1 A single intranasal or intramuscular immunization with chimpanzee adenovirus

2 vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters.

Traci L. Bricker¹, Tamarand L. Darling¹, Ahmed O. Hassan¹, Houda H. Harastani¹, Allison Soung¹,
Xiaoping Jiang¹, Ya-Nan Dai³, Haiyan Zhao³, Lucas J. Adams³, Michael J. Holtzman¹, Adam L.
Bailey¹, James Brett Case¹, Daved H. Fremont^{2,3,4}, Robyn Klein^{1,3,5}, Michael S. Diamond^{1,2,3}, and

- 6 Adrianus C. M. Boon^{1,2,3}
- 7

¹Department of Internal Medicine, ²Department of Molecular Microbiology and Microbial
Pathogenesis, ³Department of Pathology and Immunology, ⁴Department of Biochemistry and
Biophysics, ⁵Department of Neuroscience, Washington University in Saint Louis School of
Medicine, St. Louis, MO 63110, USA

12

13

14 **Corresponding Author**:

- 15 Adrianus C. M. Boon
- 16 Department of Internal Medicine
- 17 Washington University in Saint Louis
- 18 School of Medicine
- 19 St. Louis, MO 63110
- 20 Email: jboon@wustl.edu
- 21
- 22 Running Title: Intranasal SARS-CoV-2 vaccine protects Syrian hamsters from COVID-19

23 ABSTRACT

24 The development of an effective vaccine against SARS-CoV-2, the etiologic agent of COVID-19, is a global priority. Here, we compared the protective capacity of intranasal and intramuscular 25 26 delivery of a chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike 27 protein (ChAd-SARS-CoV-2-S) in Golden Syrian hamsters. While immunization with ChAd-SARS-CoV-2-S induced robust spike protein specific antibodies capable or neutralizing the virus, 28 29 antibody levels in serum were higher in hamsters immunized by an intranasal compared to intramuscular route. Accordingly, ChAd-SARS-CoV-2-S immunized hamsters were protected 30 against a challenge with a high dose of SARS-CoV-2. After challenge, ChAd-SARS-CoV-2-S-31 32 immunized hamsters had less weight loss and showed reductions in viral RNA and infectious virus titer in both nasal swabs and lungs, and reduced pathology and inflammatory gene 33 34 expression in the lungs, compared to ChAd-Control immunized hamsters. Intranasal 35 immunization with ChAd-SARS-CoV-2-S provided superior protection against SARS-CoV-2 infection and inflammation in the upper respiratory tract. These findings support intranasal 36 37 administration of the ChAd-SARS-CoV-2-S candidate vaccine to prevent SARS-CoV-2 infection, 38 disease, and possibly transmission.

39 INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiated a global pandemic in 2019, leading to millions of confirmed positive cases of coronavirus infection disease (COVID)-19, and an estimated case-fatality rate of 2-3% and infection fatality rate of 0.68% [1-3]. The elderly, immunocompromised and those with an underlying illness, including obesity, diabetes, hypertension, and chronic lung disease, are at greater risk of severe disease and death from SARS-CoV-2 [4, 5]. Antiviral therapies and vaccines are urgently needed to curb the spread of the virus and reduce infection and disease in the population.

47 The Golden Syrian hamster (*Mesocricetus auratus*) is one of several COVID-19 animal models [6-13]. Hamsters are naturally susceptible to SARS-CoV-2 infection, and intranasal 48 inoculation results in mild-to-moderate disease including labored breathing, signs of respiratory 49 50 distress, ruffled fur, weight loss and hunched posture [10, 13]. Aged and male hamsters develop 51 more severe disease, mimicking COVID-19 in humans [11]. In hamsters, SARS-CoV-2 primarily 52 infects the upper and lower respiratory tracts, although viral RNA and antigen has been detected in other tissues (e.g., intestines, heart, and olfactory bulb). The peak of virus replication occurs 53 54 between days 2 and 3 post infection (dpi) and is cleared by 14 dpi in surviving animals. 55 Histopathological analysis of infected hamsters shows multifocal interstitial pneumonia characterized by pulmonary consolidation starting as early as 2 dpi. Inflammation is associated 56 with leukocyte infiltration, comprised primarily of macrophages and neutrophils, and an increase 57 in type I and III interferon (IFN) and other pro-inflammatory cytokine and chemokines [14, 15]. 58 59 High-resolution computed tomography scans shows airway dilation and consolidation in the lungs of infected hamsters [10]. SARS-CoV-2-induced lung pathology in hamsters appears driven by 60 immune pathology, as lung injury is reduced in STAT2^{-/-} hamsters despite an increase in viral 61 62 burden and tissue dissemination [14].

The SARS-CoV-2 hamster model has been used to study the efficacy of several drugs and candidate vaccines. Hydroxychloroquine had no impact on infectious virus titers and disease, 65 whereas favipiravir reduced viral burden only when high doses were used [16-19]. Several 66 candidate vaccines also have been tested. Yellow fever 17D-vectored and adenovirus (Ad)26-67 vectored SARS-CoV-2 vaccine candidates conferred protection against SARS-CoV-2 challenge in hamsters [15, 20]. Hamsters immunized intramuscularly (IM) with Ad26-vectored prefusion-68 69 stabilized spike (S) protein sustained less weight loss and fewer SARS-CoV-2-infected cells in 70 the lungs at 4 dpi [20]. Syrian hamsters immunized twice by intraperitoneal injection with YF17D-71 vector expressing the S protein of SARS-CoV-2 showed reduced viral burden, inflammatory gene 72 expression, and pathology in the lung [15]. Other vectored vaccines including a Newcastle Disease virus-S (NDV-S) and vesicular stomatitis virus-S (VSV-S) vaccine delivered IM also 73 74 protected Syrian hamsters from SARS-CoV-2 infection [21, 22]. Alternative routes of 75 administration have not been tested in hamsters.

76 Here, we tested the efficacy of a chimpanzee adenovirus (ChAd)-vectored vaccine expressing 77 a prefusion-stabilized version of the S protein of SARS-CoV-2 (ChAd-SARS-CoV-2-S, [23]) in Syrian hamsters following IM or intranasal (IN) delivery. A single dose of the vaccine induced a 78 79 robust S protein specific antibody response capable of neutralizing SARS-CoV-2, with IN delivery 80 inducing approximately 6-fold higher antibody titers than IM delivery. Upon challenge, the ChAd-81 SARS-CoV-2-S immunized animals had less infectious virus and viral RNA in the lungs and nasal swabs, and this was associated with reduced pathology and numbers of viral-infected cells in the 82 83 lungs at 3 dpi. The upper respiratory tract, i.e. the nasal cavity, of the hamsters demonstrated reduced pathology and SARS-CoV-2 infected cells only after IN immunization with ChAd-SARS-84 85 CoV-2-S. Collectively, these data show differences in protection mediated by the same vaccine when alternative routes of immunization are used, and support intranasal vaccine delivery for 86 optimal protection against SARS-CoV-2 challenge. 87

88 MATERIALS AND METHODS

89 SARS-CoV-2 infection of Golden Syrian hamsters. SARS-CoV-2 (strain 2019-nCoV/USA-WA1/2020) was propagated on MA-104 monkey kidney cells, and the virus titer was determined 90 91 by focus forming and plaque assays. Five-week old male hamsters were obtained from Charles 92 River Laboratories and housed at Washington University. Five days after arrival, a preimmunization serum sample was obtained, and the animals (n = 10 per group) were vaccinated 93 94 via intranasal (IN) or intramuscular (IM) route with 10¹⁰ viral particles of a chimpanzee adenovirus vector expressing a pre-fusion stabilized spike (S) protein of SARS-CoV-2 (ChAd-SARS-CoV-2-95 S [23]) or a control chimpanzee adenovirus vector (ChAd-Control) in 100 µL of phosphate buffered 96 saline (PBS). Twenty-one days later, a second serum sample was obtained, and the animals were 97 transferred to the enhanced biosafety level 3 laboratory. One day later, the animals were 98 99 challenged via IN route with 2.5 x 10⁵ PFU of SARS-CoV-2. Animal weights were measured daily 100 for the duration of the experiment. Two days after challenge, a nasal swab was obtained. The swab was moistened in 1.0 mL of serum-free media and used to rub the outside of the hamster 101 102 nose. The swab was placed into the vial containing the remainder of the 1.0 mL of media, 103 vortexed, and stored for subsequent virological analysis. Three days after challenge, a subset of 104 animals was sacrificed, and their lungs were collected for virological and histological analysis. The left lobe was homogenized in 1.0 mL DMEM, clarified by centrifugation (21,000 x g for 5 105 106 minutes) and used for viral titer analysis by quantitative RT-PCR using primers and probes 107 targeting the N gene or the 5' UTR region, and by focus forming assay (FFA). From these same 108 animals, we also collected serum for antibody analysis and heads for histological analysis. The 109 remaining animals were sacrificed at 10 dpi, and serum was collected for analysis of antibody against the nucleoprotein (N protein) of SARS-CoV-2. 110

Virus titration assays. FFA were performed on Vero-E6 cells in a 96-well plate. Lung tissue
 homogenates were serially diluted 10-fold, starting at 1:10, in cell infection medium (DMEM + 2%
 FBS + L-glutamine + penicillin + streptomycin), and 100 μl of the diluted virus was added to two

114 wells per dilution per sample. After 1 h at 37°C, the inoculum was aspirated, the cells were washed 115 with PBS, and a 1% methylcellulose overlay in infection medium was added. Positive and 116 negative controls were included in every assay. Twenty-four hours after virus inoculation, the cells 117 were fixed with formalin, and infected cells were detected by the addition of 100 µL of 1:1000 118 diluted anti-S protein monoclonal antibody (1C02, gift from Dr. Ellebedy at Washington University) in permeabilization buffer (1x PBS, 2% FBS, 0.2% saponin (Sigma, Cat #S7900)) for 1 h at 20°C 119 120 or overnight at 4°C, followed by an anti-human-IgG-HRP antibody (Sigma, Cat. #A6029) in permeabilization buffer for 1 h at 20°C. The assay was developed using TMB substrate (Vector 121 laboratories, SK4400) for 5-10 min at 20°C. The assay was stopped by washing the cells with 122 water. The number of foci per well were counted on the BioSpot analyzer (Cellular Technology 123 Limited) and used to calculate the focus forming units/mL (FFU/mL). 124

125 Plaque assays were performed on Vero E6 cells in 24-well plates. Nasal swabs or lung tissue 126 homogenates were serially diluted 10-fold, starting at 1:10, in cell infection medium (DMEM + 2% FBS + L-glutamine + penicillin + streptomycin). Two hundred and fifty microliters of the diluted 127 virus were added to a single well per dilution per sample. After 1 h at 37°C, the inoculum was 128 129 aspirated, the cells were washed with PBS, and a 1% methylcellulose overlay in MEM 130 supplemented with 2% FBS was added. Seventy-two hours after virus inoculation, the cells were fixed with 4% formalin, and the monolayer was stained with crystal violet (0.5% w/v in 25% 131 132 methanol in water) for 1 h at 20°C. The number of plaques were counted and used to calculate the plaque forming units/mL (PFU/mL). 133

To quantify viral load in nasal swabs and lung tissue homogenates, RNA was extracted using RNA isolation kit (Omega). SARS-CoV-2 RNA levels were measured by one-step quantitative reverse transcriptase PCR (qRT-PCR) TaqMan assay as described previously [23]. A SARS-CoV-2 nucleocapsid (N) specific primers/probe set (L primer: ATGCTGCAATCGTGCTACAA; R primer: GACTGCCGCCTCTGCTC; probe: 5'-FAM/TCAAGGAAC/ZEN/AACATTGCCAA/3'-IABkFQ) or 5' UTR specific primers/probe set (L primer: ACTGTCGTTGACAGGACACG; R

primer: AACACGGACGAAACCGTAAG; probe: 5'-FAM/CGTCTATCT/ZEN/TCTGCAGGCTG/3'IABkFQ). Viral RNA was expressed as (N) gene or 5' UTR copy numbers per mg for lung tissue
homogenates or mL for nasal swabs, based on a standard included in the assay, which was
created via *in vitro* transcription of a synthetic DNA molecule containing the target region of the N
gene and 5'-UTR region.

ELISA. Purified viral antigens (S, RBD, or NP) [23] were coated onto 96-well Maxisorp clear 145 146 plates at 2 µg/mL in 50 mM Na₂CO₃ pH 9.6 (70 µL) or PBS (50 µL) overnight at 4°C. Coating buffers were aspirated, and wells were blocked with 200 µL of 1X PBS + 0.05% Tween-20 + 5% 147 BSA + 0.02% NaN₃ (Blocking buffer, PBSTBA) or 1X PBS + 0.05% Tween-20 + 10% FCS 148 (PBSTF) either for 2 h at 20°C, 1 h at 37°C or overnight at 4°C. Heat-inactivated serum samples 149 were diluted in PBSTBA or PBSTF in a separate 96-well polypropylene plate. The plates then 150 151 were washed thrice with 1X PBS + 0.05% Tween-20 (PBST), followed by addition of 50 µL of 152 respective serum dilutions. Sera were incubated in the blocked ELISA plates for at least 1 h at room temperature. The ELISA plates were again washed thrice in PBST, followed by addition of 153 154 50 µL of 1:1000 anti-hamster-IgG(H+L)-HRP (Southern Biotech Cat. #6061-05) in PBST or 155 PBSTF or 1:1000 anti-hamster-IgG2/IgG3-HRP in PBST or PBSTF (Southern Biotech Cat. #1935-05). Plates were incubated at room temperature for 1-2 h, washed thrice in PBST and 50 156 µL of 1-Step Ultra TMB-ELISA was added (Thermo Fisher Scientific, Cat. #34028). Following a 157 158 12 to 15-min incubation, reactions were stopped with 50 μ L of 2 M H₂SO₄. The absorbance of each well at 450 nm was read (Synergy H1 or Epoch) within 2 min of addition of H_2SO_4 . 159

SARS-CoV-2 neutralization assay. Heat-inactivated serum samples were diluted 1:10 fold serially and incubated with 10² FFU of SARS-CoV-2 for 1 h at 37°C. The virus-serum mixtures were added to Vero-E6 cell monolayers in 96-well plates and incubated for 1 h at 37°C. Subsequently, cells were overlaid with 1% (w/v) methylcellulose in MEM supplemented with 2% FBS. Plates were incubated for 30 h before fixation using 4% PFA in PBS for 1 h at 20°C. Cells were washed and then sequentially incubated with anti-SARS-CoV-2 CR3022 mAb [24] (1 µg/mL)

and a HRP-conjugated goat anti-human IgG (Sigma, Cat#A6029) in PBS supplemented with 0.1%
(w/v) saponin and 0.1% BSA. TrueBlue peroxidase substrate (KPL) was used to develop the
plates before counting the foci on a BioSpot analyzer (Cellular Technology Limited).

169 Histology and RNA in situ hybridization. The lungs and heads from SARS-CoV-2 infected 170 and control hamsters were fixed in 10% formalin for seven days. Lungs were embedded in paraffin and sectioned before hematoxylin and eosin staining (H & E) and RNA in situ hybridization (RNA-171 172 ISH) to detect SARS-CoV-2 RNA. Following formalin fixation, heads were decalcified in 0.5 M EDTA for seven days, cryoprotected in three exchanges of 30% sucrose for three days, and then 173 174 embedded in O.C.T. compound before RNA-ISH. RNA-ISH was performed using a probe against 175 the S gene of SARS-CoV-2 (V-nCoV2019-S, Cat #848561) with the RNAscope® 2.5 HD Assay— 176 BROWN (ACDBio, Cat#322310) according to the manufacturers' recommendations. Lung slides 177 were scanned using the Hamamatsu NanoZoomer slide scanning system and head sections were 178 imaged using the Zeiss AxioImager Z2 system. Lung sections were scored according to a previous publication [10] (<10% affected lung tissue = 1, >10% but <50% affected area = 2, >50% 179 180 affected area = 3).

181 Host response gene analysis. RNA extracted from hamster lung tissue homogenates was used to synthesize cDNA using random hexamers and Superscript III (Thermo Scientific) with the 182 183 addition of RNase inhibitor according to the manufacturer's protocol. The expression of 22 184 inflammatory host genes was determined using PrimeTime Gene Expression Master Mix (Integrated DNA Technologies) with primers/probe sets specific for C3, C5, Ccl2, Ccl3, Ccl5, Csf3, 185 Cxcl10, Ddx58, Ifit3, Ifng, Irf7, IL1b, IL4, IL5, IL6, IL7, IL10, IL12p40, IL15, Stat1, Stat6, and Tnfa 186 187 and results were normalized to Rpl18 and B2m levels. The primers and probes were derived from 188 previous publications [25] or developed in-house (see Table S1). Fold change was determined using the 2-AACt method comparing immunized and SARS-CoV-2 challenged hamsters to naïve 189 190 controls.

191 Statistical Analysis. The data was analyzed with GraphPad Prism 9.0 and statistical

- significance was assigned when P values were < 0.05. All tests and values are indicated in the
- relevant Figure legends.

194 **RESULTS**

Development of the SARS-CoV-2 hamster model. To establish the utility of the hamster 195 model in our hands, we inoculated twenty-one 5-6 week old male hamsters IN with 2 x 10⁵ plague 196 197 forming units (PFU) of a fully infectious SARS-CoV-2 isolate in 100 µL of PBS. A control group of 198 three 5-6 week old male hamsters was inoculated with PBS. Mock-infected animals continued to gain weight at a rate of ~2.4 grams or ~3% per day (Fig 1A). In contrast, SARS-CoV-2 inoculated 199 200 hamsters began to lose weight at 2 dpi, and this continued through days 4-5, at which point the animals had lost approximately 10% of their body weight (Fig 1A). This decrease was associated 201 with a reduction in food intake between 1 and 4 dpi (Fig 1B). 202

At indicated time points after infection, hamsters were sacrificed, and tissues were collected 203 204 for analysis of viral burden, histology, and serological response. The left lung lobe was collected, 205 homogenized, and used to quantify SARS-CoV-2 N-gene copy number and infectious virus titer by qPCR and focus-forming assay (FFA), respectively. Infectious virus titers peaked at 2 dpi with 206 207 8 x 10⁵ focus forming units/mL (FFU/mL), and levels declined to low or undetectable by 5 dpi (Fig **1C**). SARS-CoV-2 N-gene copy number also peaked at 2 dpi at 10¹⁰ copies per µL and gradually 208 209 declined to 10⁵-10⁶ copies by 8 to 14 dpi (**Fig 1D**). The remainder of the lung tissue was fixed in 210 formalin, embedded, and sectioned for viral RNA in situ hybridization (ISH) and hematoxylin and eosin (H & E) staining. SARS-CoV-2 viral RNA was detected by RNA-ISH at 2-5 dpi (Fig 1E and 211 212 Fig S1) and was no longer detectable by 8 dpi. Viral RNA was localized to both airway and alveolar epithelial cells (Fig S1). Infection was accompanied by immune cell infiltration in 213 peribronchiolar and adjacent alveolar locations from 2 through 8 dpi (Fig 1E-F), a pattern that is 214 215 consistent with bronchopneumonia. The immune cell infiltration was associated with alveolar 216 edema, exudate, tissue damage and intraparenchymal hemorrhage (Fig 1E-F). Each of these 217 features of histopathology were markedly decreased by 14 dpi (Fig 1F).

Serum samples were assayed for the presence of antibodies specific for purified, recombinant
 S protein by ELISA. Low or undetectable antibody responses were detected through 4 dpi (Fig

1G. By day 5, S-specific IgG(H+L) responses were detected in all five animals, and the serum
antibody titer further increased between 8 and 14 dpi.

Chimpanzee Ad-vectored vaccine elicits robust antibody responses against SARS-222 223 CoV-2 in hamsters. We assessed the immunogenicity of a replication-incompetent ChAd vector 224 encoding a prefusion-stabilized, full-length sequence of SARS-CoV-2 S protein (ChAd-SARS-CoV-2-S) [23] in Golden Syrian hamsters. We used a ChAd vector without a transgene (ChAd-225 226 control) as a control. Groups of ten 5-6 week-old male hamsters were immunized once via IN or IM route with 10¹⁰ virus particles of ChAd-control or ChAd-SARS-CoV-2-S. Serum was collected 227 prior to immunization or 21 days after, and antibody responses were evaluated by ELISA against 228 purified recombinant S and RBD proteins. Immunization with ChAd-SARS-CoV-2-S induced high 229 levels of anti-S and anti-RBD IgG(H+L) and IgG2/IgG3 antibodies 21 days later, whereas low or 230 231 undetectable levels of S- and RBD-specific antibodies were present in samples from ChAd-control 232 immunized animals (Fig 2A-F and Fig S2). The antibody response was significantly higher after 233 IN than IM immunization (5 to 7-fold, P < 0.0001 for anti-S and anti-RBD respectively, **Fig 2G-H**). Serum samples also were tested for neutralization of infectious SARS-CoV-2 by focus-reduction 234 235 neutralization test (FRNT). As expected, pre-immunization sera or sera from hamsters immunized 236 with ChAd-control did not inhibit virus infection (Fig 2I). In contrast, sera from animals immunized with ChAd-SARS-CoV-2-S neutralized infectious virus with geometric mean titers (GMT) of 237 238 1:1217 and 1:276 for IN and IM immunization routes, respectively (Fig 2I).

Immunization with Chimpanzee Ad-vectored vaccine protects hamsters from SARS-CoV-2 challenge. We next evaluated the protective effect of the ChAd vaccines in the hamster SARS-CoV-2 challenge model. Golden Syrian hamsters immunized with ChAd-SARS-CoV-2-S or ChAd-control were challenged IN with 2.5×10^5 PFU of SARS-CoV-2, and 2 dpi a nasal swab was collected for viral burden analysis by qPCR and plaque assay. The N-gene copy number in the ChAd-control immunized animals was ~ 10^9 copies per mL in both the IM and IN control groups (Fig 3A). Immunization with ChAd-SARS-CoV-2-S reduced the N-gene copy number by 100-fold

in the IN (10⁷/mL) and 10-fold in the IM (10⁸/mL) immunized animals (P < 0.0001 and P < 0.001246 247 respectively, Fig 3A). N-gene copy number was significantly lower in the IN than IM immunized animals (P < 0.05, Fig 3A). At 2 dpi, infectious virus was detected by plaque assay in 4 of 20 248 249 ChAd-SARS-CoV-2-S-immunized animals and 15 of 20 ChAd-control immunized animals (Fig 250 **3B**). At 3 dpi, six hamsters per group were sacrificed, and lungs were collected for viral burden analysis (left lobe) by qPCR or FFA, or for histology (other lung lobes). In the control groups, we 251 252 detected 10⁹ -10¹⁰ copies of N-gene per mg of lung homogenate, and the mean infectious titer 253 was 6 x 10⁴ FFU/mL. No difference was observed between the two control groups. Immunization 254 with ChAd-SARS-CoV-2-S vaccine significantly reduced the N-gene copy number (P < 0.01, Fig. 255 **3C**) and infectious titer in both the IN and IM immunized group (**Fig 3D**). A comparison between 256 IN and IM immunization revealed significantly lower N-gene copies per mg (788-fold, P < 0.01, 257 **Fig 3C**), but not in infectious virus titer (P = 0.5, **Fig 3D**), in the lungs of IN immunized animals. The remaining four animals per group were monitored for weight loss for 10 days. The ChAd-258 259 control immunized animals lost an average of 4% and 8% of their starting body weight (Fig 3E). 260 Immunization with ChAd-SARS-CoV-2-S attenuated weight loss after SARS-CoV-2 challenge in 261 both groups (P < 0.01, Fig 3E), with a possibly greater effect following IN immunization. To assess if the ChAd-SARS-CoV-2-S vaccine induced sterilizing immunity by either of the immunization 262 routes, we collected the serum 10 dpi to test for the presence of antibodies against recombinant 263 264 NP by ELISA. A robust anti-NP lgG(H+L) (Fig S3) and lgG2/3 (Fig 3F) antibody response was detected in all ChAd-control and ChAd-SARS-CoV-2-S immunized animals. 265

Immunization with Chimpanzee Ad-vectored vaccine minimizes lung pathology in
hamsters. To support these findings, we performed RNA *in situ* hybridization (RNA-ISH) and H
& E staining on sections from formalin-fixed lung tissues from immunized hamsters. RNA-ISH
detected viral RNA in all animals immunized with ChAd-control vaccine (Fig 4A-B and Fig S4).
On average, ~20% of the section was positive for SARS-CoV-2 RNA. The presence of viral RNA

was associated with inflammation, tissue damage, and bronchopneumonia, as evidenced by immune cell infiltration around bronchioles, alveolar edema, fluid exudates, and intraparenchymal hemorrhage (**Fig S4**). In contrast, sections from animals immunized IM with ChAd-SARS-CoV-2-S contained no or few SARS-CoV-2 positive cells by RNA-ISH and inflammation was greatly reduced (P < 0.01, **Fig 4A-B** and **Fig S5**). No SARS-CoV-2 positive cells were detected following IN immunization with ChAd-SARS-CoV-2-S (P < 0.01, **Fig 4A-B** and **Fig S5**).

277 An ideal SARS-CoV-2 vaccine would confer protection against disease and prevent virus infection and transmission. We hypothesized that IN delivery of the vaccine could provide superior 278 protection in the upper respiratory tract compared to IM delivery. Hamster heads were collected 279 3 dpi and fixed in formalin. Following decalcification and embedding, sagittal sections were 280 obtained and RNA-ISH was performed (Fig 4C). SARS-CoV-2 RNA was detected in the nasal 281 282 cavity and ethmoturbinates of all 12 hamsters immunized IN or IM with ChAd-control (Fig 4D, left 283 panel). No difference in viral RNA staining was observed between the two groups. Animals immunized IM with ChAd-SARS-CoV-2-S contained fewer SARS-CoV-2 positive cells and less 284 cellular debris than ChAd-Control vaccinated animals (Fig 4D). However, animals immunized IN 285 with ChAd-SARS-CoV-2-S had the fewest number of SARS-CoV-2-positive cells, and cellular 286 287 debris was further reduced (Fig 4D). Collectively, these studies show that the ChAd-SARS-CoV-2-S vaccine is highly protective in the hamster model of COVID-19, and IN delivery of this vaccine 288 provides superior protection against upper respiratory tract infection. 289

Inflammatory gene expression is reduced after SARS-CoV-2 challenge in the ChAd-SARS-CoV-2 immunized hamsters. Lung pathology after SARS-CoV-2 infection appears to be driven by inflammation [14]. Thus, a successful vaccine should reduce or eliminate the inflammatory response after infection or challenge with SARS-CoV-2. The inflammatory response was evaluated in the ChAd-control and ChAd-SARS-CoV-2-S immunized hamsters 3 days after challenge with SARS-CoV-2. RNA was extracted from the tissue homogenates and analyzed by gRT-PCR using 24 different primer-probe sets specific for two housekeeping genes (*B2m* and 297 Rp[18] and 22 different innate and inflammatory host genes (Table S1). Compared to five naïve animals, expression of 8/22 inflammatory host genes (Ccl2, Ccl3, Cxcl10, Ddx58, Ifit3, IL10, 298 299 IL12p40, and Irf7 increased > 2-fold in the ChAd-Control immunized and SARS-CoV-2 challenged 300 animals (Fig 5A). A significant increase in gene-expression was observed for Cc/3, Ifit3, Cxc/10, 301 and Irf7 in both ChAd-Control-IN and ChAd-Control-IM animals (P < 0.05, Fig 5A). ChAd-SARS-CoV-2-S immunization significantly reduced inflammatory gene expression after SARS-CoV-2 302 303 challenge (Fig 5B) with the expression of a subset of host genes, such as Ccl5, Ccl3 and Cxcl10, near normal levels. A comparison in host gene expression between IM and IN immunization 304 305 identified Irf7 and Ifit3 as two host genes whose expression was significantly (P < 0.01) lower in 306 the IN compared to IM immunized animals (Fig 5B). These data suggest that IN delivery of the 307 ChAd-vectored SARS-CoV-2-S vaccine provides greater protection against SARS-CoV-2 308 infection, inflammation, and disease in hamsters.

309 DISCUSSION

310 Effective vaccines against SARS-CoV-2 are needed to combat the devastating pandemic. In this study, we evaluated IN and IM delivery of a ChAd-vectored vaccine expressing a prefusion 311 stabilized S protein of SARS-CoV-2 in the Syrian hamster challenge model. A single dose of 312 313 ChAd-SARS-CoV-2 induced S- and RBD-specific serum antibodies capable of neutralizing 314 SARS-CoV-2. Antibody responses were higher after IN than IM immunization. Following 315 challenge with a high dose of SARS-CoV-2, IN and IM immunization reduced infectious virus titers and viral RNA levels in the lungs and nasal swabs, albeit the effect was greater following IN 316 immunization. Immunization with ChAd-SARS-CoV-2 also reduced weight loss, lung pathology 317 and inflammatory gene expression in the lungs of the animals with a greater effect again seen 318 after IN immunization. Finally, IN immunization protected the upper respiratory tract of hamsters, 319 320 whereas IM immunization did not. Combined, these studies demonstrate that a single dose of 321 ChAd-SARS-CoV-2-S vaccine delivered IN provides better protection than IM immunization against SARS-CoV-2 challenge in Syrian hamsters. 322

At least four different virally vectored vaccines have been tested in Syrian hamsters [20, 21]. A single dose of IN delivered ChAd-SARS-CoV-2-S vaccine induced serum antiviral neutralizing titers of around 1:1217, which is at least several fold higher than IM delivery of Ad26-S (1:360) and VSV-S, or intraperitoneal delivery of Y17F-S (1:630). Furthermore, IN delivery of ChAd-SARS-CoV-2-S protected the upper respiratory tract against infection with SARS-CoV-2 and no weight loss was detected after virus challenge. This contrasts with the other vaccine candidates where the vaccinated hamsters lose between 0 and 5% of their body weight after challenge.

The reason for the higher antibody responses after IN versus IM immunization currently is not known. One possibility is that the respiratory tract of the hamster is more permissive for the ChAd virus than muscle, which could increase the amount of SARS-CoV-2-S antigen produced. Alternatively, the mucosal immune response to the S protein or ChAd infection in the respiratory tract is unique compared to the thigh muscle. The most striking difference between IN and IM 335 immunization is the enhanced protection of the upper respiratory tract infection, with minimal or 336 no viral RNA detected in the nasal olfactory neuroepithelium, which expresses known receptors for SARS-CoV-2 [26]. This effect may be due to the induction of local S protein specific immunity 337 capable of neutralizing virus in the upper respiratory tract. In mice, IN immunization induced 338 339 robust S-specific IgA antibodies [23], whereas IM immunization did not. Anti-hamster-IgA secondary antibodies currently are not commercially available. Nonetheless, we would expect to 340 341 find similar IgA responses that can neutralize incoming virus. As a result of the superior protection 342 of the nasal cavity and upper respiratory tract, it IN delivery of ChAd-SARS-CoV-2-S may offer protection against both infection and transmission of SARS-CoV-2. 343

IN immunization offers many benefits over more traditional approaches [27]. Besides the ease 344 of administration and lack of needles, IN delivery is associated with mucosal immune responses 345 346 including the production of IgA and stimulation of T- and B-cells in the nasopharynx-associated 347 lymphoid tissue [28]. Influenza virus vaccines are the only licensed IN vaccines to date for individuals over the age of 2 and less than 50 years old. Live-attenuated influenza virus vaccine 348 349 (LAIV) are considered safe and efficacious. The exception to this was the 2013-2014 and 2015-350 2016 season when the vaccine was no effective against one of the four components [29]. IN 351 delivery of several viral vectored vaccines has been evaluated in pre-clinical animal models. A single dose of chimpanzee adenovirus vectored vaccine against the Middle Eastern Respiratory 352 353 Syndrome virus protected hDPP4 knock-in mice and rhesus macagues from MERS challenge [30, 31]. Similarly a parainfluenza virus 5 vectored vaccine expressing the S protein of MERS 354 355 protected mice from MERS [32]. A replication-incompetent recombinant serotype 5 adenovirus, 356 Ad5-S-nb2, carrying a codon-optimized gene encoding Spike protein (S), protected rhesus macaques from SARS-CoV-2 challenge [33]. Besides coronaviruses, IN delivered adenoviral 357 358 vectored vaccines protected non-human primates from Ebola virus [34]. Importantly, in that study, 359 protection occurred in the presence existing adenovirus-specific immunity. Besides the many advantages of IN vaccines, IN delivery of a replication defective adenovirus 5 vectored vaccines 360

361 caused infection of olfactory nerves in mice [35]. In humans, IN delivery of a non-replicating
 362 adenovirus-vectored influenza vaccine was well tolerated and immunogenic [36].

The pathogenesis following SARS-CoV-2 infection is mediated in part by a pathological 363 inflammatory immune response [1]. To evaluate the efficacy of this vaccine on reducing this part 364 of the syndrome, we quantified changes in gene expression of 22 different hamster inflammatory 365 and immune genes. Eight out of the 22 showed demonstrated a >2-fold increase in gene 366 367 expression, with a clear enrichment for type I and III IFN-induced genes. The expression of several other hamster host genes, including IFN-y, interleukins (IL-10 is an exception), TNF- α , 368 and complement factors did not increase after infection. This lack of expression may be due to 369 the time of organ collection (3 dpi), when the inflammatory response is still developing. The lack 370 of IFN-y could be explained by the increase in IL-10 expression or the early time point evaluated 371 372 that precedes influx of NK cells and activated T cells.

373 Correlates of immune protection and SARS-CoV-2 associated disease were investigated in our cohort of hamsters. Virus neutralization in serum correlated better with RBD-specific antibody 374 levels (r = 0.83, P < 0.0001) than S-protein specific responses (r = 0.31, P > 0.05, Fig S6). Of the 375 376 three humoral response parameters, the virus neutralization serum titer (FRNT, IC₅₀) correlated 377 best with weight loss 3 dpi (r = 0.59, P < 0.0001, Fig S6). Weight loss at 3 dpi was strongly associated with viral RNA levels (r = -0.68, P < 0.001) and infectious virus load (r = -0.62, P < 378 379 0.01, Fig S6) in the lungs, but not in the nasal swabs. Finally, inflammatory host gene-expression (*lfit3* and *Cxcl10*) correlated with RNA levels in the lungs (r = 0.68 and 0.84 respectively, P < 100380 0.001), and serum virus neutralization titers (r = -0.70 and -0.64 respectively, P < 0.01). These 381 analyses suggests that RBD-specific, but not S-specific, serum antibody and virus neutralization 382 titers are important parameters of protection against SARS-CoV-2 and COVID-19 and that high 383 384 antibody levels are associated with protection from infection and inflammation.

385 Overall, our studies in hamsters demonstrate that IN delivery of the ChAd-SARS-CoV-2-S 386 vaccine confers protection against SARS-CoV-2 challenge. Protection is associated with lower

- 387 virus levels in the lungs and upper and lower respiratory tracts, no weight loss, and reduced
- 388 inflammation in the lungs. These findings support further pre-clinical and clinical studies
- investigating the vaccine efficacy of IN delivered vaccines against SARS-CoV-2.
- 390
- 391

392 **REFERENCES**

Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data
 on COVID-19 infection fatality rates. Int J Infect Dis. 2020;101:138-48. Epub 2020/10/03. doi:
 10.1016/j.ijid.2020.09.1464. PubMed PMID: 33007452; PubMed Central PMCID: PMCPMC7524446.

Cao Y, Hiyoshi A, Montgomery S. COVID-19 case-fatality rate and demographic and socioeconomic
 influencers: worldwide spatial regression analysis based on country-level data. BMJ open.
 2020;10(11):e043560. Epub 2020/11/06. doi: 10.1136/bmjopen-2020-043560. PubMed PMID: 33148769;
 PubMed Central PMCID: PMCPMC7640588.

3. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time.
Lancet Infect Dis. 2020;20(5):533-4. Epub 2020/02/23. doi: 10.1016/s1473-3099(20)30120-1. PubMed
PMID: 32087114; PubMed Central PMCID: PMCPMC7159018.

403 4. Mudatsir M, Fajar JK, Wulandari L, Soegiarto G, Ilmawan M, Purnamasari Y, et al. Predictors of 404 COVID-19 severity: a systematic review and meta-analysis. F1000Research. 2020;9:1107. Epub 405 2020/11/10. doi: 10.12688/f1000research.26186.1. PubMed PMID: 33163160; PubMed Central PMCID: 406 PMCPMC7607482.

5. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. Epub 2020/03/15. doi: 10.1016/s0140-6736(20)30566-3. PubMed PMID: 32171076; PubMed Central PMCID: PMCPMC7270627.

Muñoz-Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA, et al. Animal
models for COVID-19. Nature. 2020;586(7830):509-15. Epub 2020/09/24. doi: 10.1038/s41586-020-27876. PubMed PMID: 32967005.

Pandey K, Acharya A, Mohan M, Ng CL, Reid PS, Byrareddy SN. Animal Models for SARS-CoV-2
research: A Comprehensive Literature Review. Transboundary and emerging diseases. 2020. Epub
2020/11/01. doi: 10.1111/tbed.13907. PubMed PMID: 33128861.

8. Chan JF, Zhang AJ, Yuan S, Poon VK, Chan CC, Lee AC, et al. Simulation of the clinical and
pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model:
implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020. Epub 2020/03/28. doi:
10.1093/cid/ciaa325. PubMed PMID: 32215622; PubMed Central PMCID: PMCPMC7184405.

 Cleary SJ, Pitchford SC, Amison RT, Carrington R, Robaina Cabrera CL, Magnen M, et al. Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology. British journal of pharmacology.
 2020. Epub 2020/05/29. doi: 10.1111/bph.15143. PubMed PMID: 32462701; PubMed Central PMCID: PMCPMC7283621.

Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters
as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci
U S A. 2020;117(28):16587-95. Epub 2020/06/24. doi: 10.1073/pnas.2009799117. PubMed PMID:
32571934; PubMed Central PMCID: PMCPMC7368255.

11. Osterrieder N, Bertzbach LD, Dietert K, Abdelgawad A, Vladimirova D, Kunec D, et al. AgeDependent Progression of SARS-CoV-2 Infection in Syrian Hamsters. Viruses. 2020;12(7). Epub
2020/07/24. doi: 10.3390/v12070779. PubMed PMID: 32698441; PubMed Central PMCID:
PMCPMC7412213.

Rosenke K, Meade-White K, Letko MC, Clancy C, Hansens F, Liu Y, et al. Defining the Syrian hamster
as a highly susceptible preclinical model for SARS-CoV-2 infection. bioRxiv. 2020. Epub 2020/10/01. doi:
10.1101/2020.09.25.314070. PubMed PMID: 32995767; PubMed Central PMCID: PMCPMC7523093.

436 13. Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, et al. Pathogenesis and transmission of
437 SARS-CoV-2 in golden hamsters. Nature. 2020. Epub 2020/05/15. doi: 10.1038/s41586-020-2342-5.
438 PubMed PMID: 32408338.

439 14. Boudewijns R, Thibaut HJ, Kaptein SJF, Li R, Vergote V, Seldeslachts L, et al. STAT2 signaling
440 restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nat Commun.
441 2020;11(1):5838. Epub 2020/11/19. doi: 10.1038/s41467-020-19684-y. PubMed PMID: 33203860.

442 15. Felipe LS, Vercruysse T, Sharma S, Ma J, Lemmens V, van Looveren D, et al. A single-dose live-443 attenuated YF17D-vectored SARS-CoV2 vaccine candidate. bioRxiv. 2020.

Kaptein SJF, Jacobs S, Langendries L, Seldeslachts L, Ter Horst S, Liesenborghs L, et al. Favipiravir
at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine
lacks activity. Proc Natl Acad Sci U S A. 2020;117(43):26955-65. Epub 2020/10/11. doi:
10.1073/pnas.2014441117. PubMed PMID: 33037151.

17. Rosenke K, Jarvis MA, Feldmann F, Schwarz B, Okumura A, Lovaglio J, et al. Hydroxychloroquine
prophylaxis and treatment is ineffective in macaque and hamster SARS-CoV-2 disease models. JCI insight.
2020. Epub 2020/10/23. doi: 10.1172/jci.insight.143174. PubMed PMID: 33090972.

451 18. Driouich J-S, Cochin M, Lingas G, Moureau G, Touret F, Petit PR, et al. Favipiravir antiviral efficacy
452 against SARS-CoV-2 in a hamster model. bioRxiv. 2020.

453 19. Kaptein SJ, Jacobs S, Langendries L, Seldeslachts L, ter Horst S, Liesenborghs L, et al. Antiviral 454 treatment of SARS-CoV-2-infected hamsters reveals a weak effect of favipiravir and a complete lack of 455 effect for hydroxychloroquine. bioRxiv. 2020.

Tostanoski LH, Wegmann F, Martinot AJ, Loos C, McMahan K, Mercado NB, et al. Ad26 vaccine
protects against SARS-CoV-2 severe clinical disease in hamsters. Nat Med. 2020. Epub 2020/09/05. doi:
10.1038/s41591-020-1070-6. PubMed PMID: 32884153.

Sun W, McCroskery S, Liu WC, Leist SR, Liu Y, Albrecht RA, et al. A Newcastle disease virus (NDV)
expressing membrane-anchored spike as a cost-effective inactivated SARS-CoV-2 vaccine. bioRxiv. 2020.
Epub 2020/08/09. doi: 10.1101/2020.07.30.229120. PubMed PMID: 32766572; PubMed Central PMCID:
PMCPMC7402029.

Yahalom-Ronen Y, Tamir H, Melamed S, Politi B, Shifman O, Achdout H, et al. A single dose of
recombinant VSV-ΔG-spike vaccine provides protection against SARS-CoV-2 challenge. bioRxiv. 2020.

465 23. Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey IB, et al. A Single-Dose Intranasal
466 ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell. 2020;183(1):169467 84.e13. Epub 2020/09/16. doi: 10.1016/j.cell.2020.08.026. PubMed PMID: 32931734; PubMed Central
468 PMCID: PMCPMC7437481.

Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, et al. A highly conserved cryptic epitope in the
receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020;368(6491):630-3. Epub
2020/04/05. doi: 10.1126/science.abb7269. PubMed PMID: 32245784; PubMed Central PMCID:
PMCPMC7164391.

Zivcec M, Safronetz D, Haddock E, Feldmann H, Ebihara H. Validation of assays to monitor immune
responses in the Syrian golden hamster (Mesocricetus auratus). J Immunol Methods. 2011;368(1-2):24Epub 2011/02/22. doi: 10.1016/j.jim.2011.02.004. PubMed PMID: 21334343; PubMed Central PMCID:
PMCPMC3085612.

Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M, Jr., et al. Elevated ACE-2
expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2
entry and replication. Eur Respir J. 2020;56(3). Epub 2020/08/21. doi: 10.1183/13993003.01948-2020.
PubMed PMID: 32817004; PubMed Central PMCID: PMCPMC7439429.

Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery. Hum Vaccin
Immunother. 2017;13(1):34-45. Epub 2016/12/10. doi: 10.1080/21645515.2016.1239668. PubMed
PMID: 27936348; PubMed Central PMCID: PMCPMC5287317.

484 28. Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev
485 Immunol. 2012;12(8):592-605. Epub 2012/07/26. doi: 10.1038/nri3251. PubMed PMID: 22828912.

Parker L, Ritter L, Wu W, Maeso R, Bright H, Dibben O. Haemagglutinin stability was not the
primary cause of the reduced effectiveness of live attenuated influenza vaccine against A/H1N1pdm09
viruses in the 2013-2014 and 2015-2016 seasons. Vaccine. 2019;37(32):4543-50. Epub 2019/07/08. doi:
10.1016/j.vaccine.2019.06.016. PubMed PMID: 31279567.

490 Jia W, Channappanavar R, Zhang C, Li M, Zhou H, Zhang S, et al. Single intranasal immunization 30. 491 with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV 492 microbes & infections. 2019;8(1):760-72. infection. Emerging Epub 2019/05/28. doi: 493 10.1080/22221751.2019.1620083. PubMed PMID: 31130102; PubMed Central PMCID: 494 PMCPMC6542157.

495 31. van Doremalen N, Haddock E, Feldmann F, Meade-White K, Bushmaker T, Fischer RJ, et al. A single
496 dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Science advances.
497 2020;6(24):eaba8399. Epub 2020/06/25. doi: 10.1126/sciadv.aba8399. PubMed PMID: 32577525;
498 PubMed Central PMCID: PMCPMC7286676.

499 32. Li K, Li Z, Wohlford-Lenane C, Meyerholz DK, Channappanavar R, An D, et al. Single-Dose,
500 Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory
501 Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection. mBio.
502 2020;11(2). Epub 2020/04/09. doi: 10.1128/mBio.00554-20. PubMed PMID: 32265331; PubMed Central
503 PMCID: PMCPMC7157776.

504 33. Feng L, Wang Q, Shan C, Yang C, Feng Y, Wu J, et al. An adenovirus-vectored COVID-19 vaccine
505 confers protection from SARS-COV-2 challenge in rhesus macaques. Nat Commun. 2020;11(1):4207. Epub
506 2020/08/23. doi: 10.1038/s41467-020-18077-5. PubMed PMID: 32826924; PubMed Central PMCID:
507 PMCPMC7442803 as Chief Scientific Advisor for Guangzhou nBiomed Ltd. The remaining authors declare
508 no competing interests.

34. Richardson JS, Pillet S, Bello AJ, Kobinger GP. Airway delivery of an adenovirus-based Ebola virus
vaccine bypasses existing immunity to homologous adenovirus in nonhuman primates. J Virol.
2013;87(7):3668-77. Epub 2013/01/11. doi: 10.1128/jvi.02864-12. PubMed PMID: 23302894; PubMed
Central PMCID: PMCPMC3624216.

513 Lemiale F, Kong WP, Akyürek LM, Ling X, Huang Y, Chakrabarti BK, et al. Enhanced mucosal 35. 514 immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and 515 localization in the central nervous system. J Virol. 2003;77(18):10078-87. Epub 2003/08/28. doi: 10.1128/jvi.77.18.10078-10087.2003. PubMed PMID: 12941918; PubMed 516 Central PMCID: 517 PMCPMC224584.

518 36. Van Kampen KR, Shi Z, Gao P, Zhang J, Foster KW, Chen DT, et al. Safety and immunogenicity of 519 adenovirus-vectored nasal and epicutaneous influenza vaccines in humans. Vaccine. 2005;23(8):1029-36.

520 Epub 2004/12/29. doi: 10.1016/j.vaccine.2004.07.043. PubMed PMID: 15620476.

522 ACKNOWLEDGEMENTS

We acknowledge Krzysztof Hyrc for help with the Hamamatsu NanoZoomer slide scanning system. We also thank Amy Dillard for help with the serum collections from the animals and Ali Ellebedy and Jackson Turner for help with antibody ELISA and recombinant protein. We thank Drs. Susan Cook and Ken Boschert for support of the COVID-19 research. This study was funded by NIH contracts and grants (R01 Al157155, 75N93019C00062, U01 Al151810, HHSN272201400018C, and HHSN272201700060C). J.B.C. is supported by a Helen Hay Whitney Foundation postdoctoral fellowship.

530

531 AUTHOR CONTRIBUTIONS

T.L.B., and T.L.D. performed the animal experiments. A.O.H. upscaled and purified the 532 533 ChAd vectors. A.O.H., A.C.M.B., and J.B.C. performed the serological analysis. H.H., T.L.B., and 534 T.L.D. performed viral load analysis by quantitative RT-PCR, focus forming or plaque assay. T.L.D. developed and validated primer-probes sets for Syrian hamster genes and performed the 535 536 host gene expression assays. M. J. H. performed the histology analysis. A.S., X.J. and R.K. 537 performed the histology and RNA-ISH on the hamster heads. A.C.M.B. performed RNA-ISH on the hamster lungs. A.L.B. and J.B.C. provided quantitative PCR reagents and protocols. Y.N.D., 538 H.Z., L.J.A., and D.H.F. provided recombinant proteins for serological analysis. M.S.D. and 539 540 A.C.M.B. provided supervision and acquired funding. A.C.M.B. wrote the initial draft, with the other authors providing editorial comments. 541

542

543 COMPETING FINANCIAL INTERESTS

544 M.S.D. is a consultant for Inbios, Vir Biotechnology, NGM Biopharmaceuticals, and 545 Carnival Corporation and on the Scientific Advisory Board of Moderna and Immunome. The 546 Diamond laboratory has received unrelated funding support in sponsored research agreements 547 from Moderna, Vir Biotechnology, and Emergent BioSolutions. The Boon laboratory has received

- 548 unrelated funding support in sponsored research agreements from AI Therapeutics, GreenLight
- 549 Biosciences Inc., AbbVie Inc., and Nano targeting & Therapy Biopharma Inc. M.S.D. and A.O.H.
- 550 have filed a disclosure with Washington University for possible commercial development of ChAd-
- 551 SARS-CoV-2.

552 FIGURES

553 Figure 1: Development of the SARS-CoV-2 hamster model. (A) Mean + standard deviation 554 (SD) weight loss or weight gain of uninfected (n = 3) or SARS-CoV-2 infected (n = 21). (B) Daily food intake of uninfected and infected hamsters. Data points for the uninfected hamsters (n = 3 555 556 per day) were recorded for 14 days and plotted. For infected hamsters, food intake 1 to 10 dpi was recorded (**** P < 0.0001, *** P < 0.001 by ANOVA with Dunnett's multiple comparison 557 558 against the uninfected hamsters). (C) Infectious virus titer was quantified by FFA from homogenates of the left lung lobe at indicated time points. Each dot is an individual hamster and 559 560 bars indicate median values (dotted line is the limit of detection). (D) Lung viral RNA was 561 quantified in the left lung lobe at indicated time points after infection. Each dot is an individual 562 hamster and bars indicate median values (dotted line is the limit of detection). (E) Pathology score of the lungs from infected hamsters. <10% affected = 1, >10% but <50% = 2, >50% = 3. Each 563 564 lobe was scored, and the average score was plotted per animals. The solid line is the average score per day for RNA in situ hybridization (red line and dots) or inflammation (blue line and dots). 565 566 (F) Representative images at 5x and 20x magnification of H & E staining of SARS-CoV-2 infected 567 hamsters sacrificed at different time points after inoculation (n = 5 for 2 dpi, n = 3 for 3 dpi, n = 3for 4 dpi, n = 5 for 5 dpi, n = 2 for 8 dpi, n = 3 for 14 dpi, n = 3 for uninfected). (G) Serum S protein 568 specific IgG(H+L) responses in SARS-CoV-2 infected hamsters. Each color is a different day after 569 570 infection. (C-D) Bars indicate median values, and dotted lines are the LOD of the assays.

571

Figure 2: Humoral immune response following IN and IM immunization. (A-C) Anti-S proteinspecific serum IgG(H+L) titers in hamsters immunized IN with ChAd-Control (A) or with ChAdSARS-CoV-2-S IM (B) or IN (C). Each line is an individual animal. (D-G) Receptor binding domain
(RBD)-specific serum IgM titers in hamsters immunized IN with ChAd-Control (D), or with ChAdSARS-CoV-2-S IM (E) or IN (F). Each line is an individual animal. (G-H) IC₅₀ values for S protein

specific or RBD specific lgG(H+L) (**G**) or lgG2/lgG3 (**H**) serum antibodies in hamsters vaccinated IM (blue symbols) or IN (red symbols) with ChAd-Control (open symbols) or ChAd-SARS-CoV-2-S (closed symbols). (**** P < 0.0001, *** P < 0.001 by Mann-Whitney test with a Bonferroni correction for multiple comparisons). (**I**) SARS-CoV-2 serum neutralizing titer, measured by FRNT, in hamsters vaccinated IM or IN with ChAd-Control or ChAd-SARS-CoV-2-S. (**** P <0.0001, * P < 0.05 by Mann-Whitney test with a Bonferroni correction for multiple comparisons). (**G-I**) Bars indicate median values, and dotted lines are the LOD of the assays.

584

585 Figure 3: IN immunization offers superior protection against challenge with SARS-CoV-2. 586 Twenty-eight days after a single IM (blue symbols) or IN (red symbols) vaccination with ChAd-Control (open symbols) or ChAd-SARS-CoV-2-S (closed symbols), hamsters were challenged 587 with 2.5 x 10⁵ PFU of SARS-CoV-2, and nasal swabs (A and B) and lungs (C and D) were 588 589 collected for analysis of viral RNA levels by qPCR (A and C) and infectious virus by plaque assay (**B** and **D**). (**** *P* < 0.0001, *** *P* < 0.001, ** *P* < 0.01, * *P* < 0.05, ns = not significant by Mann-590 591 Whitney test with a Bonferroni correction for multiple comparisons). (E) Mean + SD of weight loss/gain in SARS-CoV-2 challenged hamsters (n = 4 per group). (F) SARS-CoV-2 N protein 592 593 serum titer, measured by ELISA, in hamsters vaccinated IM or IN with ChAd-Control or ChAd-SARS-CoV-2-S. (A-D and F) Bars indicate median values, and dotted lines are the limit of 594 detection of the assavs. 595

596

Figure 4: IN immunization offers superior protection against SARS-CoV-2 infection of the
nasal epithelium. (A) RNA *in situ* hybridization (ISH) for SARS-CoV-2 viral RNA in hamster lung
sections. Representative images of the ChAd-Control (IM), ChAd-SARS-CoV-2-S (IM) and ChAdSARS-CoV-2-S (IN) sections. (B) Comparison of RNA-ISH staining between groups of hamsters.
Each lobe was scored according to the following system, <10% RNA-positive = 1, >10% but <50%

RNA-positive = 2, >50% RNA-positive = 3, and the average score was plotted per animals. (** *P* < 0.01, ns = not significant by Mann-Whitney U test with a Bonferroni correction for multiple comparisons). (**C**) Representative images of sagittal sections of hamster heads infected with SARS-CoV-2 for 2 days or uninfected control. RNA-ISH was performed on the sections and SARS-CoV-2 viral RNA was detected in the nasal turbinate. (**D**) Detection of SARS-CoV-2 viral by RNA-ISH in sagittal sections of hamster heads from the immunized and SARS-CoV-2 challenged animals.

609

610 Figure 5: ChAd-SARS-CoV-2 immunization ameliorates inflammatory gene expression 611 following SARS-CoV-2 challenge. Inflammatory gene-expression (n = 22) was quantified by RT-PCR in RNA extracted from lung homogenates 3 dpi (primer and probe sequences are in 612 Table 1). (A) Fold increase in gene-expression for ChAd-Control immunized (IN in red and IM in 613 614 black) and SARS-CoV-2 challenged hamsters. (B) AACt-values for Ifit3, Irf7, Ccl5, Cxcl10, Ddx58 and Ccl3 in ChAd-Control (open symbols) and ChAd-SARS-CoV-2-S (closed symbols) 615 616 immunized and SARS-CoV-2 challenged animals 3 dpi. (ns = not significant, **** P < 0.0001, *** P < 0.001, ** P < 0.01 by one-way ANOVA with a Šidák correction for multiple comparisons). 617 618 Each dot is an individual animal from two experiments. Bars indicate average values.

620 SUPPLEMENTARY FIGURES

Supplementary Figure 1: RNA *in situ* (ISH) hybridization on lung tissue sections from SARS-CoV-2 infected hamsters. Representative images at 0.5x (A), 5x (B), and 20x (B) magnification of RNA-ISH of SARS-CoV-2 infected hamsters sacrificed at different time points after inoculation (n = 5 for 2 dpi, n = 3 for 3 dpi, n = 3 for 4 dpi, n = 5 for 5 dpi, n = 2 for 8 dpi, n = 3 for 14 dpi, n = 3 for uninfected).

626

Supplementary Figure 2: IgG2/IgG3 serum antibody titers against recombinant spike
protein and the receptor binding domain (RBD) of the spike protein. (A-B) S protein-specific
serum IgG2/IgG3 titers in hamsters immunized IM (A) or IN (B) with ChAd-Control. (C-D) RBDspecific serum IgG2/IgG3 titers in hamsters immunized IM (C) or IN (D) with ChAd-Control. (E-F)
S protein-specific serum IgG2/IgG3 titers in hamsters in hamsters immunized IM (C) or IN (D) with ChAd-Control. (E-F)
S protein-specific serum IgG2/IgG3 titers in hamsters immunized IM (E) or IN (F) with ChAdSARS-CoV-2-S. (G-H) RBD-specific serum IgG2/IgG3 titers in hamsters immunized IM (C) or IN
(D) with ChAd-SARS-CoV-2-S. Each line is an individual animal.

634

Supplementary Figure 3: IgG(H+L) serum antibody titers against SARS-CoV-2 nucleoprotein 10 days after infection in vaccinated and control hamsters. Nucleoproteinspecific serum antibody titers in ChAd-Control (A-B) or ChAd-SARS-CoV-2-S (C-D) immunized and SARS-CoV-2 challenged Golden Syrian hamsters 10 days post challenge. Each line is an individual animal.

640

Supplementary Figure 4: Histological and RNA *in situ* (ISH) hybridization analysis of lung
tissue sections from ChAd-Control vaccinated and SARS-CoV-2 challenge hamsters.
Representative images at 5x magnification of H & E staining and RNA-ISH of hamsters
immunized IM (n = 6) and IN (n = 6) with ChAd-Control and challenged 28 days later with SARS-

645 CoV-2. Lungs were collected 3 days post challenge, fixed in 10% formalin and paraffin embedded
646 prior to sectioning and staining.

647

Supplementary Figure 5: Histological and RNA *in situ* (ISH) hybridization analysis of lung tissue sections from ChAd-SARS-CoV-2-S vaccinated and SARS-CoV-2 challenge hamsters. Representative images at 5x magnification of H & E staining and RNA-ISH of hamsters immunized IM (n = 6) and IN (n = 6) with ChAd-SARS-CoV-2S and challenged 28 days later with SARS-CoV-2. Lungs were collected 3 days post challenge, fixed in 10% formalin and paraffin embedded prior to sectioning and staining.

654

Supplementary Figure 6: Immune correlates of vaccine-mediated protection SARS-CoV-2. Correlations between % weight-loss/gain (3 dpi), RNA levels in the lungs and nasal swabs, infectious virus titers, serum antibody responses, serum virus neutralization titer, and inflammatory hamster gene expression were analyzed for all animals in the vaccine study using a Pearson correlation matrix. The top right side is the correlation coefficient and the bottom left

side has the *P*-value for every combination (**** P < 0.0001, *** P < 0.001, ** P < 0.001, * P < 0.01, * P < 0.05

661 by Pearson's correlation analysis).

662 SUPPLEMENTARY TABLES

663 Supplementary Table 1: Primers and probe sets used to quantify gene expression in the

664 Golden Syrian hamster (Mesocricetus auratus).

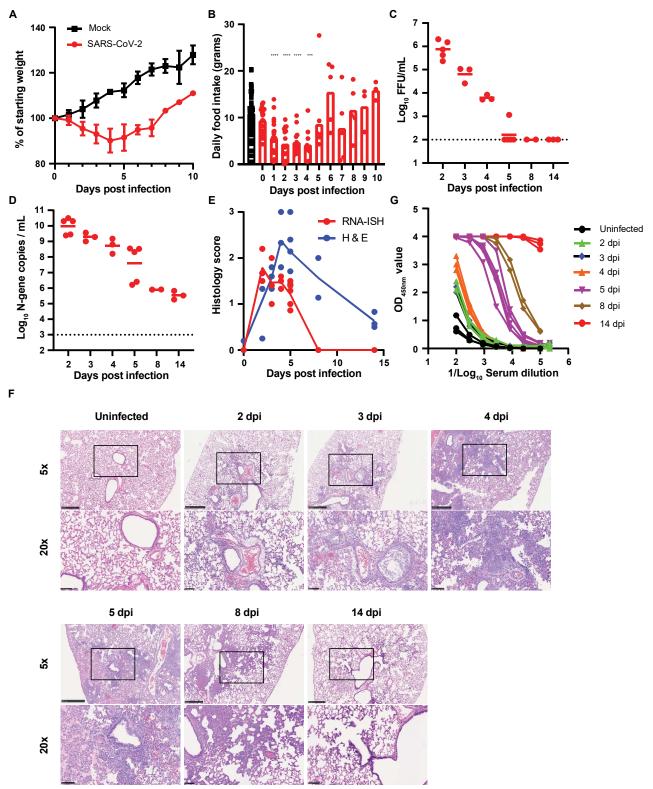


Figure 1

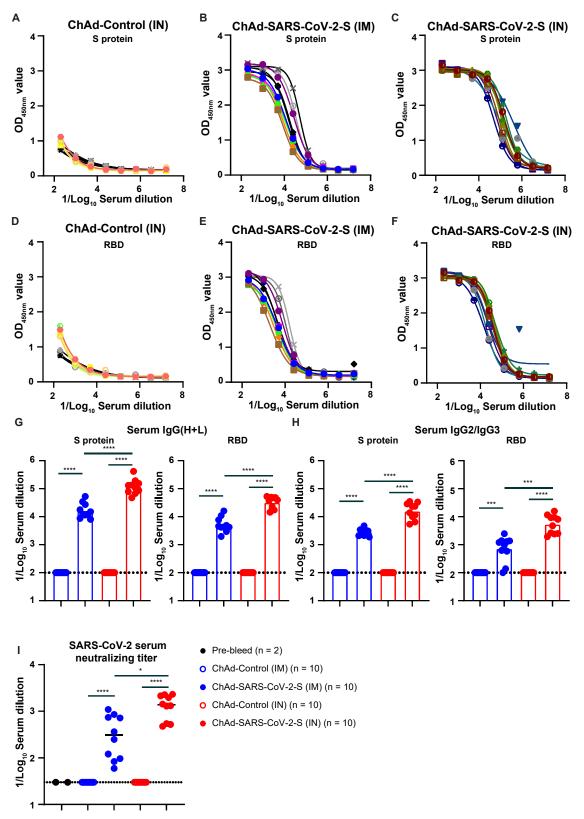


Figure 2

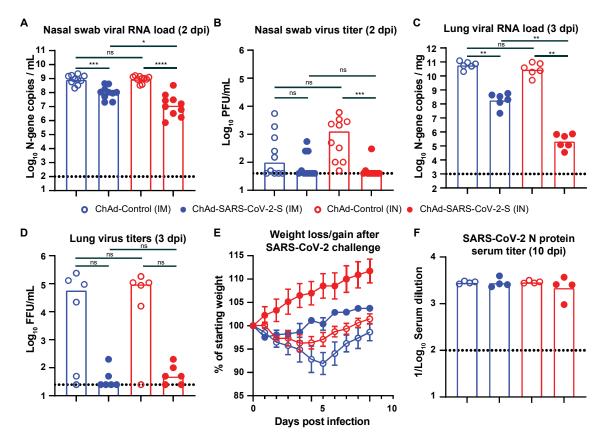
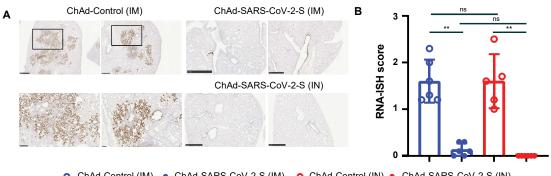
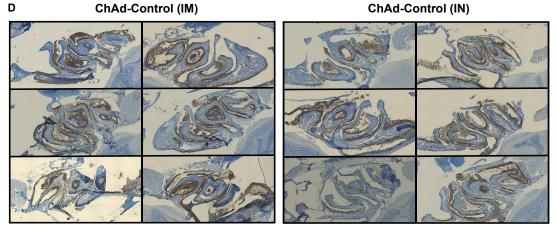



Figure 3

• ChAd-Control (IM) • ChAd-SARS-CoV-2-S (IM) • ChAd-Control (IN) • ChAd-SARS-CoV-2-S (IN)

SARS-CoV-2 infected (2 dpi)

SARS-CoV-2 infected



С

D

ChAd-Control (IN)

ChAd-SARS-CoV-2-S (IN)

ChAd-SARS-CoV-2-S (IM)

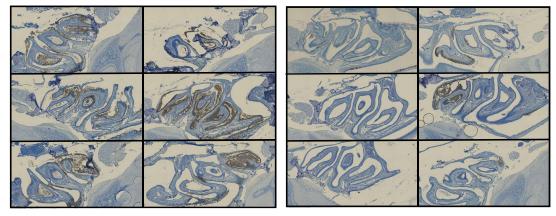


Figure 4

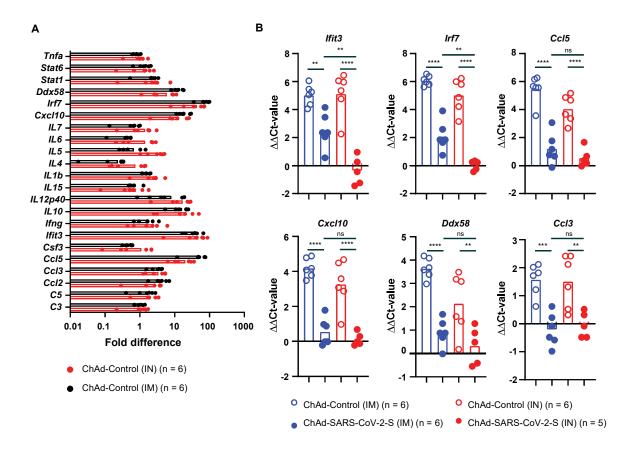
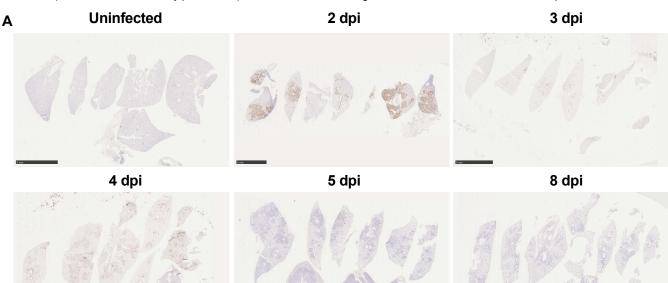
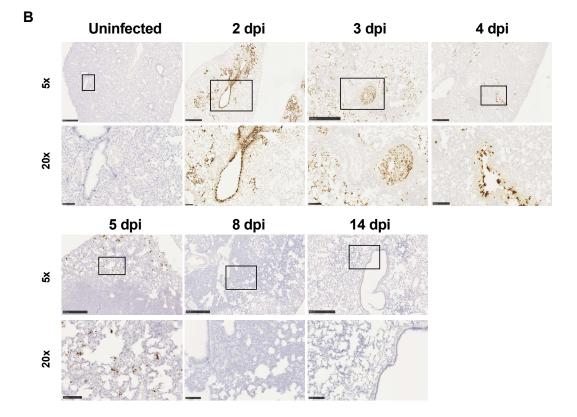




Figure 5

14 dpi

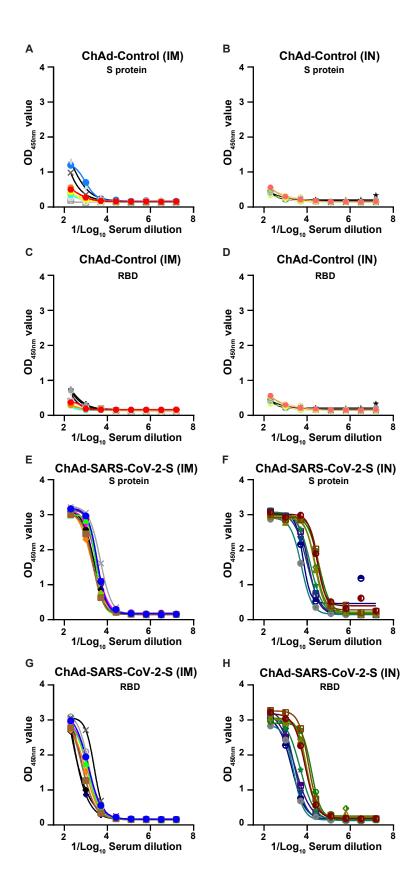
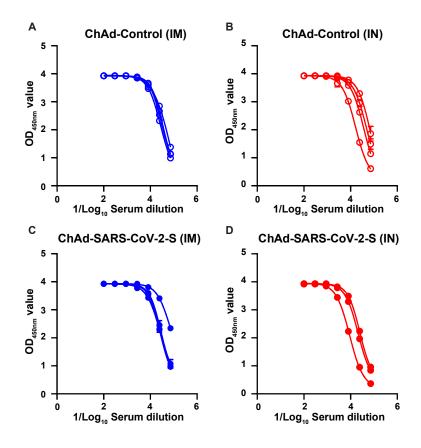
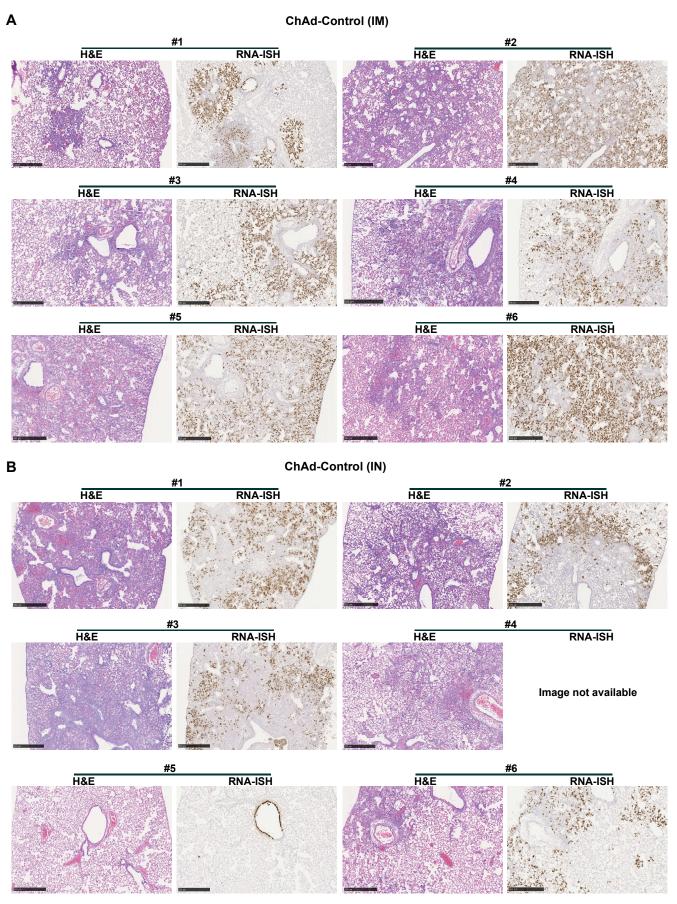
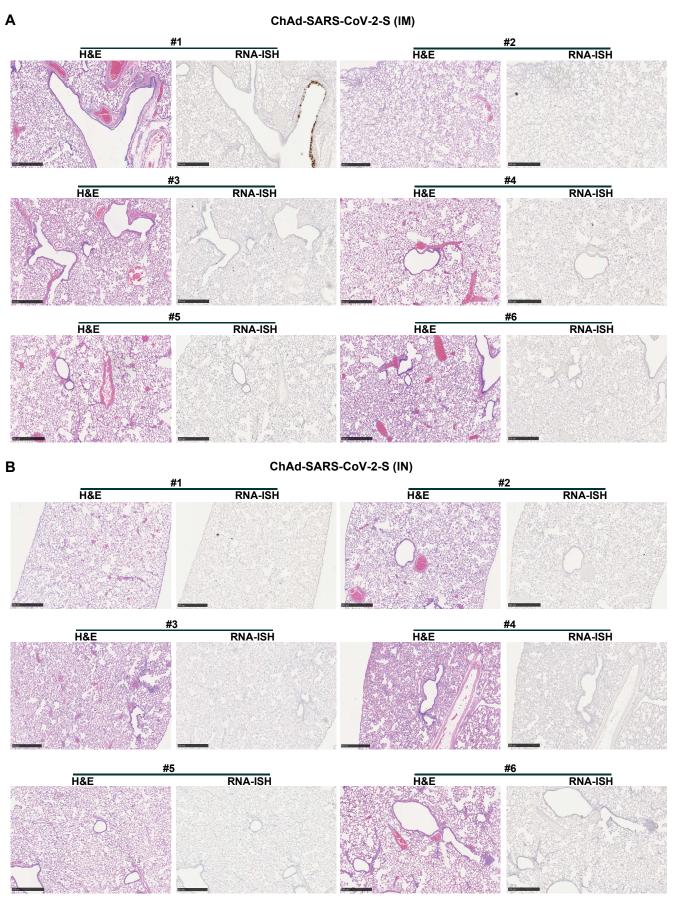





Figure S2

	S-specific serum Ab titer (IgG(H+L), IC 50)	RBD-specific serum Ab titer (lgG(H+L), $\mathrm{IC}_{\mathrm{so}}$	Virus neutralization antibody titer (IC ₅₀)	Viral load (FFU/mL)	vRNA level-Lung (N-probe)	vRNA level-Lung (5' UTR-probe)	vRNA level-Nasal swab (N-probe)	vRNA level-Nasal swab (5' UTR-probe)	Weight loss (3 dpi)	<i>lfit</i> 3 (∆∆Ct-value)	Cxcl10 (∆∆Ct-value)		1.0
S-specific serum Ab titer (IgG(H+L), IC ₅₀₎		0.54	0.31	0.12	-0.45	-0.39	-0.29	-0.33	0.22	-0.69	-0.28		1.0
RBD-specific serum Ab titer (lgG(H+L), IC $_{\scriptscriptstyle 50)}$			0.83	0.29	-0.56	-0.44	-0.31	-0.35	0.46	-0.53	-0.11		
Virus neutralization antibody titer (IC $_{\scriptscriptstyle 50}$)		****		-0.40	-0.49	-0.49	-0.54	-0.51	0.59	-0.70	-0.64		0.5
Viral load (FFU/mL)					0.74	0.80	0.42	0.42	-0.62	0.55	0.64		
vRNA level-Lung (N-probe)			*	****		0.83	0.66	0.63	-0.66	0.68	0.84		
vRNA level-Lung (5' UTR-probe)			*	****	****		0.65	0.68	-0.68	0.65	0.72		0
vRNA level-Nasal swab (N-probe)			**	*	***	***		0.97	-0.48	0.60	0.68		
vRNA level-Nasal swab (5' UTR-probe)			**	*	***	***	****		-0.47	0.56	0.62		a -
Weight loss (3 dpi)		*	****	**	***	***	**	**		-0.53	-0.63		-0.5
<i>lfit3</i> (∆∆Ct-value)	*		**	**	***	***	**	**	**		0.85		
Cxcl10 (∆∆Ct-value)			**	**	****	***	***	**	**	****			-1.0

Figure S6

Gene	Accession number	Forward Primer	Reverse Primer	Probe	Exons spanned	Reference
Rpl18	XM_005084699.3	GTTTATGAGTCGCACTAACCG	TGTTCTCTCGGCCAGGAA	TCTGTCCCTGTCCCGGATGATC	2	25
в2M	XM_005068531.3	GGCTCACAGGGAGTTTGTAC	TGGGCTCCTTCAGAGTTATG	CTGCGACTGATAAATACGCCTGCA	1	25
С3	<u>XM_021233717.1</u>	TCTCCATGATGACTGGCTTTG	GGCTTTGGTCATCTCGTACTT	ACACAAACGACCTGGAACTGCTGA	2	in-house
C5	XM_021234075.1	GGCTGACTCGGTTTGGATAA	CACAGTTTGACCTGGAGAATAGA	AGAGAAATGTGGCAACCAGCTCGA	2	in-house
Ccl2	XM_005076967.3	CTCACCTGCTGCTACTCATTC	CTCTCTCTTGAGCTTGGTGATG	CAGCAGCAAGTGTCCCAAAGAAGC	2	in-house
Ccl3	<u>NM_001281338.1</u>	CCTCCTGCTGCTTCTTCTATG	TGCCGGTTTCTCTTGGTTAG	TCCCGCAAATTCATCGCCGACTAT	2	in-house
Ccl5	XM_005076936.3	TGCTTTGACTACCTCTCCTTTAC	GGTTCCTTCGGGTGACAAA	TGCCTCGTGTTCACATCAAGGAGT	2	in-house
Csf3	GDQJ01025619.1	AATCAATCCATGGCTCAACTTTC	CTTCTTGTCCTGTCCAGAGTG	CACAGTAGCAGCTGTAGGGCCATC	2	in-house
lfit3	<u>XM_021224964.1</u>	CTGATACCAACTGAGACTCCTG	CTTCTGTCCTTCCTCGGATTAG	ACCGTACAGTCCACACCCAACTTT	2	in-house
lfng	<u>NM_001281631.1</u>	TTGTTGCTCTGCCTCACTC	CCCTCCATTCACGACATCTAAG	TACTGCCAGGGCACACTCATTGAA	2	in-house
IL10	<u>XM_005079860.2</u>	AGCGCTGTCATCGATTTCTC	CGCCTTTCTCTTGGAGCTTAT	AAGGCTGTGGAACAGGTGAAGGAT	3	in-house
IL12p40	<u>NM_001281689.1</u>	GAGGCCCAGCACAAGTATAA	AGTCAGGATACTCCCAGGATAA	ATCATCAAACCGGACCCACCCAAA	2	in-house
IL15	<u>XM_005077725.3</u>	AGGCTGAGTTCTCCGTCTAA	AGTGTTGAAGAGCTGGCTATG	TCAGAGAGGTCAGGAAAGGAGGTGT	2	in-house
IL16	XM_005068610.3	TTCCTGAACTCGACAGTGAAAT	GCTTTGGAAACAGCTCTTCATC	TCTTTGAGGTTGACGGGCTCCAAA	2	in-house
IL4	<u>AF046213</u>	CCACGGAGAAAGACCTCATCTG	GGGTCACCTCATGTTGGAAATAAA	CAGGGCTTCCCAGGTGCTTCGCAAGT	2	25
IL5	<u>JQ290352.1</u>	TGAGCACTGTGGTGAAAGAG	TTATGAGTGGGAACAGGAAGC	ACTGACAAGCAACGAGACGGTGAG	2	in-house
IL6	XM_005087110.2	CCACCAGGAACGAAAGACAA	CAGCAGTCCCAAGAAGACAA	AACTTCATAGCTGTTCCTGGAGGGC	2	in-house
IL7	<u>XM_021225270.1</u>	GTGTGGCTTCTGTGGACATATTA	GAGATTCGGCTAAGAGGCTTTC	TTCCAGTCTCCCAGAGTTGCCAAA	1	in-house
Cxcl10	<u>NM_001281344.1</u>	GCCATTCATCCACAGTTGACA	CATGGTGCTGACAGTGGAGTCT	CGTCCCGAGCCAGCCAACGA	1	25
Irf7	XM_005063345.3	AGCACGGGACGCTTTATC	GACGGTCACTTCTTCCCTATTC	AGTTTGGATGTACTGAAGGCCCGG	2	in-house
Ddx58	NM 001310553.1	GTGCAACCTGGTCATTCTTTATG	GTCAGGAGGAAGCACTTACTATC	AAACCAGAGGCAGAGGAAGAGCAA	2	in-house
Stat1	<u>NM_001281685.1</u>	AGGTCCGTCAGCAGCTTAA	GCCGTTCCACCACAAAT	TCTGAATGAGCTGCTGGAAGAGGACA	2	25
Stat6	XM_005079747.3	AGCACCTCATTCACCTTCAG	AAGCATTGTCCCACAGGATAG	ACCAAGACAACAATGCCAAAGCCA	2	in-house
Tnfa	XM_005086799.3	GGAGTGGCTGAGCCATCGT	AGCTGGTTGTCTTTGAGAGACATG	CCAATGCCCTCCTGGCCAACG-	1	25

Supplementary Table 1: Primer and probe sequences for gene-expression analysis in the Golden Syrian hamster (*Mesocricetus auratus*)