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Abstract

We present a theoretical method to study how changes in pH shape the hetero-

geneous conformational ensemble explored by intrinsically disordered proteins (IDPs).

The theory is developed in the context of coarse-grained models, which enable a fast, ac-

curate, and extensive exploration of conformational space at a given protonation state.

In order to account for pH effects, we generalize the Molecular Transfer Model (MTM),

in which conformations are re-weighted using the transfer free energy, which is the free

energy necessary for bringing to equilibrium in a new environment a “frozen” confor-

mation of the system. Using the semi-grand ensemble, we derive an exact expression

of the transfer free energy, which amounts to the appropriate summation over all the

protonation states. Because the exact result is computationally too demanding to be

useful for large polyelectrolytes or IDPs, we introduce a mean-field (MF) approximation

of the transfer free energy. Using a lattice model, we compare the exact and MF results

for the transfer free energy and a variety of observables associated with the model IDP.

We find that the precise location of the charged groups (the sequence), and not merely

the net charge, determines the structural properties. We demonstrate that some of
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the limitations previously noted for MF theory in the context of globular proteins are

mitigated when disordered polymers are studied. The excellent agreement between the

exact and MF results poises us to use the method presented here as a computational

tool to study the properties of IDPs and other biological systems as a function of pH.

Introduction

The cellular environment spans a broad spectrum of solution acidity/basicity. For instance,

the vesicles of the secretory and endocytic pathways,1 melanosomes,2 and mytochondria3

are more acidic than the cytosol, with organelle-dependent differences that are as large as

three pH units. In addition, external stimuli could alter the pH, thereby producing dramatic

changes in the physiology of the cell.4 At a molecular level, changes in pH alter the structure

and solubility of proteins, and promote the formation of condensates,5–7 and fibrils,,8,9 and

could be used tune between these two scenarios.10,11 These effects are caused by changes in

electrostatic interactions.

Titratable groups (the N- and C-termini, and the side-chains of lysine, arginine, histidine,

aspartic acid, glutamic acid, tyrosine, and cysteine) respond to increase (decrease) of pH by

releasing (binding) protons. Changes in the charge of the individual groups and the whole

protein modulate the strength of both intra-molecular and inter-molecular interactions. In

order to understand these effects, it is crucial to estimate the pH “scale” around which the

protonation and deprotonation occur, that is the pKa-s. These properties depend (i) on the

chemistry of the individual titratable groups, and (ii) on the local environment as well as

the protein conformation. We focus here on the strategies to account for the effect of the

interaction of all the ionizable groups on the protonation of each one of them, assuming that

the properties of titratable groups in isolation are accurately measured.

Over the years, a number of methods have been introduced to account for the role of

protein structure and flexibility upon titration. These range from the theoretical model of

Tanford and Kirkwood (TK),12 to a variety of computational strategies that employ all-atom
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or coarse-grained description of protein and the solvent. The challenge in devising an accu-

rate strategy to investigate pH effect is clear: for each titratable group there are two possible

states, protonated and deprotonated. In sufficiently large proteins, there could be dozens of

such amino acids, making it difficult to account exhaustively for all the possible protonation

states. Because interactions between the ionized groups affect the titration, whenever the

system of interest explores a heterogeneous set of structures, the interplay between conforma-

tion and protonation exacerbates the challenge. This is the case for pH-induced unfolding

of globular proteins, or for predicting the conformations of IDPs with a large number of

residues.13 In these cases, successfully accounting for all the relevant protonation states for

each sampled structure at a given pH becomes computationally prohibitive.

In computational models with all-atom resolution of the protein, there are two strategies

that are used to perform constant pH (as opposed to constant protonation state) simulations:

the protonation state is described either by a discrete or by a continuous variable.14–27 In the

first case, an attempt at adding or removing protons from titratable groups is accomplished

by introducing Monte Carlo steps in the protonation space; in the second case the “degree of

protonation” of a base or an acid follows a specific time evolution, which can be biased in order

to favor fully ionized or neutral states as a means to reduce the population of intermediate

“degrees of protonation”, deemed to be unphysical. These strategies yield a simultaneous

exploration of conformational and protonation space, which enables the calculation of average

properties while retaining dynamic information. However, the calculations must be repeated

for each pH value.

An alternative approach, based on the Molecular Transfer Model (MTM),28,29 was pro-

posed by O’Brien, Brooks, and Thirumalai (OBT).30 The basis of the theory is rooted in

the studies of Tanford who estimated the differences in the stability of folded proteins upon

a change in solution conditions. Tanford defined the transfer free energy as the free energy

cost of transferring the residues and the peptide backbone from one solution condition to

another. The free energy for the whole protein could be taken to be the sum of the changes
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in the transfer free energies of the individual amino acids as well as the peptide backbone

upon a change in the solution conditions. Despite the use of the additivity assumption, the

Tanford method works remarkably well in obtaining the stability changes of folded proteins

as the denaturant concentration is changed. In the OBT approach, the protein is described

at a coarse-grained (CG) level in order to extensively sample its conformations, and a model

analogous to Tanford’s was introduced to calculate the free energy change when each protein

conformation is transferred to a different pH. The OBT theory accounts for the changes in

the solvation of titratable groups upon folding/unfolding, which results in sizable modifica-

tion of the pKa-s of ionizable residues depending on the overall conformation of the protein.

An advantage of this model is that once an extensive simulation is conducted at a given

pH, features computed in different solution conditions emerge after a fast re-weighting of

the sampled conformations. Despite the success of MTM in quantitatively reproducing ex-

perimental results for pH-dependent folding free energy of globular proteins,28 subsequent

CG strategies resorted to implementing pH effects in the mold of all-atom models, with a

“dynamical” instead of a “statistical” approach to sampling protonation states.31–34

Here, we reprise the MTM approach of OBT,30 and modify it so that it could be used

to investigate pH effects on IDPs, which is the eventual goal of this program. In IDPs,

the presence of a heterogeneous ensemble of globular and extended states demands a finer

sensitivity to the local, transient conformation around each titratable group. To overcome

this problem while retaining the simplicity of the MTM, we developed a new method by

building on the works of TK,12 Tanford and Roxby (TR),35 Bashford and Karplus (BK),14

Gilson,15 and Baptista et al.18 In a nutshell, we assume that the changes in pKa of each

group emerge from a combination of given chemical properties and electrostatic interactions

with other charged groups, and neglect the effect of other interactions such as hydrogen

bonds, as is commonly done (see for instance the work of TK12). With this assumption, we

use the semi-grand ensemble18,36 to derive a transfer free energy. In this way, we recover an

expression that was previously reported by BK14 and Gilson15 on the basis of thermodynamic
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considerations, starting from either a fully de-protonated or fully uncharged protein (see

the Supporting Information (SI)). The exact calculation of the pH-dependent transfer free

energy is not feasible for systems with more than a dozen titratable groups. Therefore,

it is tempting to adopt a mean-field (MF) approximation.14 However, BK14 and Gilson15

argued that the MF approximation is inaccurate when there are strong interactions between

nearby titratable groups. Therefore, they attempted to account for the large number of

protonation states by introducing alternative strategies, such as the reduced-site method, in

which only a subset of titratable groups can be protonated/deprotonated at a given pH,14 or

a technique based on clustering in order to separate local interactions (treated exactly) from

long-range interactions (approximated using MF).15 Notably, in these influential works, BK

and Gilson did not explore the effect of different conformations to address the accuracy of

the MF approximation. The protein conformation was quenched to the native structure. Of

course, fixing the conformation in IDPs would produce qualitatively incorrect results.

We hypothesized that the inaccuracies in the MF theory would be less prominent for IDPs,

which do not have persistent and stable globular structures. We expect titratable groups of

the IDPs to be well-solvated, and consequently interactions between the charged residues are

weakened by the ionic strength and high dielectric permittivity of the solution. To test our

conjecture, which has similarities with ideas proposed in the context of the unfolded state,17

we constructed a simple and precisely solvable cubic lattice model of an IDP. The simplicity

of the model permits exhaustive enumeration of all the conformations and protonation states,

thereby allowing us to test the validity of the MF approximation without worrying about

sampling issues. We show that the agreement between the numerically exact results and

those obtained using the MF approximation is excellent. Finally, we show that the transfer

free energy of OBT30 used to investigate pH effects on folding of globular proteins is recovered

with the aid of a simple argument (see the SI). Our findings pave the way to use the MTM

for IDPs (MTM-IDP) to probe pH effects in a variety of problems including, but not limited

to, the IDPs.
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Methods

Anions, Cations, Protonation, and Notation: We first introduce some notation in

order to make the rest of the Methods section easier to understand. As we discuss the

nomenclature, we focus on proteins, especially IDPs. However, the general scheme holds for

RNA, DNA, polyelectrolytes, polyampholytes as well as small molecules.

Let a protein have NT titratable groups, which are capable of binding or releasing protons

according to the following reaction,

Ri + H+ 
 RiH,

where Ri is the i-th titratable chemical species and H+ refers to the proton. We divide

these species into two classes. We refer to the N-terminal amino group, and the side-chains

of histidine, lysine, and arginine as “cataionic groups” because in their ionized form they

are positively charged. In contrast, “anionic groups” such as the carboxyl C-terminal end,

and the side-chains of the aspartic acid, glutamic acid, tyrosine, and cysteine are negatively

charged when ionized. Cationic groups become positively charged in the protonated state;

in contrast, anionic groups are neutral when they bind a proton.

In order to distinguish between the protonated (RiH) and de-protonated (Ri) forms of

the titratable group, we introduce the following set of labels: (i) the ionization state xi,

which is = 1 if the i-th group bears a charge and = 0 otherwise. (ii) The protonation state,

pi, is = 1 (= 0) when the group is protonated (de-protonated). (iii) The charge of a group,

qi, which is equal to zi · xi, where zi = 1 for cationic groups, and zi = −1 for anionic groups.

The values assumed by the labels in the different scenarios are illustrated in Fig. 1. The

relationship between protonation states and ionization state is given by,

pi(α) = qi(α)− qunp
i = zi[xi(α)− xunp

i ],

xi(α) = zipi(α) + xunp
i

(1)
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where qunp
i (xunp

i ) is the charge (ionization state) of the i-th group in the un-protonated state.

For an anionic group, the charge in the un-protonated state is −1 and the ionization state

value is 1, whereas these values are 0 for a cationic group (see Fig. 1).

A protein with NT titratable groups (NT = 2 in the example of Fig. 1) has 2NT ionization

or protonation states (in Fig. 1, 2NT = 4), each of which is identified by vectors ~p and ~x of 0-s

and 1-s. We introduce an index α which goes from α = 1 to α = 2NT . This index corresponds

to a unique protonation or ionization state, so that, for instance, ~p(α = 1) = (0, · · · , 0)

and ~p(α = 2NT ) = (1, · · · , 1), with the corresponding ionization states obtained using the

transformation in Eq. 1. The total number of titratable states that are protonated is given

by,

ν(α) =

NT∑
i=1

pi(α). (2)

At equilibrium, the dissociation constant in molar (M) units, Kai, for protonating a Ri

is,
Kai

M
=
( [Ri][H]

[RiH+]M

)
eq

= e−β(µ0Ri
+µ0H−µ

0
RiH

) = e−βkBT ln(10)pKai , (3)

where the symbol [X] refers to the concentration of species X in molar units, and the standard

free energies of RiH, Ri, and the proton are given by µ0
RiH

, µ0
Ri
, and µ0

H, respectively. In

Eq. 3 we have also used the definition of pKa of the i-th titratable group, which is given

by, pKai = − log10 Kai/M. The value of this pKa is an intrinsic measurable property of a

chemical species measured in isolation and in solution. We assume these values to be given.37

Exact Formulation: We present a general method to compute the transfer free en-

ergy, following Tanford’s studies in estimating stability of globular proteins as a function of

denaturant concentration. In order to complete this task, it proves convenient to use the

semi-grand canonical ensemble.36 The partition function in this ensemble is:

Q(T, µH) =
∑
c

2NT∑
α=1

e−β[E0(c)+E1(α)+E2(c,α)]eβµHν(α). (4)
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In the above equation, c labels the spatial conformation (it could be replaced by a continuous

index, but we keep it discrete without loss of generality), E0(c) is an energy term which

depends only on the conformation, E1(α) is determined solely by the protonation of titratable

groups, and E2(c, α) couples protonation and spatial conformation. Note that we did not

include in the partition function the interaction between free protons, which is tantamount

to assuming that their behavior is ideal. Thus, we can approximate the proton chemical

potential, µH, in Eq. 4 as,

µH = µ0
H + kBT ln[H+]/M = µ0

H − kBT ln(10)pH, (5)

where pH = − log10[H+]/M. Note that we have excluded solvent and salt effects from the

partition function; in the coarse grained representation of the polymer their contribution is

to modulate the effective energies, E0(c), E1(α), and E2(c, α), which will become clear later.

There is no pressure (or volume) term in the partition function in Eq. 4; its contribution

would appear through the energy function and the standard chemical potential of the proton.

Under the reasonable assumption that the fluid is incompressible, the results would not be

affected by the choice of the thermodynamic variable. In any event, these are standard

assumptions in the CG models of proteins38 and IDPs.13,39,40 They could be relaxed at the

cost of increasing the complexity of the calculations without being able to assess the accuracy.

We introduce a reference protonation state, α?, and recast the partition function in the

following form,

Q(T, µH) = e−β[E1(α?)−µHν(α?)]∑
c

{∑
α

e−β[E2(c,α)−E2(c,α?)]e−β{E1(α)−E1(α?)−µH[ν(α)−ν(α?)]}
}
e−β[E0(c)+E2(c,α?)].

(6)

We define the transfer free energy to be,

∆Gtr(c, α
?, µH) = −kBT ln

{∑
α

e−β[E2(c,α)−E2(c,α?)]e−β{E1(α)−E1(α?)−µH[ν(α)−ν(α?)]}
}
. (7)
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The above equation is evaluated by choosing a specific conformation and summing over α,

which labels the protonation state of the polymer. Thus, ∆Gtr(c, α
?, µH) depends only on c,

pH, and the reference state, α?. Using Eq. 7, the partition function becomes,

Q(T, µH) = e−β[E1(α?)−µHν(α?)]
∑
c

e−β∆Gtr(c,α?,µH)e−β[E0(c)+E2(c,α?)]. (8)

The above expression for Q(T, µH) has a simple operational interpretation: we perform

simulations at a fixed protonation state, α?, and the resulting trajectory provides an ensemble

of conformations. To appropriately account for the variations in the protonation state, we

re-weight each sampled conformation (fixed c) with the corresponding transfer free energy

given in Eq. 7. The constant outside the summation in Eq. 8 refers to the titratable groups

in state α?. Being a constant, it does not affect the evaluation of average properties of the

system, although it does contribute to the absolute value of the total free energy.

E1(α): The transfer free energy in Eq. 7 can be calculated if E1(α) and E2(c, α) are

specified. We model E1(α) as follows. Because it is by construction independent on the

conformation of the polymer, we assume that it can be written as a sum of individual

contributions from each titratable group. Each contribution is modeled as the standard free

energy of the protonated or de-protonated form of the i-th group isolated in solution,

E1(α) =
∑
i

{µ0
RiH

pi(α) + µ0
Ri

[1− pi(α)]} =
∑
i

µ0
Ri

+
∑
i

[(µ0
RiH
− µ0

Ri
)pi(α)]. (9)

Therefore, recalling the definition of ν(α) in Eq. 2, the pKa of the i-th group in Eq. 3, and

the proton chemical potential in Eq. 5, we get,

E1(α)− µHν(α) =
∑
i

µ0
R,i +

∑
i

pi(α)[µ0
RH,i − µ0

R,i − µ0
H + kBT ln(10)pH] =

=
∑
i

µ0
R,i −

∑
i

pi(α)kBT ln(10)(pKai − pH)].

(10)
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Following the nomenclature of BK14 and Gilson,15 we introduce bi, defined as,

bi = −kBTzi ln(10)(pKai − pH). (11)

Finally, using Eq. 1 to switch from protonation [pi(α)] to ionization [xi(α)] states, we write:

E1(α)− µHν(α) =
∑
i

µ0
R,i +

∑
i

bi[xi(α)− xunp
i ]. (12)

E2(c, α): In order to model to coupling between conformations and protonation states,

we assume that the only contribution to E2(c, α) comes from pairwise, electrostatic interac-

tions,12 which we write as,

E2(c, α) =
1

2

∑
i

∑
j

qi(α)qj(α)Wij(c) =
1

2

∑
i

∑
j

xi(α)xj(α)Vij(c), (13)

where zizjWij(c) = Vij(c) is an electrostatic interaction depending on the distance between

two beads – the functional form will be discussed later. By combining all the terms in the

exponent for the transfer free energy (Eq. 7) we get,

E2(c, α)− E2(c, α?) + E1(α)− E1(α?)− µH[ν(α)− ν(α?)] =

=
∑
i

xi(α)
[
bi +

1

2

∑
j

Vij(c)xj(α)
]
−
∑
i

xi(α
?)
[
bi +

1

2

∑
j

Vij(c)xj(α
?)
]
.

(14)

The transfer free energy becomes,

∆Gtr(c, α
?, pH) = −kBT ln

{∑
α

e
−β

∑
i xi(α)

[
bi+

1
2

∑
j xj(α)Vij(c)

]}
+

−
∑
i

xi(α
?)
[
bi +

1

2

∑
j

Vij(c)xj(α
?)
]
.

(15)

(Note that we changed the argument of the transfer free energy from the chemical potential

to the pH). BK14 and Gilson15 derived results similar to Eq. 15 using two special reference
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states: the fully de-protonated, and the fully de-ionized (no charges) states, respectively. In

the Supporting Information, we show that we can recover the previous results by selecting

xi(α
?) = xunp

i and xi(α?) = 0, respectively.

Mean-field Approximation: The transfer free energy (Eq. 15) is exact for the coarse-

grained model provided the effective energies can be decomposed as in Eq. 6, and that

they can be accurately accounted for by the expressions that we have chosen for E1(α) and

E2(c, α). At this juncture, we need not specify the form of E0(c), which is required only if the

method is applied to a specific problem. The calculation of transfer free energy still requires

that we explicitly account for all the possible protonation states – a daunting computational

task for a protein with a large number of titratable groups.

The computational challenge can be overcome using a MF approximation14 to estimate

the value of

∆Gtr,0(c, pH) = −kBT ln
{∑

α

e−β
∑

i xi(α)[bi+
1
2

∑
j xj(α)Vij(c)]

}
. (16)

The details of the calculation are the same as those discussed by BK.14 The only difference

is that BK use protonation instead of ionization states. As a consequence, the final result is

the same as the one already provided by Gilson,15

∆GMF
tr,0(c, pH) = −

N∑
i=1

kBT ln
[
1 + e−β(bi+

∑N
j=1 Vij(c)θj)

]
− 1

2

N∑
i=1

N∑
j=1

Vij(c)θiθj, (17)

where θi, the average ionization state of group i at a given pH and at a given conformation,

and it is equal to,

θi = 〈xi〉c,pH =
e−β[bi+

∑N
j=1 Vij(c)θj ]

1 + e−β[bi+
∑N

j=1 Vij(c)θj ]
. (18)

The above equation can be solved using a self-consistent iterative process.14 Finally, the MF
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approximation for the transfer free energy is,

∆GMF
tr (c, pH, α?) = −

N∑
i=1

kBT ln
{

1 + e−β[bi+
∑N

j=1 Vij(c)θj ]
}

+

−
∑
i

bixi(α
?)− 1

2

N∑
i=1

N∑
j=1

Vij(c)[θiθj + xi(α
?)xj(α

?)]

(19)

It is easy to show that this result is the same as Gilson’s if the fully de-ionized state [xi(α?) =

0 for all titratable groups]15 is chosen as the reference state. Similarly, it is possible to recover

the result of BK14 if the fully de-protonated [xi(α?) = ziq
unp
i ] state as the reference.

Fixed-charge Approximation: An alternative to the MF approximation is to use fixed

charges (FC) on each titratable group, which are given by q†i = zix
†
i , where x

†
i = 〈xi〉pH =

10−zi(pH−pKai)/[1 + 10−zi(pH−pKai)]. These would be the average charges on each group in

isolation, that is in the absence of the other ionizable groups. Note that 0 ≤ x†i ≤ 1, whereas

xi = 0 or = 1. The transfer free energy in this case is given by,

∆GFC
tr (c, α?, pH) =

∑
i

bi[x
†
i − xi(α?)] +

1

2

∑
i

∑
j

Vij(c)[x
†
ix
†
j − xi(α?)xj(α?)]. (20)

The expression given above is obtained from Eq. 15 by assuming that there is only one

ionization state given by, ~x†.

Lattice Simulations: In enunciating the principles of protein folding, lattice models

with small polymer length for which all allowed conformations could be exactly enumer-

ated, played a vital role.41 Here, we tested the accuracy of the MF approximation using a

polymer model of length 10 on a simple cubic lattice with spacing, a = 3.8 Å. We consider

a self-avoiding polymer, for which E0(c) is given by a combination of bonded interactions

ensuring that consecutive beads in the sequence occupy nearest-neighbors vertices in the

lattice, and excluded volume interactions which forbid two beads from occupying the same

lattice site. The functional form of E0(c) is assumed to be such that the energy is zero if

these constraints are satisfied (consecutive beads on nearby sites, and the chain does not
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cross itself), and infinity if they are violated. The total number of allowed conformations is

N10mer = 1, 853, 886.42 To count the conformations we fixed the first bead, and considered

conformations related by rotation and specular reflections to be different – more on this

later.

The energy E2(c, α) is is modeled as the sum of pairwise Debye-Hückle (DH) electrostatic

interactions between charged groups,36 where Vij(c) is,

Vij(c) =
zizje

2

4πε0εr

e−κrij(c)

rij(c)
Θ(|i− j| − 1),

κ2 = 4πlB
∑
n∈ion

ρnz
2
n

lB =
e2

4πε0εrkBT
.

(21)

Here, e is the unit charge, ε0 is the dielectric vacuum permittivity, εr is the relative per-

mittivity of the solvent (assumed to be = 78, which is appropriate for an expanded IDP in

water). The step function Θ(x) (= 1 if x > 0 and = 0 otherwise) ensures that only beads

that are not consecutive in the chain engage in electrostatic interactions. The inverse of the

Debye screening length (κ) depends on the Bjerrum length (lB) and on the concentration

of screening ions (ρn), with zn being the unitless charge on the n-th species ion. Finally,

I = 0.5
∑

n∈ion ρnz
2
n is the ionic strength of the solution. We assume that the solution

contains only monovalent ions, so that,

κ2 = 8πlBρsalt = 8πlBI (22)

where ρsalt = I is the sum of the concentrations of dissociated salts.

The pH itself is a measure of the concentration of ions in solution, and must be ac-

counted for when the Debye length is computed. In practice, this means that the sum of

the concentration of dissolved salts (monovalent ions), ρsalt, has two contributions: at low

pH (< 7) ρsalt = ρsalt,0 + 10−pHM, whereas for high pH (> 7) ρsalt = ρsalt,0 + 10pH−14M.
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Here, 10−pHM is the concentration of hydronium ion and a neutralizing (monovalent) anion,

10pH−14M is the concentration of hydroxide ion and a neutralizing (monovalent) cation, and

ρsalt,0 is the concentration of any other salt (e.g. NaCl or KCl) such that the ionic strength

is set at the value used for sampling. As a result, given a salt concentration in the DH

potential, ρsalt, the minimum and maximum values of the pH consistent with the simulations

are pH = − log10(ρsalt/M) and pH = 14 + log10(ρsalt/M), respectively, where ρsalt,0 = 0M.

Ensemble Averages: Because the energy function of the polymer on the lattice is

invariant upon rotations and reflections, we can combine conformations depending on their

geometrical properties. There is one 1-D conformation with degeneracy 6; there are 2033

arrangements of the polymer restricted on a plane with degeneracy 24, and the remaining 3D

conformations are 37606 with degeneracy 48, for a total of N symm
10mer = 39640 distinguishable

conformations (unrelated by symmetry operations), each of which with a weight (w) given

by the appropriate degeneracy. Using these considerations, the constant-pH average of any

observable, Ô(c), depending solely on the polymer conformation is,

O(pH) = 〈Ô(c)〉pH =

∑Nsymm
10mer

c=1 Ô(c)w(c)e−β∆Gtr(c,α?,pH)e−βE2(c,α?)∑Nsymm
10mer

c=1 w(c)e−β∆Gtr(c,α?,pH)e−βE2(c,α?)
. (23)

The exact, MF, or FC evaluation of the average of the observable depends on whether we

use the exact (Eq. 15), MF (Eq. 19) or FC (Eq. 20) expression for the transfer free energy.

The average of an observable, Ô(α), which depends on the ionization state alone (for

instance the charge on a titratable group) can be written in the following way,

O(pH) = 〈Ô(α)〉pH =

∑Nsymm
10mer

c=1 〈Ô(α)〉cw(c)e−β∆Gtr(c,α?,pH)e−βE2(c,α?)∑Nsymm
10mer

c=1 w(c)e−β∆Gtr(c,α?,pH)e−βE2(c,α?)
, (24)

where 〈Ô(α)〉c is the average over the ionization computed for a given conformation, that is,

〈Ô(α)〉c =

∑
α Ô(α)e−β{

∑
i bi[xi(α)−xi(α?)]+0.5

∑
i

∑
j Vij(c)[xi(α)xj(α)−xi(α?)xj(α?)]}

e−β∆Gtr(c,α?,pH)
. (25)
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If Ô(α) is the charge on the i-th titratable group, the MF approximation of Eq. 25 is ziθi,

where θi is given in Eq. 18. The correlation between charges is given by,

Cij = 〈qiqj〉pH − 〈qi〉pH〈qj〉pH =

 〈xi〉pH − 〈xi〉2pH if i = j

zizj(〈xixj〉pH − 〈xi〉pH〈xj〉pH) if i 6= j
(26)

where we used the identities z2
i = 1 and x2

i = xi.

Hellinger Distance: In the results section we compare distributions obtained with

different approximations for the transfer free energy. In order to quantify the difference

between two distributions q and p, we use the so-called Hellinger distance H(p, q), given by,

H(p, q)2 =


1
2

∑
c[
√
p(c)−

√
q(c)]2 = 1−

∑
c

√
p(c)q(c) discrete distribution

1
2

∫
dx[
√
p(x)−

√
q(x)]2 = 1−

∫
dx
√
p(x)q(x) continuous distribution.

(27)

It can be shown that 0 ≤ H(p, q) ≤ 1, where H(p, q) = 0 for identical distributions, and

H(p, q) = 1 if the distributions have no overlap.

Results

We tested the MF (and FC) scheme for the model IDP with the sequence DADAADAAAD,

where D stands for aspartic acid (pKa = 4.037), and A is alanine. The purpose is to assess the

accuracy of the MF theory. We chose this sequence because it has a high, but not unrealistic

density of charged beads. We also distributed the acidic residues along the sequence in such

a way that each one of them has a different environment, that is each one of them is followed

or preceded by a different number of A-s. Fig. ?? reports the spectrum of the lowest 20

energy levels and the associated degeneracies, as well as the structure of the ground state,

and a few of the excited states. The ground state for the fully ionized polymer at all salt

concentrations is fully extended. Note that the lowest 20 energy levels are within a kBT of

each other, indicating that at room temperature they are all populated with nearly identical
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probability.

Transfer Free Energy: We computed the exact and MF transfer free energies for all

the conformations over a pH range from 2 to 8, and an ionic strength from 1 mM to 1 M (see

Fig. 2 and Fig. ??). As expected, the difference between the transfer free energies is reduced

as the ionic strength increases: strong correlations between charged groups make the MF

approximation less accurate. As a corollary, increasing the screening is expected to weaken

the correlation between charged groups, thus making the MF approximation more accurate.

The lowest ionic strength yields the worst results, and presents the only instance in which

the MF transfer free energy is smaller (larger in absolute value) than the exact value. Even

in this case the differences are less than about 15% (Fig. 2a). At 100mM, which is closer to

the physiological concentration, the deviation is no more that 5% at all pH values (Fig. 2b).

We also noticed that at low ionic strengths the recursive algorithm necessary to compute

the average charges (Eq. 18) does not converge for certain conformations, and leads to an

oscillatory solution. We picked the θ values resulting in a smaller ∆Gtr – the rationale is that

the MF approximation results from a minimization of the free energy functional in Eq. 16.

Probability of Each Conformation: The probability P (k) a conformation k, the mean

of any observable Ô(c) = δc,k where δ is the Kronecker delta, is calculated using Eq. 23. We

computed P (k) using the exact, MF, and FC ionization states. In Fig. ?? we use the Hellinger

distance for discrete distributions (Eq. 27) to show that the MF distribution reproduces the

exact result more accurately than the FC. The accuracy increases if pH > pKa or pH < pKa;

when pH ≈ pKa there is a peak. The Hellinger distance decreases with the ionic strength of

the solution for both MF and FC, indicating that the MF and FC approximations become

more reliable as the screening of the electrostatic interaction between the titratable groups

increases.

Average Radius of Gyration: The radius of gyration for a given conformation, c, is

R̂g(c)
2 = 1/(2N2)

∑N
i=1

∑N
j=1 rij(c)

2, where rij(c) is the distance between two of the N(= 10)

beads in c. The average radius of gyration (Rg) is obtained by taking the square root of
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Eq. 23, where Ô(c) = R̂2
g(c). As shown in Fig. 3a, the radii of gyration obtained with the

exact and MF evaluations of the transfer free energy are essentially identical. The relative

error is less than 1% of the exact value. As the salt concentration increases, the relative

discrepancy diminishes, making the MF approximation even more accurate. At strongly

acidic pH values, the results are insensitive to salt concentrations: the titratable groups

are neutral and the 10-mer is essentially a self-avoiding walk (SAW). The size of the fully

charged polymer (high pH, see below) depends on the ionic strength of the solution: as the

screening between charges increases, the swelling is less prominent due to the weakening of

the repulsion between the ionized groups. Interestingly, the collapse of the polymer, driven

by acidification of the solution, is sharper at high ionic strengths: repulsive interactions

tend to make the transition less cooperative, likely because they oppose the titration of

neighboring anions, which is a correlation effect. At those pH values corresponding to the

swelling of the polymer, the FC approximation fails: it underestimates the mid-point of the

transition, and overestimates the steepness. The error is somewhat reduced only for the

largest ionic strength considered.

Average Charge: The average charge on each titratable group is given by 〈qi〉pH =

〈zixi(α)〉pH, where the average is calculated using Eq. 24. The total charge is the sum of

the average charge of each group. The average total charge as a function of pH and ionic

strength is in Fig. 3b. The maximum relative difference between the exact and MF results is

/ 5% of the exact value, the discrepancy is peaked around pH-values at which the transition

occurs, and it diminishes as the ionic strength increases. Notably, the mid point of the

transition increases as the salt concentration is diminished, owing to the stronger repulsion

between charged groups, which results in an anti-cooperative collective titration (see next

section). The increase in the sharpness of the transition with salt concentration confirms

this observation. The FC results resemble those obtained for the largest ionic strength, and

by construction they are independent of salt concentration, thereby failing to reproduce the

exact results within an acceptable error.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.02.408849doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.02.408849
http://creativecommons.org/licenses/by-nc-nd/4.0/


Charge Variance: The correlation between titrating groups is given in Eq. 26. MF

methods fail to capture fluctuations, and this is reflected in the fact that the off-diagonal

correlation Cij = 0 (see for instance BK14). Similarly, the FC approximation yields no

correlation between the charged groups – each residue titrates independently. On the other

hand, Cii is not necessarily zero with either approximation.

In Fig. 4 and Fig. ?? we compare the results of the MF and FC approximations to the

exact calculations. The MF approximation is excellent in estimating the diagonal terms of

the charge correlations: the location and width of the peaks are correctly identified, with an

error that is small at low ionic strength and diminishes at high salt concentrations. At low

salt concentrations, the shift of the peak depends on the location of the aspartic acid along

the sequence, a feature that is lost with the increase of the ionic strength. In contrast, FC

calculations become reliable only at very high salt concentrations, with the four aspartic acids

titrating almost independently. The off-diagonal terms are all negative: all charged groups

are anionic, thus there is an energetic penalty in charging two aspartic acids simultaneously.

The size of the peak of Cij depends on the distance along the sequence between i and j: the

closer they are, the more they interfere, which results in a larger anti-correlation. The effect

is reduced at higher salt concentrations.

Aspartic Acids are not all Identical: At a given pH, the ionization of each titratable

group depends on the conformation, resulting in a distribution of charges. In Fig. 5 and

Fig. ?? we show the distribution of charges on the 4 anionic residues as a function of pH

and ionic strength. First, we note that although similar, the distributions for the 4 aspartic

acids differ: the location along the chain matters. Second, the distributions are sharp at

low and high pH values, whereas if the solution pH is in the vicinity of the transition point

the distributions become wider. As the solution becomes more acidic, the average of the

distribution shifts continuously from −1 to 0. As we observed before, the MF approximation

is accurate: the locations and shapes of the exact distributions are captured, and the recovery

improves as the salt concentration increases. To make the observations more quantitative,
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in the insets we report the values of the Hellinger distances, H, between the exact and MF

distributions (see caption of Fig. 5 for a full explanation). In all cases, the values obtained

are well below H = 0.34, which is an intuitive reference point corresponding to the Hellinger

distance between two Gaussian distributions of identical variance, σ2, and difference in mean

given by, ∆µ = σ.

The comparison with the FC results is instructive: not only the breadth of the distribu-

tion, but also its location are significantly altered by electrostatic interactions. Even at the

largest ionic strength considered, the comparison with the FC results showcases the different

distributions on the 4 aspartic acids, which are distinguished by the structure of the chain

around them.

Discussion

We have developed a practical method, based on theoretical considerations, to examine pH

effects not only on IDPs but also any molecule (for example polyelectrolyte) with many

titratable groups. The theory, which utilizes a MF approximation for treating titratable

groups and the Molecular Transfer Model for summing over conformations, is tested using a

lattice model for which numerically exact computations can be performed. The results show

that, except at very low salt concentrations, the MF and MTM combination produces very

accurate results. We close with a few pertinent comments.

• Although it has been suspected that the MF approximation leads to systematic errors

in the estimate of the titration of acidic and basic groups in folded globular proteins

with a fixed native structure,14,15 the accuracy of the MF for IDPs had not been pre-

viously studied. Our premise is that the MF approximation would be not be severe in

disordered polymers that undergoe large conformational fluctuations. Two arguments

support this assertion. First, the lack of a fixed structure reduces the correlation be-

tween two titratable groups: for all conformations in which these two residues are close
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enough to affect each other’s ionization, there are many other structures explored by

the polymer in which the groups are further apart, and are likely to undergo titration

independently. Second, in contrast to globular proteins, which present fully desolvated

anionic and cationic groups (for instance in the vicinity of the active sites), IDPs are

expanded, and it is reasonable to expect that all the ionizable groups are at least par-

tially solvated in the majority of the conformations. As a consequence, electrostatic

interactions in the IDPs are likely to be weakened by the dielectric permittivity of

water and by ionic screening. Ultimately, both of these arguments stem from the idea

that the presence of a heterogeneous ensemble of conformations mitigates the effects

on average properties, which may not be appropriate if only a subset of conformations

with specific interactions, such as the folded states, is considered.

In order to test our assertion, we constructed a IDP-like polymer on a lattice, whose

conformations can be enumerated exhaustively, thus avoiding the sampling issues. We

used a sequence with 40% of charged beads, which is high but not unrealistic for many

IDPs. The small number of ionizable groups enables the exact evaluation of the model

partition function, which can be used to assess the accuracy of the MF estimate of the

transfer free energy. We considered observables that depend on either the structure

(radius of gyration and contact map) or the ionization state (average charge and charge

correlation) of the polymer. We found that for all of these observables the MF MTM-

IDP method recovers the exact results accurately. The discrepancies do not deviate

from the exact value by more than a few percentage points.

• The inconsistencies between the MF and exact results are larger for pH values corre-

sponding to the swelling (collapse) or charging (uncharging) of the polymer – when

the pH is much larger or much smaller than the pKa of the titrating group, a single

protonation state is effectively dominant. In agreement with our conjectures, as the

salt concentration is increased the agreement between the MF and exact results gets

better. At very low salt concentration, the MF approximation of the transfer free
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energy breaks down, as shown in Fig. 2. This problem may be exacerbated if the

charge density along the chain is higher than what we used here, although it is likely

to depend on the precise sequence. Although we have not explored the dependence on

charge density and distribution systematically, we expect, as in the case reported here,

that increasing the salt concentration is likely to diminish these issues.

• An important finding of this work is that the precise sequence of the IDP, especially

the location of the charged residues, affects many observables. Properties of the IDPs

could change drastically depending on charge correlations along the sequence.43,44 This

is explicitly demonstrated in a model that does not suffer from sampling issues, and

for which numerically exact results may be calculated. This finding shows that conclu-

sions based on the overall net charge or polyampholytic parameter (charge asymmetry,

calculable from charge composition alone without regard to sequence location of IDP

conformations) cannot correctly produce the phase behavior of IDPs or how they might

change as a function of pH or denaturants.

• It is important to note that fixing the charges along the chain at their pH-dependent

average value results in a poor recovery of the exact results at all salt concentrations,

except at high values that far exceeds the physiological value. This is interesting

because it shows that although the chain is expanded, and the ionized groups are well-

solvated, interactions between charged groups are important. It was already noted

that this simple model lacking structural effects on titration frequently gives results

close to the experimental values, and shows that the most dramatic deviations occur

when strongly interacting groups are present.17 Here, we showed that although there

are no de-solvated pairs, the simple model fails in reproducing properties such as the

slope (co-operativity) and the mid-point of the polymer swelling as a function of pH.

The theory and applications show that the MTM-IDP method with MF approximation

provides an accurate framework to estimate the change in the structural ensemble of an IDP
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as a function of solution pH. The applications of the method for lattice models for which

exact calculations can be performed, thus allowing us to assess the MF approximation,

demonstrates the success of the theory. The MTM-IDP method is general that it can be

used to investigate pH effects in a number of biological as well as synthetic systems.
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⃗p (α) = (0,0)
⃗x (α) = (0,1)
⃗q (α) = (0, − 1)

α = 1 α = 2

⃗p (α) = (1,0)
⃗x (α) = (1,1)
⃗q (α) = (1, − 1)

⃗p (α) = (0,1)
⃗x (α) = (0,0)
⃗q (α) = (0,0)

⃗p (α) = (1,1)
⃗x (α) = (1,0)
⃗q (α) = (1,0)

Ri RiH
Anionic Group

pi = 0 1
xi = 1 0
qi = − 1 0

Ri RiH
Cationic Group

pi = 0 1
xi = 0 1
qi = 0 1

α = 3 α = 4

Figure 1: Pictorial representation of ionization and protonation. The top two boxes show
the protonation state pi, ionization state xi, and charge qi for cationic (blue) and anionic
(red) groups. Empty dots represent de-protonated states, the gray-filled dots indicates that
the group is protonated. The bottom gray box shows all the protonation/ionization states
for a frozen conformation of a polymer (black) with two titratable groups: a cationic and an
anionic one. Each of the four conformations is labeled with a value of α that indicates the
distinct protonation/ionization states (4 in this example), and the corresponding protonation
(~p) and ionization (~x) states are shown, together with the charge (~q).
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Figure 2: Comparison of the MF and exact calculations of the transfer free energy. The
figures show (∆GEX

tr − ∆GMF
tr )/∆GEX

tr as a function of pH for all sampled conformations
unrelated by symmetry operations. The red lines indicate the full range of the distribution,
the blue star is the average and the blue bars refer to the standard deviation. The two panels
indicate different ionic strengths: (a) 1 mM, (b) 100 mM.
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Figure 3: Comparison of the MF, FC, and exact calculations of average titration and radius
of gyration. The figure shows Rg (a) and total charge (b) as a function of pH. In the upper
panels, lines refer to the exact evaluation of the transfer free energy, dots indicate the results
from the MF approximation, and empty dots show the FC results. The bottom panels show
the changes of the observables in the exact and MF calculation relative to the exact results.
Colors indicate different ionic strengths: green is 1 mM, orange 10 mM, blue 100 mM, and
pink 1 M.
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Figure 4: Comparison of the charge-charge correlation as a function of pH. Figures (a) and
(b) show the diagonal term of the correlation matrix Cii in Eq. 26, figures (c) and (d) refer
to the off-diagonal terms. Different colors indicate different aspartic acids, as shown in the
legends, with empty symbols and lines referring to the exact results, the MF values reported
as full circles, and the FC approximation shown as black stars connected by dotted lines. In
(a) and (b) the top panels show the correlations, the bottom ones report the error resulting
from the MF approximation (MF minus exact). (a) and (c) report the correlations at 1 mM
salt concentration, the results at near-physiological ionic strength (100 mM) are shown in
panels (b) and (d). Note that in the MF (Hartree-like) approximation Cij in Eq. 26 is zero
if i 6= j. The results in (c) and (d) are numerically exact values for the lattice.
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Figure 5: Charge distribution on each titratable group. In each figure, colors indicate the pH
value: light-red is pH = 3, pH = 4 is in green, blue refers to pH = 5, and purple indicates pH
= 6. Each figure is broken into 4 panels referring to the four titratable groups, D1, D3, D6,
and D10. Wide, pale bars refer to the exact distribution; thinner, darker lines pertain to the
MF approximation; dashed-bars refer to FC results. The insets show the Hellinger distances
(see Eq. 27) between the exact and the MF results (full symbols) and between the exact
and FC distributions (empty dots). In the insets, the dashed lines are to guide intuition:
they are the values of H obtained for two Gaussian distributions of identical variance σ, and
different means µ1 − µ2 = σ. The two figures refer to different salt concentrations: (a) 1
mM, (b) 100 mM.
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