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ABSTRACT  42 

Background: SARS-CoV-2 is an RNA virus causing COVID-19. The clinical characteristics and 43 

epidemiology of COVID-19 have been extensively investigated, however studies focused on 44 

the patient's microbiota are still lacking. In this study, we investigated the nasopharyngeal 45 

microbiome composition of patients who developed different severity levels of COVID-19. We 46 

performed Rdna-SSU (16S) sequencing from nasopharyngeal swab samples obtained from 47 

SARS-CoV-2 positive (56) and negative (18) patients in the province of Alicante (Spain) in their 48 
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first visit to the hospital. Positive SARS-CoV-2 patients were observed and later categorized in 49 

mild (symptomatic without hospitalization), moderate (hospitalization) and severe 50 

(admission to ICU). We compared the microbiome diversity and OTU composition among 51 

severity groups using Similarity Percentage (SIMPER) analysis and Maaslin2. We also built 52 

bacterial co-abundance networks for each group using Fastpar.  53 

Results:  Statistical analysis indicated differences in the nasopharyngeal microbiome of 54 

COVID19 patients. 62 OTUs were found exclusively in SARS-CoV-2 positive patients, mostly 55 

classified as members of the phylum Bacteroidetes (18) and Firmicutes (25). OTUs classified 56 

as Prevotella were found to be significantly more abundant in patients that developed more 57 

severe COVID-19. Furthemore, co-abundance analysis indicated a loss of network complexity 58 

among samples from patients that later developed more severe symptoms. 59 

Conclusions: Our preliminary study shows that the nasopharyngeal microbiome of COVID-19 60 

patients showed differences in the composition of specific OTUs and complexity of co-61 

abundance networks. These microbes with differential abundances among groups could serve 62 

as biomarkers for COVID-19 severity. Nevertheless, further studies with larger sample sizes 63 

should be conducted to validate these results. 64 

IMPORTANCE 65 

This work has studied the microbiota of the nasopharyngeal tract in COVID19 patients using 66 

advanced techniques of molecular microbiology. Diverse microorganisms, most of which are 67 

harmless or even beneficial to the host, colonize the nasopharyngeal tract. These 68 

microorganisms are the microbiota, and they are present in every people. However, changes 69 

in this microbiota could be related to different diseases as cancer, gastrointestinal pathologies 70 

or even COVID19. This study has been performed to investigate the microbiota from patients 71 

with COVID19, in order to determinate its implication in the pathology severity. The results 72 
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obtained showed that it is possible that several specific microorganisms are present only in 73 

patients with severe COVID19. These data, could be used as a prognostic biomarker to early 74 

detect whose patients will develop a severe COVID19 and improve their clinical management. 75 

BACKGROUND 76 

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a positive-sense single-77 

stranded RNA virus causing Coronavirus Disease 2019 (COVID-19) [1]. On January 30, 2020, 78 

the World Health Organization (WHO) declared the COVID-19 outbreak as “public health 79 

emergency of international concern” and two months later on March 11th as a pandemic. The 80 

SARS-CoV-2 virus was first reported in central city of Wuhan, Hubei province, China, and 81 

presented 70% of similarity with the SARS-CoV-1 virus [2] and 96% similarity with a bat 82 

coronavirus, which is an evidence of the original host of this zoonosis [1], although the exact 83 

source has yet to be elucidated. While the most common symptoms are fever, cough and 84 

dyspnoea, the disease can cause other less frequent clinical manifestations such as myalgia, 85 

headaches, breathlessness, fatigue and nausea [3].  86 

Viruses and bacteria are often present in the respiratory tract of healthy and asymptomatic 87 

individuals [4]. Microaspiration of aerosols and direct mucosal dispersal is responsible for a 88 

constant inflow of microbes and viruses towards lower airways [4].   Disease and 89 

inflammatory processes that lead to the emergence of anaerobic zones, or mucus 90 

accumulation in the alveoli can drastically change the microbial community of the airways [4]. 91 

For example, in diseased individuals, the lung microbiome composition undergoes a decrease 92 

in diversity [7] accompanied by a shift in the dominant taxa: from Bacteroidetes to 93 

Gammaproteobacteria, a class that includes many respiratory pathogens.  94 

Although the clinical characteristics and epidemiology of COVID-19 have been described 95 

[8,9,10], studies focused on the associations between the patient's microbiota and the onset 96 
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of the disease are still limited. This pilot study aims to characterize the nasopharyngeal 97 

mucosal microbial communities of SARS-CoV-2 infected patients. We investigated samples 98 

from a control group of SARS-CoV-2 negative patients and three groups of SARS-CoV-2 99 

positive patients, divided according to disease severity: one group of symptomatic patients 100 

that did not require hospitalization, a second group of patients that were admitted to 101 

conventional hospitalization facilities, and a third group of patients that required admission 102 

to the ICU. 103 

METHODS  104 

Patients and experimental design 105 

56 nasopharyngeal microbiome samples from SARS-CoV-2 positive patients and 18 samples 106 

from SARS-CoV-2 negative patients were collected during March and April of 2020 in the 107 

Emergency Service of Hospital General Universitario de Alicante (HGUA). Cobas SARS-CoV-2 108 

PCR Test for the Cobas 6800 System (Roche Molecular Systems, Branchburg, NJ, USA) was 109 

used to detect the presence of SARS-CoV-2 [11].  110 

Patients were first classified based on SARS-CoV-2 presence, and then regarding their later 111 

developments (hospital admission and severity). All samples were obtained before the onset 112 

of severe symptoms, and before any treatment was administered to the patients. Following 113 

these criteria, four groups were established: group 0: SARS-Cov-2 negative patients (n=18); 114 

group 1: mild COVID19 symptoms but no later hospital admission (n= 19); group 2: severe 115 

COVID19 symptoms followed by hospital admission (n=18); and group 3: patients with severe 116 

COVID19 symptoms which were eventually admitted into intensive care units (ICU) (n=19). 117 

Protocols were developed in accordance with the national ethical and legal standards, and 118 

following the guidelines established in the Declaration of Helsinki (2000). The research project 119 

was conducted under the written approval of the Ethic Committee of Clinical Research with 120 
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Drug (In Spanish, CEIm) of the “Hospital General Universitario de Alicante (Spain)”, and in 121 

collaboration with the Biobank of Clinical and Biomedical Research Institute of Alicante 122 

(ISABIAL), which are included in the Valencian Network of Biobanks. 123 

 124 

 125 

DNA isolation and Sequencing 126 

DNA from nasopharyngeal samples was isolated using the QIAamp DNA Mini Kit (QIAgen) 127 

following the protocol recommended by the manufacturer. Sequencing libraries were 128 

prepared according to the 16S Metagenomic Sequencing Library Preparation protocol 129 

distributed by Illumina. Briefly, the sequence spanning the hypervariable regions V3 and V4 130 

of the 16S rRNA gene was amplified through PCR and amplicons were quantified using a Qubit 131 

4 Fluorometer (Qubit dsDNA HS Assay Kit) and validated by 4200 TapeStation (company). 132 

Amplicons were sequenced with Illumina MiSeq System using the 2x300bp cartridge. The 133 

quality of raw sequences was assessed by FastQC software. 134 

Taxonomic classification of amplicon sequences 135 

Paired end reads of 300 bp were generated with an average overlap of 140 bp. Sequences 136 

were trimmed using trimmomatic [12] and the resulting paired reads were merged using 137 

casper [13], generating individual fragments of about 460 bp. Given the uneven coverage 138 

between samples, the number of individual reads was standardized to 20,000 per sample, 139 

removing samples that did not reach this sequencing depth. Merged amplicon sequences 140 

were grouped in operational taxonomic units (OTUs) using cd-hit [14] with an identity of 97%. 141 

Sequences were queried against small subunits (16S) rRNA genes by the SILVA database [15] 142 

for taxonomic classification. Sequences with low identity (< 70%) to any reference 16S rRNA 143 

gene or classified as eukaryotic were excluded from further analysis. 144 
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Testing for differences in taxonomic composition among patient groups 145 

We sought to determine how different samples were grouped according to their OTU 146 

composition. To that end, non-metric multidimensional scaling (NMDS) analysis was 147 

performed based on Bray-Curtis dissimilarity measures were calculated among samples based 148 

on relative OTU abundances (i.e. percentages) through the Vegan (v 2.5-6) package in R (v 149 

3.6.3). The relative abundances of OTUs were also used to test for statistically significant 150 

differences among severity groups. Group OTU compositions were compared through 151 

ANOSIM. Next, Similarity Percentage (SIMPER) analysis was used to determine which OTUs 152 

were responsible for driving the differences in community composition among groups. For 153 

this analysis, all six possible pairwise combinations of severity groups were tested.  154 

OTU association with COVID-19 severity 155 

To infer associations between the severity of COVID-19 and the airways microbiome, general 156 

linear models (GLM) were built using the R package MaAsLin2 with centred log-transformed 157 

(CLR) OTUs counts as the dependent variable and the severity group (with group 0 and group 158 

1 as references), adjusted by gender and age, as the independent variable. Only OTUs that 159 

presented a prevalence of 20% over the sample space were considered. The resulting p-values 160 

were adjusted for multiple testing using the Benjamini-Hochberg method (BH). 161 

Co-abundance networks for COVID-19 severity groups  162 

Fastpar [16], a multi-thread implementation of the SparCC algorithm [17], was used to 163 

generate co-abundance networks among OTUs of each of the four severity groups with 164 

default parameters (50 iterations and correlation threshold of 0.2) and 1,000 bootstrap 165 

iterations to infer significance. Results were processed using an in-house ipython notebook 166 

to generate network matrices for visualization with Cytoscape 3.8 [18]. The network matrices 167 
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were loaded in the Cytoscape 3.8 software, and connections filtered by p-value (≤ 0.05) and 168 

correlation (≤ -0.6 or ≥ 0.6).   169 

 170 

RESULTS 171 

Study Set 172 

Seventy-four patients were included in this pilot study to assess associations between the 173 

nasopharyngeal microbiome composition and the severity of the COVID19 disease. However, 174 

only 65 samples remained after quality coverage control (see Material and Methods). Data 175 

including age, sex, diagnosis, hospital admission, and disease severity were registered (Table 176 

S1). Sixteen patients belonged to the negative control (Group 0, no-SARS-CoV-2), whereas the 177 

remaining patients were classified into three groups (Group 1, 2 and 3) according to the 178 

severity (see methods). The average age of the patients was ca. 60 years old and around 49% 179 

of them were diagnosed with pneumonia.  180 

Microbiome taxonomic composition differs among severity groups 181 

The bacterial phylum Firmicutes was the most abundant in the nasopharynx microbiome 182 

among patients from all severity groups (52.94% ± 4.04%), followed by Bacteroidota (22.06% 183 

± 6.07%), Proteobacteria (12.75% ± 7.28%) and Actinobacteria (5.4% ± 0.6%). At the genus 184 

level, Streptococcus was the most abundant taxon (25.23% ± 2.03%), followed by Prevotella 185 

(16.20% ± 5.66%), Veillonella (14.45% ± 2.20%), Haemophilus (5.28% ± 4.76%) and Moraxella 186 

(3.24% ± 3.6%) (Figure S1 and Table S2). A total of 62 OTUs were found exclusively in SARS-187 

CoV-2 positive patients (at a minimum of three samples). Most of these OTUs were classified 188 

as members of the phylum Bacteroidetes (18) and Firmicutes (25). Notably, the most common 189 

genera among the OTUs found exclusively on COVID-19 positive patients were Prevotella (13), 190 

followed by Leptotrichia (4) and Streptococcus (4). Samples were compared based on the 191 
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relative abundances of OTUs. This analysis revealed that samples did not cluster according to 192 

the severity group neither by hierarchical clustering (Figure S2A and 2B) or NMDS (Figure S2C). 193 

Nevertheless, the differences in OTU composition among severity groups were significant 194 

according to ANOSIM (R = 0.046, p = 0.036). 195 

SIMPER analysis revealed that 25 OTUs were responsible for approximately 70% (p-value 196 

0.04) of the differences in community composition between severity groups 1 and 3 (Table 197 

S3). These OTUs were classified as members of the phyla Bacteroidota, Firmicutes, 198 

Fusobacteriota and Proteobacteria. Eleven OTUs had higher average abundance among 199 

samples from severity group 1, among which were included three OTUs classified as members 200 

of the genus Veillonella. On the other hand, 14 OTUs were more abundant among samples 201 

from severity group 3, among which were included four OTUs classified as Prevotella. 202 

Multiple OTUs display differential abundance according to COVID-19 severity 203 

Using group 0 as a reference, we identified a total of 10 significant associations between 204 

bacterial OTUs and patient severity (p-value < 0.05, q-value < 0.25), corrected for age and sex. 205 

Among those, 9 were positively associated (8 in group 2 and 1 in group 3 when contrasted 206 

with group 0) and 1 negatively associated (in group 3 contrasted with group 0) (Table S4, 207 

Figure 1A). Of the OTUs positively associated with severity, 3 were classified as members of 208 

the genus Prevotella (OTUs 4, 14 and 16). Due to the heterogeneity of group 0, we decided to 209 

investigate also the differences within the SARS-CoV-2 positive patients, using group 1 as 210 

reference. The GLM model showed just 1 significant OTU (OTU 16), a Prevotella also found to 211 

be significantly associated with severity in the first model (Table S4, Figure 1B). We did not 212 

find any OTUs significantly different between groups 1 and 0. Figure 1A shows the coefficients 213 

for all the significant OTUs found by both GLMs and figure 1B shows OTU 16 CLR transformed 214 

counts for all severity groups.  215 
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Co-abundance networks for COVID-19 severity groups  216 

In order to investigate how OTUs correlate in the different groups, we generated a total of 4 217 

co-abundance networks, one for each severity group. For the severity group 0, the SARS-CoV-218 

2 negative group, the network displayed 118 nodes with 179 edges. Regarding the other three 219 

severity groups, ranging from mild to high severity, the complexity of the network decreased 220 

with the increase of severity. The network for patients with mild symptoms (group 1) has 137 221 

nodes with 457 edges, while the network for patients with severe symptoms but not admitted 222 

in ICU (group 2) had 129 nodes with 171 edges and the network for severe patients admitted 223 

in ICU (group 3) had 100 nodes and 148 edges. In the network of severity group 1, OTU 16 224 

(Prevotella, associated with severity in two GLMs) displayed 18 co-abundant OTUs connected 225 

in the network in first degree (Figure 2). Among these connections, ten were negative 226 

associations while eight were positive. Most of these connections with OTU 16 were absent 227 

from networks of severity groups 2 and 3. Only 3 and 2 first degree connections remained in 228 

each of these networks respectively (Figure S3).  229 

 230 

DISCUSSION  231 

In this preliminary study, analysis of the taxonomic composition of the samples showed 232 

differences between patients that developed different onsets of COVID-19. These changes in 233 

nasopharyngeal community composition are subtle, meaning that they are restricted to few 234 

taxa out of the complete meta-community. Nevertheless, there are detectable and significant 235 

changes among OTU abundances. These changes could be linked to the different severity 236 

groups, as we identified both taxa that were present exclusively among COVID-19 positive 237 

patients as well as those whose abundance was significantly higher or lower among different 238 

severity groups. Not only this, but also the complexity of co-abundance networks (which can 239 
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be taken as a proxy for potential interactions between taxa), was decreased among patients 240 

that developed more severe cases of COVID-19. Below we discuss the mechanisms by which 241 

specific microbes might play a role in either enhancing or decreasing the severity of COVID-242 

19. Those results suggest potential biomarkers for the onset of the disease. 243 

Potential associations between bacterial taxa and COVID-19 severity.  244 

Among the OTUs positively associated with COVID-19 severity, three were classified as 245 

members of the genus Prevotella, and one to a closely related genus, Alloprevotella. A recent 246 

study showed that Prevotella proteins can promote viral infection through multiple 247 

interactions with NF-κB signalling pathway, which is also involved in COVID-19 severity [19]. 248 

The genus Prevotella is usually considered commensal and, as such, rarely involved in 249 

infections. However, some strains have been identified as opportunistic pathogens in chronic 250 

infections, abscesses and anaerobic pneumonia [20,21,22,23]. The role of some strains of 251 

Prevotella in chronic mucosal inflammation has been demonstrated. They are involved with 252 

augmented T helper type 17 (Th17)-mediated mucosal inflammation, through activation of 253 

Toll-like receptor 2, followed by production of cytokines by antigen-presenting cells, including 254 

interleukin-23 (IL-23) and IL-1 [23]. The severe symptoms of COVID-19 are associated with 255 

cytokine storms, many of which are involved in TH17 type responses [24]. The significant 256 

association of Prevotella sp. and disease severity observed here suggests a possible link 257 

between Prevotella sp. and the COVID-19 through the activation of immunity signaling 258 

pathways that modulate inflammation, and this link should be further explored. 259 

 260 

Reduced network complexity among patients who later developed more severe COVID-19.  261 

Several studies demonstrated the usefulness of co-abundance networks to elucidate changes 262 

in the microbiome associated with human diseases [26,27,28,29]. By switching from 263 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.01.407486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407486


12 
 

individual OTU associations to a community interaction approach it is possible to attain a 264 

better understanding of the dynamic of microbiome/phenotype associations, revealing 265 

microbial consortia (and not only an OTU) that might be collectively influencing the host 266 

phenotype. Our linear models showed OTU 16 (Prevotella sp.) as an important OTU associated 267 

with severity. This OTU had the highest number of connections in the network, followed by 268 

OTU 9 (Veillonella sp.). Of the four networks generated, the severity  group 1 network showed 269 

the higher number of interactions with this OTU. Ecological networking, in vitro and clinical 270 

studies showed that Prevotella sp. and Veillonella sp. are keystone species in microbiomes 271 

during airway disease progression, especially in diseases associated with mucus accumulation 272 

such as cystic fibrosis [30-32]. These anaerobes are efficient at degrading mucin molecules on 273 

the airway mucosa, releasing byproducts that enable the colonization and growth of 274 

pathogenic bacteria that are poor at degrading mucus for growth [33]. In COVID patients, 275 

Prevotella sp. and Veillonella sp. could have a similar role due to the decreased mucociliary 276 

clearance caused by the viral infection [34]. Lower rates of clearing increase the residence 277 

time of Prevotella sp. and Veillonella sp. in the airways, likely increasing their mucus 278 

metabolism and enabling further colonization by pathogenic bacteria that may cause 279 

pneumonia.  280 

OTU 96, classified as Dolosigranulum sp., was identified in the group 1 network by having a 281 

negative relationship with OTU 16 (Prevotella sp.) as first-degree neighbor (Figure 3). OTU 96 282 

did not pass the q-value threshold established for the GLMs but shows significant p-value 283 

(0.003 in the model comparing group 2 and group 0, and 0.02 in the model comparing group 284 

2 and group 1 as reference). The only species currently described in this genus is 285 

Dolosigranulum pigrum, which is commonly found in the nasopharynx microbiome and is 286 

predicted to benefit the host through protection against pneumococcal colonization [35-36] 287 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.01.407486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407486


13 
 

and through protection against inflammation damage [37]. One study also found a lower 288 

abundance of Dolosigranulum in children with Influenza A Virus compared to healthy children 289 

[38]. In addition, a study reported that patients with their airway microbiota dominated by 290 

Corynebacterium and Dolosigranulum experienced the lowest rates of early loss of asthma 291 

control and have a longer time to develop at least 2 episodes [39]. We did not identify 292 

Corynebacterium directly connected to OTU16 (Prevotella sp.), but OTU 78, classified as 293 

Corynebacterium is positively associated with OTU 96 (0.7479, p-value 0.001) in the co-294 

abundance network from group 1 (Figure 3), indicating that in asymptomatic patients those 295 

two taxa are forming a consortium that might protect from disease development. This 296 

“consortium” was also implicated in resistance to recurrent ear infections and it was proposed 297 

as a probiotic candidate for upper respiratory tract infections [40]. The reason that we did not 298 

have lower q-value in our GLM for those two taxa could be the lack of power due to the small 299 

size of our study. Thus, these associations warrant further investigation. 300 

 301 

LIMITATIONS 302 

The major limitation of our study is the small sample size. With only about 15 samples per 303 

severity group it is difficult to find statistically significant associations between microbiome 304 

composition and disease severity. Nevertheless, this limitation is more likely to lead to false 305 

negatives than to false positives. We also cannot rule out confounding factors that might 306 

explain the differences between groups. Another important limitation is the fact that we 307 

performed amplicon rather than whole genome shotgun sequencing. This leads to three 308 

issues. First, some of the bacterial diversity is lost due to the fact that the selected primers do 309 

not amplify the entirety of bacterial diversity. Second, some genomes have more than a single 310 

copy of the 16S operon, which can lead to an overestimation of their abundance in the 311 
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samples. Third, without metagenomes (and metagenome assembled genomes) we could not 312 

make inferences about the presence of virulence factors and other features of the genomes 313 

of the microbes in our samples. We resorted to 16S amplification because our non-invasive 314 

approach to collect samples yields low DNA amounts that are inadequate for sequencing. 315 

However, as far as we know, this is a unique pilot study in the field. The aim is to be able to 316 

transfer the first useful results to help clinical practice in the fight against the virus and to 317 

optimize all the protocols and analyses for a second analysis in which the sample size will be 318 

much larger. We are currently working on collecting more samples and optimizing protocols 319 

that will allow us to obtain whole genome shotgun sequencing from them. 320 

 321 

CONCLUSION  322 

Our data provides preliminary evidence of significant differences in the composition of the 323 

upper airway microbiome according to COVID-19 severity, suggesting potential biomarkers of 324 

disease severity. While the richness indexes did not show significant differences among 325 

groups, specific taxa were significantly associated with disease development. We also 326 

demonstrated that the complexity of the co-abundance network is decreased in patients who 327 

came to develop severe cases of the disease, indicating that the interactions between the 328 

taxa are also relevant to this process. Further studies will be necessary to shed light on the 329 

molecular mechanisms that give rise to these associations. Finally, we make no claim that the 330 

differences in microbiome composition reported here are the cause of of COVID-19 severity. 331 

Nevertheless, the significant associations found between these variables suggests that the 332 

role of the microbiome on the onset of disease severity warrants further investigation. 333 
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 471 

Figure 1. A) Error bar plot of the GLM coefficients interval for each OTU. The Y-axis shows the 472 

OTU number and Genus classification. The X-axis represents the CLR abundance. In red the 473 

positively associated OTUs and in blue the negatively associated OTUS. B) OTU 16 (Prevotella) 474 

center log transformed (CLR) abundance in the severity groups 0-3.  475 
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478 

Figure 2. Co-abundance network (severity group 1) showing only first-degree neighbours of 479 

OTU 16 (Prevotella sp.). OTUs are represented by nodes and significant correlations by edges. 480 

Blue edges represent negative associations and red, positive associations. The colour of nodes 481 

was defined by the taxonomic classification of the OTU at Genus rank. 482 
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 485 
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SUPPLEMENTARY MATERIAL 489 

490 

Figure S1. Relative abundance of bacterial populations, at genus level, in the microbiome of 491 

patients within COVID-19 severity groups. Only microorganisms with a relative abundance 492 

greater than 0.5% are shown in the legend. 493 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.01.407486doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.407486


24 
 

 494 

Figure S2. Beta diversity. Dendrogram based on A) Bray-Curtis dissimilarity and B) Sørensen 495 

dissimilarity values. C) Comparison of sample taxonomic profiles by severity group. 496 

Nonmetric multidimensional scaling was applied to determine the clustering patterns of 497 

samples according to their OTU abundance patterns. Each dot represents a sample color 498 

coded according to the severity group it belongs to. The closer the samples are, the more 499 
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similar was their OTU abundance composition. No clear clustering of samples by severity 500 

group was observed. 501 

 502 

Figure S3. Co-abundance network showing only first-degree neighbours of OTU 16 (Prevotella 503 

sp.). A) Severity group 0 B) Severity group 2 and C) Severity group 3. 504 

Table S1. Clinical features of patients. 505 

Table S2. OTUs taxonomic classification. 506 

Table S3. OTUs showing approximately 70% of the differences in community composition 507 

between severity groups 1 and 3 (SIMPER). 508 

Table S4. Maaslin2 results (GLM) for OTUs associations (q-value < 0.25) for both models. 509 
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