multiple sclerosis (13), and 

schizophrenia (14) as well as differences due to aging (15) and sex (16). These types of studies, however, rely on 

the identification of group differences with respect to an independent variable. Often this variable reflects whether 

the scanned subject has a particular disease, or the age or sex of the subject. Robust study design can control for 

additional subject-level confounders through age- and sex-matching and related approaches. However, one level of 

potential confounding in DWI studies that has not been thoroughly characterized is the variability of calculations 

due to differences within and between imaging sessions and scanners. 

 

One particular reason for this is the difficulty in acquiring data configured to perform such a characterization. For 

instance, to quantify variation within a session, imaging sessions with repeated scans are needed. To quantify 

variation between sessions and between scanners, multiple imaging sessions on at least one scanner and at least one 

imaging session on multiple scanners are required, respectively. Last, to assess the session and scanner effects 

relative to the subject effect size, multiple scanned subjects are needed as well.  

 

Another reason for this is the low number of properly configured publicly available datasets. Some of the few that 

exist that allow for investigations of DWI variability are the MASSIVE dataset (17), the Human Connectome 

Project (HCP) 3T dataset (18), the MICRA dataset (19), the SIMON dataset (20), and the multisite dataset published 

by Tong et al. (21). MASSIVE consists of one subject scanned repeatedly on one scanner (17); HCP consists of 

multiple subjects with multiple acquisitions per session all on one scanner (18); MICRA consists of multiple 

subjects scanned repeatedly on one scanner (19); SIMON consists of one subject scanned at over 70 sites (20), and 

the Tong dataset consists of multiple subjects each scanned on multiple scanners (21).  

 

These difficulties have resulted in existing DWI variability studies that are largely limited in scope and that offer a 

fragmented view of the variability landscape (Table 1). Many of these studies each capture portions of the spectrum 

of effects due to session, scanner, and subject biases, but are unable to assess for all levels at once. In addition, most 

of the existing investigations each focus on one specific DWI processing approach and/or model and as such do not 

provide a holistic assessment of DWI variability. As such, the understanding of how one study’s variability 

estimates in tensor-based metrics between sessions might compare to another’s estimates of tractography biases 
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between scanners is not obvious, for instance. Thus, to bring the field toward a more global understanding of DWI 

variability, the release of additional publicly available datasets configured to characterize DWI variability and a 

global analysis of variability on multiple levels and across different processing approaches is needed. 

 

To fill the first need, we propose MASiVar, a multisite, multiscanner, and multisubject dataset able to characterize 

DWI variability due to session, scanner, and subject effects. To fill the second need, we demonstrate the potential 

of MASiVar to characterize DWI variability by presenting a simultaneous quantification and comparison of these 

effects on four different common diffusion approaches, hypothesizing that variability increases with session, 

scanner, and subject effects. 

 

METHODS 

 

Data acquisition  

 

MASiVar consists of data acquired from 2016 to 2020 to study both DWI variability and other phenomena. As 

such, the data exist in four cohorts, designated I, II, III, and IV (Figure 1).  

 

Cohort I consists of one healthy adult subject (male, age 25 years) with multiple imaging sessions on a 3T Philips 

Achieva scanner at site 1 (scanner A). This subject underwent three imaging sessions, one each consecutive day, 

and received two to three scans during each session (Figure 1). Each scan consisted of 96-direction acquisitions at 

b = 1000, 1500, 2000, 2500, and 3000 s/mm2 (Table 2). These scans were acquired at 2.5mm isotropic resolution 

with an echo time (TE) and repetition time (TR) of TE / TR = 94ms / 2650ms.  

 

Cohort II consists of five healthy adult subjects (3 male, 2 female, age 27 to 47 years) scanned for one to two 

sessions on each of three to four different scanners. Each subject underwent all sessions within one year. The 

scanners included scanner A, another 3T Philips Achieva scanner at site 1 (scanner B), a 3T General Electric 

Discovery MR750 scanner at site 2, and a 3T Siemens Skyra scanner at site 3 (Figure 1). For each imaging session, 

each subject received one scan, consisting of 96-direction acquisitions at b = 1000, 1500, 2000, 2500 (or 2465 at 

site 3 due to hardware limitations) s/mm2 and a 30- or 32-direction acquisition at b = 1000 s/mm2 (Table 2). The 

scans acquired on scanner B, at site 2, and at site 3, and all the 30- or 32-direction scans were acquired at 2.5mm 

isotropic resolution. On scanner A, one subject’s 96-direction acquisitions were also acquired at 2.5mm isotropic 

resolution while the remainder were acquired at 1.9mm by 1.9mm by 2.2mm (sagittal, coronal, and axial) resolution. 

For acquisitions on scanner A, the 2.5mm isotropic 96-direction scans were acquired with TE / TR = 90ms / 5200ms, 

while the other 96-direction acquisitions were acquired with TE / TR = 90ms / 5950ms, and TE / TR = 55ms / 
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6127ms to 7309ms for the 32-direction acquisitions. For acquisitions on scanner B, the 96-direction scans were 

acquired with TE / TR = 90ms / 5800ms or 5900ms, while the 32-direction acquisitions were acquired with TE / 

TR = 55ms / 7022ms to 7069ms. For the 96-direction acquisitions acquired at site 2, TE / TR = 90ms / 5800ms or 

5900ms, while the 32-direction acquisitions were acquired with a TE / TR of either 58ms / 7042ms or 59ms / 

4286ms. All scans acquired at site 3 were acquired with TE / TR = 95ms / 6350ms. All sessions acquired on scanner 

A that contained scans of varying resolution were resampled to match the resolution of the 96-direction acquisitions 

prior to analysis. 

 

Cohort III consists of 8 healthy adult subjects (4 male, 4 female, ages 21 to 31 years) scanned for one to six sessions 

on scanner B (Figure 1). Each subject underwent all sessions within one year. Each subject received one to two 

scans during each session, with each scan consisting of a 40-direction b = 1000 s/mm2 and a 56-direction b = 2000 

s/mm2 acquisition (Table 2). The majority of these scans were acquired at 2.1mm by 2.1mm by 2.2mm (sagittal, 

coronal, and axial) resolution and TE / TR = 79ms / 2900ms, with a few acquired at 2.5mm isotropic resolution and 

TE / TR = 75ms / 3000ms.  

 

Cohort IV consists of 83 healthy child subjects (48 male, 35 female, ages 5 to 8 years) scanned for one to two 

sessions on scanner B (Figure 1). For the subjects with multiple sessions, the sessions were longitudinally acquired, 

spaced approximately one year apart. As with Cohort III, during each session, each subject received one to two 

scans, with each scan consisting of a 40-direction b = 1000 s/mm2 and a 56-direction b = 2000 s/mm2 acquisition 

(Table 2). These scans were acquired at 2.1mm by 2.1mm by 2.2mm (sagittal, coronal, and axial) resolution with 

TE / TR = 79ms / 2900ms.  

 

All acquisitions were phase encoded in the posterior to anterior direction (APP) and were acquired with one b = 0 

s/mm2 volume each. Reverse phase encoded (APA) b = 0 s/mm2 volumes were also acquired for all scans in all 

cohorts except for those from one subject in cohort II at site 3. Most sessions also included a T1-weighted image 

for structural analysis or distortion correction (22). All images were deidentified and all scans were acquired only 

after informed consent under supervision of the project Institutional Review Board. 

 

Data preprocessing 

 

After acquisition, all scans in MASiVar were preprocessed and quality checked with the PreQual pipeline (23). In 

brief, all acquisitions per scan were denoised with the Marchenko-Pastur technique (24–26), intensity normalized, 

and distortion corrected. Distortion correction included susceptibility-induced distortion correction (27) using APA 

b = 0 s/mm2 volumes when available and the Synb0-DisCo deep learning framework (22) and associated T1 image 
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when not, eddy current-induced distortion correction, intervolume motion correction, and slice-wise signal drop out 

imputation (28,29). The estimated volume-to-volume displacement corrected during preprocessing and signal-to-

noise ratios of the scans are reported in Supporting Information Figure S1. 

 

Overview of variability study 

 

Using data acquired in adults, we sought to demonstrate the capacity of MASiVar to simultaneously investigate 

DWI variability due to  

1. intrasession (scans acquired within the same session on the same scanner of the same subject), 

2. intersession (scans acquired between different sessions on the same scanner of the same subject), 

3. interscanner (scans acquired between different sessions on different scanners of the same subject), and 

4. intersubject (scans acquired of different subjects in different sessions on the same scanner) effects. 

We quantified these levels of effects in four common types of DWI analysis, including 

1. a diffusion tensor imaging (DTI) signal representation, 

2. a multi-compartment neurite orientation dispersion and density imaging (NODDI) model (4),  

3. the RecoBundles white matter bundle segmentation technique (30), and  

4. a connectomics representation with graph-based measures (31).  

For DTI, we investigate variability in regional fractional anisotropy (FA), mean diffusivity (MD), and principal 

eigenvector (V1) measurements. For NODDI, we investigate variability in regional cerebrospinal fluid (CSF) 

volume fraction (cVF), intracellular volume fraction (iVF), and orientation dispersion index (ODI) measurements. 

For bundle segmentation, we investigate variability in bundle shape, volume, length, and FA. For connectomics we 

investigate whole connectome variability as well as that of the maximum modularity (MM), global efficiency (GE), 

and characteristic path length (CPL) graph measures. 

 

Defining intrasession, intersession, interscanner, and intersubject groups 

 

To investigate variability, we first identify qualifying “groups” of intrasession, intersession, interscanner, and 

intersubject scans from cohorts I to III in MASiVar (Figure 2). We define an intrasession group as any session with 

at least two scans. Because sessions are necessarily nested in scanners and subjects, these samples are distributed 

across scanners and subjects. We find 24 qualifying groups, each containing 2-4 scans. To form an intersession 

group, we randomly select one scan from each of a subject’s different sessions on the same scanner. We repeat this 

process without replacement to form additional groups until no more groups with at least two scans can be formed. 

We find 22 qualifying groups, each containing 2-6 scans. As with the intrasession groups, these groups are 

distributed across scanners and subjects. To form an interscanner group, we randomly select one scan from each of 
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a subject’s sessions on different scanners and repeat this process without replacement to form additional groups 

until no more groups with at least two scans can be formed. These groups are distributed across subjects. We find 

9 groups, each containing 2-4 scans. To form an intersubject group, we randomly select one scan from each of the 

different subjects scanned on one scanner and repeat this process without replacement to form additional groups 

until no more groups with at least two scans can be formed. We find 14 qualifying groups, each containing 2-13 

scans, distributed across the four scanners used in MASiVar. 

 

Computing variability 

 

Overall, we evaluate variability for a given effect by first computing variability within each group and then 

visualizing the distribution across groups on the intrasession, intersession, interscanner, and intersubject levels. To 

compare across levels, we use six pair-wise non-parametric Wilcoxon rank-sum statistical tests with an uncorrected 

significance level of 0.05 and a Bonferroni-corrected significance level of 0.008 (32).  

 

We compute variability with the coefficient of variation (CoV) for scalar metrics, angular variation (AV) for V1, 

Dice variation (DV) for bundle shape, and Pearson correlation variation (PCV) for whole connectome variability. 

These variability metrics are mathematically defined as follows (Eq. 1-4) and their uses are further refined for the 

different DWI approaches in the following sections. 

 

CoV (%) is defined for each group as the standard deviation of the scalar metrics in each group, 𝜎, divided by the 

mean of the group, �̅�, times 100% (Eq. 1). 

 

 𝐶𝑜𝑉	(%) = 100% ×
𝜎
�̅� (1) 

 

AV (°) is defined for each group as the average angle between the 𝑁 members of the group, defined with unit 

vectors, and the group average unit vector, �̅� (Eq. 2) (33). As principal eigenvectors are direction agnostic, �̅� is 

computed iteratively to ensure the vectors are oriented correctly. We (1) compute �̅�, (2) identify all vectors oriented 

>90° from �̅�, (3) negate those vectors, and (4) repeat steps 1-3 until step 2 identifies no additional vectors. AV is 

computed on the reoriented vectors as follows (Eq. 2). 

 

 𝐴𝑉	(∘) =
1
𝑁2cos!"(|𝑥# • �̅�|)

$

#%"

 (2) 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2020.12.03.408567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

DV (ranges 0 to 1) is defined for each group as the average Dice similarity coefficient, 𝐷𝑆𝐶, between the 𝑁 bundles 

in the group, represented with binary masks, and the group average bundle, �̅� (Eq. 3) (34). �̅� is computed with a 

voxel-wise majority vote. 

 

 𝐷𝑉 =
1
𝑁2𝐷𝑆𝐶(𝑥# , �̅�)

$

#%"

 (3) 

 

PCV (ranges -1 to 1) is defined for each group as the average Pearson correlation, 𝜌, between the 𝑁 connectomes 

of the group and the group average connectome, �̅� (Eq. 4). 

 

 𝑃𝐶𝑉 =
1
𝑁2𝜌(𝑥# , �̅�)

$

#%"

 (4) 

 

Variability in DTI and NODDI  

 

For the DTI approach, we extract the b = 1000 s/mm2 acquisition from each scan with the largest number of 

directions. We then calculate the diffusion tensor for each scan using an iteratively reweighted least squares 

approach implemented in MRtrix3 (35). The tensors are subsequently converted to FA, MD, and V1 representations 

of the data (36). These images are then deformably registered to the Montreal Neurological Institute (MNI) image 

space with the ANTs software package (37,38). From there, we identify the 48 regions of interest (ROIs) in each 

image defined by the Johns Hopkins white matter atlas (39–41) (Figure 3a). 

 

For the NODDI approach, we extract the b = 1000 s/mm2 acquisition from each scan with the largest number of 

directions and the b = 2000 s/mm2 acquisition. We then fit the multicompartment model with the UCL NODDI 

Toolbox as implemented in MATLAB (4). The models are subsequently converted to cVF, iVF, and ODI 

representations. These images are then deformably registered to MNI space with the ANTs software package. From 

there, we identify the 48 ROIs in each image defined by the Johns Hopkins white matter atlas (Figure 3b). 

 

We perform the DTI and NODDI variability calculations on a regional basis in MNI space with voxel-wise 

correspondence between images. For FA, MD, cVF, iVF, and ODI, we compute the CoV for each region as the 

median voxel-wise CoV. We report the regional median across the groups for each level. Similarly, for V1 we 

compute the AV for each region as the median voxel-wise AV and report the regional median across the groups for 

each level.  
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Variability in bundle segmentation  

 

For the white matter segmentation approach, we extract the b = 2000 s/mm2 acquisition from each scan. We 

calculate a whole-brain tractogram with DIPY of 2 million streamlines (42). We use the constrained spherical 

deconvolution model (43) with probabilistic local tracking with a maximum angle of 25°, a seeding criterion of FA 

> 0.3, and a stopping criterion of FA < 0.2. We extract 43 white matter bundles (Supporting Information Table S1) 

from each tractogram using the RecoBundles algorithm as implemented in DIPY. In short, each tractogram is 

registered to an MNI tractogram template and streamlines from each tractogram are assigned to bundles within the 

template (30). The length, volume, and FA of each bundle are then calculated. We calculate bundle length by 

calculating the median streamline length. We calculate volume by first converting each bundle to a tract density 

image representation. From there, a binary bundle mask is calculated by thresholding the tract density image at 5% 

of the 99th percentile density. Volume is calculated by multiplying the number of voxels in the mask by the volume 

of each voxel. FA is calculated by first converting the image to a tensor representation (35) and then to an FA 

representation (36). Each bundle’s binary mask is then applied to obtain the median voxel-wise FA value per bundle 

(Figure 3c). 

 

Unlike the DTI and NODDI cases, streamline-wise and subsequent voxel-wise correspondence cannot be achieved 

with tractography and bundle segmentation, so we compute variability on a bundle-wise basis. For bundle shape, 

we compute the DV on the binary masks for each bundle, and for volume, FA, and length we compute the CoV for 

each bundle. We report the bundle-wise median across the groups for each level for each of these measures. 

 

Variability in connectomics  

 

For the connectomics approach, we extract the b = 2000 s/mm2 acquisition from each scan. We then calculate a 

whole-brain tractogram with MRtrix3 (44). We first use the constrained spherical deconvolution model with 

probabilistic tracking with a maximum angle of 25°, a seeding criterion of FA > 0.3 and a stopping criterion of FA 

< 0.2 to calculate a 10 million streamline tractogram. The tractogram is then filtered with the SIFT approach to 2 

million streamlines (45). We parcellate the brain into 96 cortical regions using the Harvard-Oxford cortical atlas 

(46–49) and compute a connectome where each edge represents the average streamline distance connecting the two 

nodes. The MM, GE, and CPL are then calculated from each connectome using the Brain Connectivity Toolbox as 

implemented in MATLAB (31) (Figure 3d).  

 

To evaluate whole connectome variability, we report the PCV across the groups for each level. To evaluate 

variability in the MM, GE, and CPL graph measures, we report the CoV across the groups for each level.  
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Comparing variability across processing approaches  

 

Last, to obtain a more global understanding of the session, scanner, and subject effects across the four different 

processing approaches, we compare the median CoV estimates for FA and MD (DTI), cVF, iVF, and ODI (NODDI), 

volume, FA, and length (bundle segmentation), and MM, GE, and CPL (connectomics) on the intrasession, 

intersession, interscanner, and intersubject levels. We determine differences with six pair-wise Wilcoxon signed-

rank tests at an uncorrected significance level of 0.05 and a Bonferroni-corrected significance of 0.008. 

 

RESULTS 

 

Variability in DTI 

 

As shown in Figure 4 and tabulated in Table 1, we find that the median CoV for FA across intrasession groups is 

3.34%, across intersession groups is 5.29%, across interscanner groups is 8.78%, and across intersubject groups is 

11.95%. We find the corresponding estimates in the MD case to be 1.37%, 3.43%, 6.22%, and 5.12% and the 

corresponding AV estimates in the V1 case to be 4.49°, 7.28°, 9.48°, and 13.42°, respectively. The differences 

between most of these estimates are statistically significant after Bonferroni correction (p < 0.008, Wilcoxon rank-

sum test). Notably, we find for the FA and MD cases that interscanner variability is comparable to intersubject 

variability. 

 

Variability in NODDI 

 

As shown in Figure 5 and tabulated in Table 1, we find that the median CoV for cVF across intrasession groups is 

27.33%, across intersession groups is 34.57%, across interscanner groups is 40.34%, and across intersubject groups 

is 53.11%. We find the corresponding estimates in the iVF case to be 3.64%, 5.48%, 7.89%, and 8.27% and in the 

ODI case to be 4.56%, 6.49%, 13.14%, and 19.54%, respectively. As with the DTI case, the majority of these 

estimates are statistically different after Bonferroni correction (p < 0.008, Wilcoxon rank-sum test). Of note, we 

evaluated cVF only in white matter regions defined by the Johns Hopkins atlas and thus dealt with very low cVF 

values when computing CoV. Additionally, we find that for the cVF and iVF cases that interscanner variability is 

comparable to intersubject variability. 

 

Variability in bundle segmentation 
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As shown in Figure 6 and tabulated in Table 1, we find that bundles overlap at a median DV of 0.82 across 

intrasession groups, 0.81 across intersession groups, 0.76 across interscanner groups, and 0.68 across intersubject 

groups. We find the median CoV estimates for the corresponding levels of variation across groups in the bundle 

volume case to be 4.63%, 5.82%, 9.07%, and 15.04%, in the FA case to be 0.71%, 1.10%, 3.15%, and 2.47%, and 

in the bundle length case to be 1.27%, 1.93%, 2.42%, and 6.11%, respectively. As with the DTI and NODDI cases, 

the majority of these estimates are statistically different after Bonferroni correction (p < 0.008, Wilcoxon rank-sum 

test). Notably, we find that in the FA case interscanner variability is comparable to intersubject variability. 

 

Variability in connectomics 

 

As shown in Figure 7 and tabulated in Table 1, we find that the whole connectomes correlate at a median PCV of 

0.89 across intrasession groups, 0.89 across intersession groups, 0.85 across interscanner groups, and 0.80 across 

intersubject groups. We find the median CoV estimates for the corresponding levels of variation across groups in 

the MM case to be 3.29%, 3.83%, 6.49%, and 14.55%, in the GE case to be 0.44%, 0.91%, 3.38%, and 3.80%, and 

in the CPL case to be 0.40%, 0.93%, 3.52%, and 3.76%, respectively. As with the other processing approaches, the 

majority of these estimates are statistically different after Bonferroni correction (p < 0.008, Wilcoxon rank-sum 

test). Additionally, we note that for both the GE and CPL cases, interscanner variability is comparable to intersubject 

variability. 
 

Comparing variability across processing approaches  

 

As shown in Figure 8, we find that the overall CoV estimates across the four processing approaches increase with 

consideration of intrasession, intersession, interscanner, and intersubject effects. Additionally, we find all these 

estimates are statistically different after Bonferroni correction, with the exception of the interscanner and 

intersubject comparison. Last, with the exception of the outlier (cVF in white matter), we note that all the approaches 

exhibit similar variability within each level, with a median CoV of 3.29% on the intrasession level, 3.83% on the 

intersession level, 6.49% on the interscanner level, and 8.27% on the intersubject level. 

 

DISCUSSION AND CONCLUSIONS 

 

Here, we present, MASiVar, a dataset designed for investigation of DWI variability. Additionally, to demonstrate 

the capacity of MASiVar as a resource, we characterize intrasession, intersession, interscanner, and intersubject 

variability in four common DWI processing approaches. In support of our hypothesis, we consistently find that 

variability increases with consideration of session, scanner, and subject effects. We also find that overall and for 
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each of the four approaches interscanner variability can approach or even be comparable to intersubject variability. 

Last, we find that most of the DWI scalar measurements investigated presently exhibit intra- and intersession 

variability approximately less than 5% CoV, interscanner effects of roughly 5 to 10% CoV and intersubject effects 

of roughly 5 to 15% CoV. We interpret two primary conclusions from these results. The first is that MASiVar 

provides the field a resource to obtain an improved global understanding of session, scanner, and subject effects 

within and between different DWI processing approaches. Second, we interpret these results to mean that 

harmonization between scanners for multisite analyses should be carefully considered prior to inference of group 

differences on subjects.  

 

The reproducibility of DWI analyses has received significant attention in the field, including the analysis of tensor 

representations (50–53), multi-compartment models (53,54), tractography and bundle segmentation (55,56), and 

connectomics (57,58) (Table 1). Looking at the literature, we find many existing studies used CoV to estimate 

variability. Thus, we elected to center our study around this approach to better place our results in context of the 

literature. We found similar estimates of variability between our results and those of prior studies. However, review 

of the literature also demonstrates a fragmented picture of DWI variability. Previous studies have largely each 

primarily focused on one type of approach and one or two levels of variation. This coupled with the different 

definitions of variability and different study objectives have made it difficult to understand how the different effects 

relate to each other and how they affect a multitude of common DWI processing approaches. To the best of our 

knowledge, this study represents the first attempt to characterize all four types of diffusion processing and all four 

levels of variation consistently and simultaneously. Thus, we hope that the dataset and study presented here will 

promote further investigation into a wide spectrum of DWI variability issues from a large pool of models to push 

the field toward a global understanding of the effects of session, scanner, and subject biases on different DWI 

measurements.  

 

For this study, we chose popular software toolboxes to do all the analyses, parameter configurations that we were 

familiar with, and consistent similarity assessments that we found to be interpretable. However, we recognize that 

there are many other software options available to do similar tasks, each with a large number of different 

configurations, and a large number of ways to assess variability. For instance, there are different methods for fitting 

tensors (59–61), for identifying regions (48,62–64) and bundles (65–68), for comparing bundles (69), and for 

configuring and representing connectomes (31,58,70,71). Additionally, there are a number of other microstructural 

measures that can be characterized as well (19). Thus, the goal of the present study was not to provide an analysis 

between different processing toolboxes or parameters, and since each approach was not necessarily optimized, we 

do not recommend thorough utilization of the absolute reproducibility values presented here for any one processing 

approach. Instead, we aimed to contribute to a global understanding of DWI variability and its relative trends across 
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the four processing approaches and across sessions, scanners, and subjects in a generally interpretable way that 

demonstrated the potential of the dataset. As such, we hope that the release of MASiVar will prompt other 

investigators in the field to optimize and further characterize differences between software tools and their 

parameters, different DWI processing and variability measures, and other potential confounders in DWI analysis. 

 

In addition to the ability of MASiVar to serve as a utility for variability analysis, we note that the pediatric subjects 

in cohort IV present another unique resource for the field. The majority of the existing DWI datasets and studies 

for variability use adult subjects. Of existing pediatric datasets, many have focused on older age ranges. For 

example, the Adolescent Brain Cognitive Development project (72) and the Lifespan Human Connectome Project 

in Development (73) contain longitudinal DWI data acquired from children starting at age 9 and 10 through 

adolescence. Thus, to the best of our knowledge, MASiVar represents one of the first publicly available longitudinal 

DWI datasets of children prior to adolescence aged 5-8 years old and is further distinguished by its inclusion of 

repeated scans within each session. As a demonstration of the usefulness of cohort IV, we include an analogous 

characterization of the longitudinal intersession variability in children with one year between sessions compared to 

the adult intersession variability computed above for all four processing approaches (Supporting Information Figure 

S2). We hope that investigators in developmental neuroscience and pediatric neurology will be able to take 

advantage of this resource for their work.  

 

We note that the groups in each of the variability levels described in this study are necessarily distributed across 

different nested effects. For instance, since sessions are nested in scanners which are nested in subjects, the 

intrasession groups are distributed across different sessions, scanners, and subjects; the intersession groups are 

distributed across different scanners and subjects; and so forth. Thus, one limitation of our study is that in an effort 

to better place our results in context of the literature with interpretable metrics like CoV, we partially but not fully 

isolate the appropriate session, scanner, and subject biases. Similarly, another limitation of our study is the 

differences in the number of gradient directions between the different cohorts. Cohort III consists of a 40-direction 

b = 1000 s/mm2 acquisition and a 56-direction b = 2000 s/mm2 acquisition in contrast to the 96 directions for cohorts 

I and II. This is a potential effect that could be biasing the results. In a similar vein, due to hardware limitations, the 

data collected at site 3 in cohort II was collected at a maximum shell of 2465 s/mm2 as opposed to the 2500 s/mm2 

across the rest of MASiVar. This shell was not used for the present variability analysis, but this discrepancy should 

be noted on future studies using the dataset. Thus, considering these potential effects, future directions include 

developing a mixed effects model capable of estimating variability in an interpretable manner as well as robustly 

modeling the nested nature of sessions, scanners, and subjects and the acquisition biases.  
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Last, we have made the MASiVar dataset publicly available at https://openneuro.org/datasets/ds003416 in Brain 

Imaging Data Structure (BIDS) format with deidentified metadata and defaced images (74).  
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Figure 1. Overview of the MASiVar dataset. This dataset consists of four cohorts. Cohort I consists of one adult 

subject scanned repeatedly on one scanner. This subject underwent three separate imaging sessions and acquired 3-

4 scans per session. Cohort II consists of 5 adult subjects each scanned on 3-4 different scanners across 3 institutions. 

Each subject underwent 1-2 sessions on each scanner and had one scan acquired per session. Cohort III consists of 

8 adult subjects all scanned on one scanner. Each subject underwent 1-6 sessions on the scanner and had two scans 

acquired per session. Cohort IV consists of 83 child subjects all scanned on one scanner. Each subject underwent 

1-2 sessions on the scanner and had two scans acquired per session.  
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Figure 2. Example identification of scan groups at the four levels of variation. The MASiVar dataset consists of 

scans across multiple sessions, scanners, and subjects that can be grouped in order to satisfy intrasession, 

intersession, interscanner, and intersubject criteria. The scans in each of these groups should produce the same 

measurements, thus quantification of variation within groups provides an estimate of variability. For the 

intersession, interscanner, and intersubject groups, scans are randomly shuffled within sessions prior to grouping. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2020.12.03.408567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.408567
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

 
Figure 3. Outline of processing and measurements investigated presently in four common diffusion MRI analysis 

approaches. (A and B) We quantify variability in the tensor-based FA, MD, and V1 measurements and NODDI-

based cVF, iVF, and ODI measurements in MNI space in 48 Johns Hopkins white matter atlas regions. (C) We 

quantify variability in bundle shape, volume, FA and length for 43 white matter bundles (Supporting Information 

Table S1) identified with the RecoBundles segmentation method. (D) We quantify variability in whole brain 

structural connectomes and the MM, GE, and CPL scalar graph measures. 
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Figure 4. Variability in DTI. Visualization of variation across intrasession, intersession, interscanner, and 

intersubject groups illustrates increased variability with session, scanner, and subject effects. Statistical significance 

was determined with the Wilcoxon rank-sum test with and without Bonferroni correction. 
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Figure 5. Variability in NODDI. Visualization of variation across intrasession, intersession, interscanner, and 

intersubject groups illustrates increased variability with session, scanner, and subject effects. Statistical significance 

was determined with the Wilcoxon rank-sum test with and without Bonferroni correction. 
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Figure 6. Variability in bundle segmentation. Visualization of variation across intrasession, intersession, 

interscanner, and intersubject groups illustrates increased variability with session, scanner, and subject effects. 

Statistical significance was determined with the Wilcoxon rank-sum test with and without Bonferroni correction. 
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Figure 7. Variability in connectomics. Visualization of variation across intrasession, intersession, interscanner, and 

intersubject groups illustrates increased variability with session, scanner, and subject effects. Statistical significance 

was determined with the Wilcoxon rank-sum test with and without Bonferroni correction. 
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Figure 8. Overall trends in CoV across DTI, NODDI, bundle segmentation, and connectomics. Visualization of 

median CoV across all four processing approaches on the intrasession, intersession, interscanner, and intersubject 

levels illustrates consistently increased variability with session, scanner, and subject effects. Statistical significance 

was determined with the Wilcoxon signed-rank test with and without Bonferroni correction. The outlying points 

correspond to the NODDI cVF approach in white matter where absolute cVF values are expected to be low. 
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Table 1. A survey of existing DWI variability estimates against those presented in the present work. 
Approach Measure Intrasession Intersession Interscanner Intersubject Citation 

DTI 

FA 

3.34% CoV 
2% CoV 

– 
– 
– 
– 
– 
– 
– 
– 
– 
– 
– 

5.29% CoV 
3% CoV 
1% CoV 

1-2% CoV 
3% CoV 

0.5% CoV 
0.90-0.99 ICC 
0.74-1.00 ICC 
0.6-1% CoV 

0.93-0.97 ICC 
~0.95 PC 

2.1 % CoV 
0.53 ICC 

8.78% CoV 
– 

3% CoV 
2-4% CoV 
8% CoV 
2% CoV 

0.82-0.99 ICC 
0.54-0.97 ICC 

– 
– 
– 

2.0% CoV 
0.47 ICC 

11.95% CoV 
– 
– 
– 
– 
– 
– 
– 
– 
– 
– 

3.8% CoV 
– 

Present work 
(Farrell, 2010) (33) 

(Magnotta, 2012) (50) 
(Vollmar, 2010) (51) 
(Palacios, 2017) (52) 
(Andica, 2020) (53) 

(Vollmar, 2010) (51) 
(Andica, 2020) (53) 
(Koller, 2020) (19) 
(Koller, 2020) (19) 
(Koller, 2020) (19) 

(Grech-Sollars, 2015) (75)  
(Grech-Sollars, 2015) (75) 

MD 

1.37% CoV 
1% CoV 

– 
– 
– 
– 
– 
– 
– 
– 

3.43% CoV 
1% CoV 
1% CoV 
2% CoV 

0.2% CoV 
0.5-1% CoV 

0.94-0.96 ICC 
~0.66 PC 
1.3% CoV 
0.41 ICC 

6.22% CoV 
– 

2% CoV 
6% CoV 
3% CoV 

– 
– 
– 

1.6% CoV 
0.59 ICC 

5.12% CoV 
– 
– 
– 
– 
– 
– 
– 

2.6% CoV 
– 

Present work 
(Farrell, 2010) (33) 

(Magnotta, 2012) (50) 
(Palacios, 2017) (52) 
(Andica, 2020) (53) 
(Koller, 2020) (19) 
(Koller, 2020) (19) 
(Koller, 2020) (19) 

(Grech-Sollars, 2015) (75) 
(Grech-Sollars, 2015) (75) 

V1 4.49° AV 
~2-8° AV 

7.28° AV 
~7-12° MAD 

9.48° AV 
– 

13.42° AV 
– 

Present work 
(Farrell, 2010) (33) 

NODDI 

cVF 
27.33% CoV 

– 
– 

34.57% CoV 
1.6-3.6% CoV 

0.133-0.997 ICC 

40.34% CoV 
15.9% CoV 

0.013-0.545 ICC 

53.11% CoV 
– 
– 

Present work 
(Andica, 2020) (53) 
(Andica, 2020) (53) 

iVF 

3.64% CoV 
– 
– 
– 

5.48% CoV 
0.4% CoV 

0.773-0.989 ICC 
5.1% CoV 

7.89% CoV 
0.9% CoV 

0.300-0.935 ICC 
– 

8.27% CoV 
– 
– 
– 

Present work 
(Andica, 2020) (53) 
(Andica, 2020) (53) 

(Tariq, 2013) (54) 

ODI 

4.56% CoV 
– 
– 
– 

6.49% CoV 
0.2-0.3% CoV 

0.789-0.998 ICC 
5.7% CoV 

13.14% CoV 
4.2% CoV 

0.181-0.962 ICC 
– 

19.54% CoV 
– 
– 
– 

Present work 
(Andica, 2020) (53) 
(Andica, 2020) (53) 

(Tariq, 2013) (54) 

Bundle 
Segmentation 

Shape 

0.82 DV 
~0.67 Dice  

– 
– 
– 
– 

0.81 DV 
~0.64 Dice 

0.65-0.92 Dice 
0.72 wDice 

0.71-0.87 wDice  
– 

0.76 DV 
~0.58 Dice 

– 
– 
– 
– 

0.68 DV 
– 
– 
– 
– 

~0.5-0.6 Dice 

Present work 
(Nath, 2020) (56) 

(Besseling, 2012) (55) 
(Cousineau, 2017) (76) 

(Boukadi, 2019) (77) 
(Schilling, 2020) (78) 

Volume 

4.63% CoV 
– 
– 
– 

5.82% CoV 
3-22% CoV 

0.53-0.96 ICC 
0.41-0.83 ICC 

9.07% CoV 
– 
– 
– 

15.04% CoV 
– 
– 
– 

Present work 
(Besseling, 2012) (55) 
(Besseling, 2012) (55) 

(Boukadi, 2019) (77) 

FA 

0.71% CoV 
– 
– 
– 

1.10% CoV 
1-4% CoV 

0.65-0.94 ICC 
0.62-0.89 ICC 

3.15% CoV 
– 
– 
– 

2.47% CoV 
– 
– 
– 

Present work 
(Besseling, 2012) (55) 
(Besseling, 2012) (55) 

(Boukadi, 2019) (77) 

Length 1.27% CoV 
– 

1.93% CoV 
0.68-0.89 ICC 

2.42% CoV 
– 

6.11% CoV 
– 

Present work 
(Boukadi, 2019) (77) 

Connectomics 

Whole 
Connectome 

0.89 PCV 
– 
– 

0.89 PCV 
0.6-0.95 PC  

– 

0.85 PCV 
– 
– 

0.80 PCV 
– 

32.7-39.9% CD 

Present work 
(Prčkovska, 2016) (57) 

(Girard, 2015) (79) 

MM 3.29% CoV 3.83% CoV 6.49% CoV 14.55% CoV Present work 

GE 
0.44% CoV 

– 
– 

0.91% CoV 
31% CoV 
0.78 ICC 

3.38% CoV 
– 
– 

3.80% CoV 
– 
– 

Present work 
(Roine, 2019) (58) 
(Roine, 2019) (58) 

CPL 
0.40% CoV 

– 
– 

0.93% CoV 
2% CoV 
0.77 ICC 

3.52% CoV 
– 
– 

3.76% CoV 
– 
– 

Present work 
(Roine, 2019) (58) 
(Roine, 2019) (58) 

AV = angular variation, CD = connectome distance, CoV = coefficient of variation, CPL = characteristic path length, cVF = CSF volume fraction, DV = Dice 
variation, FA = fractional anisotropy, GE = global efficiency, ICC = intraclass correlation coefficient, iVF = intracellular volume fraction, MAD = mean angular 
difference, MD = mean diffusivity, MM = maximum modularity, ODI = orientation dispersion index, PC = Pearson correlation, PCV = Pearson correlation 
variation, V1 = principal eigenvector, wDice = weighted Dice, – = not investigated. 
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Table 2. Acquisitions acquired in each scan for the different MASiVar cohorts. 

Acquisitions Per Scan 

Cohort Shell 
(b-value) 

Number of 
Directions 

I 

1000 96 

1500 96 

2000 96 

2500 96 

3000 96 

II 

1000 30 or 32 

1000 96 

1500 96 

2000 96 

2465 or 2500 96 

III 
1000 40 

2000 56 

IV 
1000 40 

2000 56 
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